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QUANTUM AND CLASSICAL

CORRELATIONS IN GAUSSIAN

OPEN QUANTUM SYSTEMS∗

Aurelian Isar†

Abstract

In the framework of the theory of open systems based on com-
pletely positive quantum dynamical semigroups, we give a descrip-
tion of the continuous-variable quantum correlations (quantum entan-
glement and quantum discord) for a system consisting of two non-
interacting bosonic modes embedded in a thermal environment. We
solve the Kossakowski-Lindblad master equation for the time evolu-
tion of the considered system and describe the entanglement and dis-
cord in terms of the covariance matrix for Gaussian input states. For
all values of the temperature of the thermal reservoir, an initial sep-
arable Gaussian state remains separable for all times. We study the
time evolution of logarithmic negativity, which characterizes the de-
gree of entanglement, and show that in the case of an entangled initial
squeezed thermal state, entanglement suppression takes place for all
temperatures of the environment, including zero temperature. We an-
alyze the time evolution of the Gaussian quantum discord, which is a
measure of all quantum correlations in the bipartite state, including
entanglement, and show that it decays asymptotically in time under
the effect of the thermal bath. This is in contrast with the sudden
death of entanglement. Before the suppression of the entanglement,
the qualitative evolution of quantum discord is very similar to that of
the entanglement. We describe also the time evolution of the degree of
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classical correlations and of quantum mutual information, which mea-
sures the total correlations of the quantum system.

MSC: 81P40, 81R30, 81S22

keywords: quantum correlations, entanglement, discord, squeezed states,
open systems, master equations.

1 Introduction

The study of quantum correlations is a key issue in quantum information
theory [1] and quantum entanglement represents the indispensable physical
resource for the description and performance of quantum information pro-
cessing tasks, like quantum teleportation, cryptography, superdense coding
and quantum computation [2]. However, entanglement does not describe
all the non-classical properties of quantum correlations. Recent theoretical
and experimental results indicate that some non-entangled mixed states can
improve performance in some quantum computing tasks [3]. Zurek [4, 5]
defined the quantum discord as a measure of quantum correlations which
includes entanglement of bipartite systems and it can also exist in separable
states. The total amount of correlations contained in a quantum state is
given by the quantum mutual information which is equal to the sum of the
quantum discord and classical correlations [6].

In recent years there is an increasing interest in using non-classical en-
tangled states of continuous variable systems in applications of quantum
information processing, communication and computation [7]. In this re-
spect, Gaussian states, in particular two-mode Gaussian states, play a key
role since they can be easily created and controlled experimentally. Due
to the unavoidable interaction with the environment, in order to describe
realistically quantum information processes it is necessary to take decoher-
ence and dissipation into consideration. Decoherence and dynamics of quan-
tum entanglement in continuous variable open systems have been intensively
studied in the last years [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

In this review paper we describe, in the framework of the theory of open
systems based on completely positive quantum dynamical semigroups, the
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dynamics of continuous variable quantum entanglement and quantum dis-
cord of a subsystem consisting of two uncoupled bosonic modes (harmonic
oscillators) interacting with a common thermal environment. We are inter-
ested in discussing the correlation effect of the environment, therefore we
assume that the two modes are independent, i.e. they do not interact di-
rectly. The initial state of the open system is taken of Gaussian form and
the evolution under the quantum dynamical semigroup assures the preser-
vation in time of the Gaussian form of the state. In particular, we consider
unimodal squeezed states, squeezed vacuum states, and symmetric and non-
symmetric squeezed thermal states as initial states [22, 23, 24]. We show
that entanglement suppression (entanglement sudden death) takes place for
all temperatures of the environment, including zero temperature. We ana-
lyze the time evolution of Gaussian quantum discord, which is a measure of
all quantum correlations in the bipartite state, including entanglement, and
show that discord decays asymptotically in time under the effect of the ther-
mal bath. This is contrast with the sudden death of entanglement. Before
the suppression of the entanglement, the qualitative evolution of quantum
discord is very similar to that of the entanglement.

The paper is organized as follows. In Sect. 2 the notion of the quantum
dynamical semigroup is defined using the concept of a completely positive
map. Then we give the general form of the Kossakowski-Lindblad quantum
mechanical master equation describing the evolution of open quantum sys-
tems in the Markovian approximation. We mention the role of complete pos-
itivity in connection with the quantum entanglement of systems interacting
with an external environment. In Sec. 3 we write the equations of motion in
the Heisenberg picture for two independent bosonic modes interacting with
a general environment and give the general solution of the evolution equa-
tion for the covariance matrix, i.e. we derive the variances and covariances
of coordinates and momenta corresponding to a generic two-mode Gaussian
state. Then, by using the Peres-Simon necessary and sufficient condition for
separability of two-mode Gaussian states [25, 26], we investigate in Sec. 4
the dynamics of quantum correlations (quantum entanglement and Gaus-
sian quantum discord) for the considered subsystem. We describe also the
time evolution of the degree of classical correlations and of quantum mutual
information. A summary and conclusions are given in Sec. 5. In Appendix
we present some elementary notions and examples of quantum correlations
(entanglement) in quantum information theory, and describe the influence
of diffusion and dissipation on the dynamics of a harmonic oscillator inter-
acting with an environment, in particular with a thermal bath.
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2 Axiomatic theory of open quantum systems

The time evolution of a closed physical system is given by a dynamical
group Ut, uniquely determined by its generator H, which is the Hamiltonian
operator of the system. The action of the dynamical group Ut on any density
matrix ρ from the set D(H) of all density matrices in the Hilbert space H
of the quantum system is defined by

ρ(t) = Ut(ρ) = e−
i
~ Htρe

i
~ Ht (1)

for all t ∈ (−∞,∞). According to von Neumann, density operators ρ ∈
D(H) are trace class (Tr ρ < ∞), self-adjoint (ρ† = ρ), positive (ρ > 0)
operators with Tr ρ = 1. All these properties are conserved by the time
evolution defined by Ut.

In the case of open quantum systems, the time evolution Φt of the density
operator ρ(t) = Φt(ρ) has to preserve the von Neumann conditions for all
times. It follows that Φt must have the following properties:

(i) Φt(λ1ρ1 + λ2ρ2) = λ1Φt(ρ1) + λ2Φt(ρ2) for λ1, λ2 ≥ 0, λ1 + λ2 = 1, i.
e. Φt must preserve the convex structure of D(H),

(ii) Φt(ρ
†) = Φ†

t(ρ),

(iii) Φt(ρ) > 0,

(iv) Tr Φt(ρ) = 1.

The time evolution Ut for closed systems must be a group Ut+s = UtUs.
We have also U0(ρ) = ρ and Ut(ρ) → ρ in the trace norm when t → 0. The
dual group Ũt acting on the observables A ∈ B(H), i.e. on the bounded
operators on H, is given by

Ũt(A) = e
i
~ HtAe−

i
~ Ht. (2)

Then Ũt(AB) = Ũt(A)Ũt(B) and Ũt(I) = I, where I is the identity operator
on H. Also, Ũt(A) → A ultraweakly when t → 0 and Ũt is an ultraweakly
continuous mapping [27, 28, 29]. These mappings have a strong positivity
property called complete positivity:

∑

i,j

B†
i Ũt(A

†
iAj)Bj ≥ 0, Ai, Bi ∈ B(H). (3)

In the axiomatic approach to the description of the evolution of open
quantum systems [27, 28, 29], one supposes that the time evolution Φt of
open systems is not very different from the time evolution of closed systems.
The simplest dynamics Φt which introduces a preferred direction in time,
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characteristic for dissipative processes, is that in which the group condition
is replaced by the semigroup condition [27, 30, 31]

Φt+s = ΦtΦs, t, s ≥ 0. (4)

The complete positivity condition has the form:

∑

i,j

B†
i Φ̃t(A

†
iAj)Bj ≥ 0, Ai, Bi ∈ B(H), (5)

where Φ̃t denotes the dual of Φt acting on B(H), defined by the duality
condition

Tr(Φt(ρ)A) = Tr(ρΦ̃t(A)). (6)

Then the conditions TrΦt(ρ) = 1 and Φ̃t(I) = I are equivalent. Also the
conditions Φ̃t(A) → A ultraweakly when t → 0 and Φt(ρ) → ρ in the trace
norm when t → 0, are equivalent. For the semigroups with these properties
and with a more weak property of positivity than Eq. (5), namely

A ≥ 0 → Φ̃t(A) ≥ 0, (7)

it is well known that there exists a (generally unbounded) mapping L̃ – the
generator of Φ̃t, and Φ̃t is uniquely determined by L̃. The dual generator of
the dual semigroup Φt is denoted by L:

Tr(L(ρ)A) = Tr(ρL̃(A)). (8)

The evolution equations by which L and L̃ determine uniquely Φt and Φ̃t,
respectively, are given in the Schrödinger and Heisenberg picture by

dΦt(ρ)

dt
= L(Φt(ρ)) (9)

and

dΦ̃t(A)

dt
= L̃(Φ̃t(A)). (10)

These equations replace in the case of open systems the von Neumann-
Liouville equations

dUt(ρ)

dt
= − i

~
[H,Ut(ρ)] (11)
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and

dŨt(A)

dt
=
i

~
[H, Ũt(A)], (12)

respectively. For applications, Eqs. (9) and (10) are only useful if the
detailed structure of the generator L(L̃) is known and can be related to the
concrete properties of the open systems described by such equations. For
the class of dynamical semigroups which are completely positive and norm
continuous, the generator L̃ is bounded. In many applications the generator
is unbounded.

According to Lindblad [29], the following argument can be used to justify
the complete positivity of Φ̃t: if the open system is extended in a trivial way
to a larger system described in a Hilbert space H⊗K with the time evolution
defined by

W̃t(A⊗B) = Φ̃t(A) ⊗B, A ∈ B(H), B ∈ B(K), (13)

then the positivity of the states of the compound system will be preserved by
W̃t only if Φ̃t is completely positive. With this observation a new equivalent
definition of the complete positivity is obtained: Φ̃t is completely positive
if W̃t is positive for any finite dimensional Hilbert space K. The physical
meaning of complete positivity can mainly be understood in relation to the
existence of entangled states, the typical example being given by a vector
state with a singlet-like structure that cannot be written as a tensor prod-
uct of vector states. Positivity property guarantees the physical consistency
of evolving states of single systems, while complete positivity prevents in-
consistencies in entangled composite systems, and therefore the existence of
entangled states makes the request of complete positivity necessary [32].

A bounded mapping L̃ : B(H) → B(H) which satisfies L̃(I) = 0, L̃(A†) =
L̃†(A) and

L̃(A†A) − L̃(A†)A−A†L̃(A) ≥ 0 (14)

is called dissipative. The 2-positivity property of the completely positive
mapping Φ̃t:

Φ̃t(A
†A) ≥ Φ̃t(A

†)Φ̃t(A), (15)

with equality at t = 0, implies that L̃ is dissipative. Conversely, the dissi-
pativity of L̃ implies that Φ̃t is 2-positive. L̃ is called completely dissipative
if all trivial extensions of L̃ to a compound system described by H ⊗ K
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with any finite dimensional Hilbert space K are dissipative. There exists a
one-to-one correspondence between the completely positive norm continu-
ous semigroups Φ̃t and completely dissipative generators L̃. The following
structural theorem gives the most general form of a completely dissipative
mapping L̃ [29].

Theorem. L̃ is completely dissipative and ultraweakly continuous if
and only if it is of the form

L̃(A) =
i

~
[H,A] +

1

2~
∑

j

(V †
j [A, Vj ] + [V †

j , A]Vj), (16)

where Vj ,
∑

j V
†
j Vj ∈ B(H), H ∈ B(H)s.a..

The dual generator on the state space (Schrödinger picture) is of the
form

L(ρ) = − i

~
[H, ρ] +

1

2~
∑

j

([Vjρ, V
†
j ] + [Vj , ρV

†
j ]). (17)

Eqs. (9) and (17) give the explicit form of the Kossakowski-Lindblad master
equation, which is the most general time-homogeneous quantum mechanical
Markovian master equation with a bounded Liouville operator [29, 31, 33,
34]:

dΦt(ρ)

dt
= − i

~
[H,Φt(ρ)] +

1

2~
∑

j

([VjΦt(ρ), V
†
j ] + [Vj ,Φt(ρ)V

†
j ]). (18)

The assumption of a semigroup dynamics is only applicable in the limit of
weak coupling of the subsystem with its environment, i.e. for long relaxation
times [35]. We mention that the majority of Markovian master equations
found in the literature are of this form after some rearrangement of terms,
even for unbounded generators. It is also an empirical fact for many phys-
ically interesting situations that the time evolutions Φt drive the system
towards a unique final state ρ(∞) = limt→∞ Φt(ρ(0)) for all ρ(0) ∈ D(H).

3 Time evolution of two independent bosonic
modes interacting with an environment

We are interested in the dynamics of quantum correlations in a subsys-
tem composed of two non-interacting (independent) bosonic modes (har-
monic oscillators) in weak interaction with a thermal environment, so that
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their reduced time evolution can be described by a Markovian, completely
positive quantum dynamical semigroup. If Φ̃t is the dynamical semigroup
describing the irreversible time evolution of the open quantum system in the
Heisenberg representation, then the Kossakowski-Lindblad master equation
has the following form for an operator A (see Eqs. (10), (16)) [29, 31, 33, 34]:

dΦ̃t(A)

dt
=
i

~
[H, Φ̃t(A)] +

1

2~
∑

j

(V †
j [Φ̃t(A), Vj ] + [V †

j , Φ̃t(A)]Vj). (19)

Here, H denotes the Hamiltonian of the open system and the operators
Vj , V

†
j , defined on the Hilbert space of H, represent the interaction of the

open system with the environment. We are interested in the set of Gaus-
sian states, therefore we introduce quantum dynamical semigroups which
preserve this set and in this case our model represents a Gaussian noise
channel. Consequently H is chosen as a polynomial of second degree in
the coordinates x, y and momenta px, py of the two quantum oscillators and

Vj , V
†
j are taken polynomials of first degree in these canonical observables.

Then in the linear space spanned by the coordinates and momenta there
exist only four linearly independent operators Vj=1,2,3,4 [36]:

Vj = axjpx + ayjpy + bxjx+ byjy, (20)

where axj , ayj , bxj , byj are complex coefficients. The Hamiltonian H of the
two uncoupled non-resonant modes of identical mass m and frequencies ω1

and ω2 is given by

H =
1

2m
(p2

x + p2
y) +

m

2
(ω2

1x
2 + ω2

2y
2). (21)

The fact that Φ̃t is a dynamical semigroup implies the positivity of
the following matrix formed by the scalar products of the four vectors
ax,ay,bx,by, whose entries are the components axj , ayj , bxj , byj , respec-
tively:

1

2
h̄ =




(axax) (axbx) (axay) (axby)
(bxax) (bxbx) (bxay) (bxby)
(ayax) (aybx) (ayay) (ayby)
(byax) (bybx) (byay) (byby)


 (22)

Its matrix elements have to be chosen appropriately to suit various phys-
ical models of the environment. For a quite general environment able to
induce noise and damping effects, we take this matrix of the following form,
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where all the coefficients Dxx, Dxpx ,... and λ are real quantities, representing
the diffusion coefficients and, respectively, the dissipation constant:




Dxx −Dxpx − i~λ/2 Dxy −Dxpy

−Dxpx + i~λ/2 Dpxpx −Dypx Dpxpy

Dxy −Dypx Dyy −Dypy − i~λ/2
−Dxpy Dpxpy −Dypy + i~λ/2 Dpypy .




(23)
It follows that the principal minors of this matrix are positive or zero.

From the Cauchy-Schwarz inequality the following relations hold for the
coefficients defined in Eq. (23) (from now on we put, for simplicity, ~ = 1):

DxxDpxpx −D2
xpx

≥ λ2

4
, DyyDpypy −D2

ypy
≥ λ2

4
,

DxxDyy −D2
xy ≥ 0, DpxpxDpypy −D2

pxpy
≥ 0,

DxxDpypy −D2
xpy

≥ 0, DyyDpxpx −D2
ypx

≥ 0. (24)

The matrix of the coefficients (23) can be conveniently written as (T denotes
the transposed matrix)

(
C1 C3

C3
T C2

)
, (25)

in terms of 2 × 2 matrices C1 = C1
†, C2 = C2

† and C3. This decomposition
has a direct physical interpretation: the elements containing the diagonal
contributions C1 and C2 represent diffusion and dissipation coefficients cor-
responding to the first, respectively the second, system in absence of the
other, while the elements in C3 represent environment generated couplings
between the two modes, taken initially independent.

We introduce the following 4 × 4 bimodal covariance matrix:

σ(t) =




σxx(t) σxpx(t) σxy(t) σxpy(t)
σxpx(t) σpxpx(t) σypx(t) σpxpy(t)
σxy(t) σypx(t) σyy(t) σypy(t)
σxpy(t) σpxpy(t) σypy(t) σpypy(t)


 (26)

where the correlations of operators Ri and Rj , i, j = 1, .., 4, with R =
{x, px, y, py}, are defined by using the density operator ρ of the initial state
of the quantum system, as follows:

σRiRj (t) =
1

2
Tr[ρ(RiRj +RjRi)(t)] − Tr[ρRi(t)]Tr[ρRj(t)]. (27)
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The problem of solving the master equation for the operators in Heisen-
berg representation can be transformed into a problem of solving first-order
in time, coupled linear differential equations for the covariance matrix ele-
ments. Namely, from Eq. (19) we obtain by direct calculation the following
systems of equations for the quantum correlations of the canonical observ-
ables [36]:

dσ(t)

dt
= Y σ(t) + σ(t)Y T + 2D, (28)

where

Y =




−λ 1/m 0 0
−mω2

1 −λ 0 0
0 0 −λ 1/m
0 0 −mω2

2 −λ


 (29)

D =




Dxx Dxpx Dxy Dxpy

Dxpx Dpxpx Dypx Dpxpy

Dxy Dypx Dyy Dypy

Dxpy Dpxpy Dypy Dpypy


 (30)

Introducing the notation σ(∞) ≡ limt→∞ σ(t), the time-dependent solu-
tion of Eq. (28) is given by [36]

σ(t) = M(t)[σ(0) − σ(∞)]MT(t) + σ(∞), (31)

where the matrix M(t) = exp(Y t) has to fulfill the condition limt→∞M(t) =
0. In order that this limit exists, Y must only have eigenvalues with negative
real parts. The values at infinity are obtained from the equation

Y σ(∞) + σ(∞)Y T = −2D. (32)

4 Dynamics of quantum correlations

To describe the dynamics of quantum correlations, we use two types of
measures: logarithmic negativity for entanglement, and quantum discord.

4.1 Time evolution of entanglement and logarithmic
negativity

A well-known sufficient condition for inseparability is the so-called Peres-
Horodecki criterion [25, 37], which is based on the observation that the
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non-completely positive nature of the partial transposition operation of the
density matrix for a bipartite system (transposition with respect to degrees
of freedom of one subsystem only) may turn an inseparable state into a
nonphysical state. The signature of this non-physicality, and thus of quan-
tum entanglement, is the appearance of a negative eigenvalue in the eigen-
spectrum of the partially transposed density matrix of a bipartite system.
The characterization of the separability of continuous variable states using
second-order moments of quadrature operators was given in Refs. [26, 38].
For Gaussian states, whose statistical properties are fully characterized by
just second-order moments, this criterion was proven to be necessary and
sufficient: a Gaussian continuous variable state is separable if and only if
the partial transpose of its density matrix is non-negative (positive partial
transpose (PPT) criterion).

The two-mode Gaussian state is entirely specified by its covariance ma-
trix (30), which is a real, symmetric and positive matrix with the following
block structure:

σ(t) =

(
A C
CT B

)
, (33)

where A, B and C are 2 × 2 Hermitian matrices. A and B denote the
symmetric covariance matrices for the individual reduced one-mode states,
while the matrix C contains the cross-correlations between modes. When
these correlations have non-zero values, then the states with detC ≥ 0 are
separable states, while for detC < 0 it may be possible that the states are
entangled.

The 4 × 4 covariance matrix (33) (where all first moments can be set
to zero by means of local unitary operations which do not affect the entan-
glement) contains four local symplectic invariants in form of the determi-
nants of the block matrices A,B,C and covariance matrix σ. Based on the
above invariants, Simon [26] derived the following PPT criterion for bipartite
Gaussian continuous variable states: the necessary and sufficient condition
for separability is S(t) ≥ 0, where

S(t) ≡ detAdetB + (
1

4
− | detC|)2

−Tr[AJCJBJCTJ ] − 1

4
(detA+ detB) (34)

and J is the 2 × 2 symplectic matrix

J =

(
0 1

−1 0

)
. (35)
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For Gaussian states, the measures of entanglement of bipartite systems
are based on the invariants constructed from the elements of the covariance
matrix [8, 12]. In order to quantify the degree of entanglement of the two-
mode states it is suitable to use the logarithmic negativity. For a Gaussian
density operator, the logarithmic negativity is completely defined by the
symplectic spectrum of the partial transpose of the covariance matrix. It
is given by EN = max{0,− log2 2ν̃−}, where ν̃− is the smallest of the two
symplectic eigenvalues of the partial transpose σ̃ of the two-mode covariance
matrix σ [11]:

2ν̃2
∓ = ∆̃ ∓

√
∆̃2 − 4 detσ (36)

and ∆̃ is the symplectic invariant (seralian), given by ∆̃ = detA+ detB −
2 detC.

In our model, the logarithmic negativity is calculated as [39, 40]

EN (t) = max{0,−1

2
log2[4g(σ(t))]}, (37)

where

g(σ(t)) =
1

2
(detA+ detB) − detC

−
([

1

2
(detA+ detB) − detC

]2

− detσ(t)

)1/2

. (38)

It determines the strength of entanglement for EN (t) > 0, and if EN (t) ≤ 0,
then the state is separable.

We suppose that the asymptotic state of the considered open system is
a Gibbs state corresponding to two independent bosonic modes in thermal
equilibrium at temperature T. Then the quantum diffusion coefficients have
the following form [34]:

mω1Dxx =
Dpxpx

mω1
=
λ

2
coth

ω1

2kT
,

mω2Dyy =
Dpypy

mω2
=
λ

2
coth

ω2

2kT
, (39)

Dxpx = Dypy = Dxy = Dpxpy = Dxpy = Dypx = 0.

The elements of the covariance matrix can be calculated from Eqs. (31),
(32).
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In the following, we analyze the dependence of the Simon function S(t)
and of the logarithmic negativity EN (t) on time t and temperature T of the
thermal bath, with the diffusion coefficients given by Eqs. (39). We consider
two types of the initial Gaussian states: separable and entangled.

1) We consider a separable initial Gaussian state, with the two modes
initially prepared in their single-mode squeezed states (unimodal squeezed
state) and with its initial covariance matrix taken of the form

σs(0) =
1

2




cosh 2r sinh 2r 0 0
sinh 2r cosh 2r 0 0

0 0 cosh 2r sinh 2r
0 0 sinh 2r cosh 2r


 (40)

where r denotes the squeezing parameter. In this case S(t) becomes strictly
positive after the initial moment of time (S(0) = 0), so that the initial
separable state remains separable for all values of the temperature T and
for all times.

2) We take an entangled initial Gaussian state of the form of a two-mode
vacuum squeezed state, with the initial covariance matrix given by

σe(0) =
1

2




cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r


 (41)

We observe that for all temperatures T, at certain finite moment of time,
which depends on T, EN (t) becomes zero and therefore the state becomes
separable. This is the so-called phenomenon of entanglement sudden death
[23, 41]. It is in contrast to the quantum decoherence, during which the loss
of quantum coherence is usually gradual [17, 42].

3) We assume that the initial Gaussian state is a two-mode squeezed
thermal state, with the covariance matrix of the form [43]

σst(0) =




a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b


 (42)



130 Aurelian Isar

with the matrix elements given by

a = n1 cosh2 r + n2 sinh2 r +
1

2
cosh 2r,

b = n1 sinh2 r + n2 cosh2 r +
1

2
cosh 2r, (43)

c =
1

2
(n1 + n2 + 1) sinh 2r,

where n1, n2 are the average number of thermal photons associated with
the two modes and r denotes the squeezing parameter. In the particular
case n1 = 0 and n2 = 0, (42) becomes the covariance matrix of the two-
mode squeezed vacuum state (41). A two-mode squeezed thermal state is
entangled when the squeezing parameter r satisfies the inequality r > rs
[43], where

cosh2 rs =
(n1 + 1)(n2 + 1)

n1 + n2 + 1
. (44)
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Figure 1: Logarithmic negativity EN versus time t and temperature T for
an entangled initial non-symmetric squeezed thermal state with squeezing
parameter r = 3, n1 = 3, n2 = 1 and λ = 0.1, ω1 = 1, ω2 = 2. We take
m = ~ = k = 1.

The evolution of entangled initial squeezed thermal states with the co-
variance matrix given by Eq. (42) is illustrated in Fig. 1, where we represent
the dependence of the logarithmic negativity EN (t) on time t and tempera-
ture T for the case of an initial non-symmetric Gaussian state (a ̸= b). For
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all temperatures T, including zero temperature, at certain finite moment of
time, which depends on T, EN (t) becomes zero and therefore the state be-
comes separable. One can show that the dissipation favors the phenomenon
of entanglement sudden death – with increasing the dissipation parameter
λ, the entanglement suppression happens earlier. The same qualitative be-
haviour of the time evolution of entanglement was obtained previously in
the particular case n1 = 0 and n2 = 0 corresponding to an initial two-mode
squeezed vacuum state and in the case of symmetric initial squeezed thermal
states.

One can assert that the asymmetry (a ̸= b) of the initial Gaussian state
favors the suppression of entanglement. The most robust under the influence
of the environment is the entanglement of symmetric (a = b) initial squeezed
thermal states. An even stronger influence on the entanglement has the
non-resonant character of the two modes: by increasing the ratio of the
frequencies of the two modes, the entanglement sudden death happens earlier
in time. The longest surviving entanglement takes place when the modes
are resonant (ω1 = ω2). This effect due to the non-resonance of the modes is
stronger for small values of the frequencies, and it diminishes, for the same
ratio of frequencies, by increasing the values of frequencies.

In our model, in which we suppose that the asymptotic state of the
considered open system is a Gibbs state corresponding to two independent
bosonic modes in thermal equilibrium, a separable initial state remains sep-
arable in time, and it is not possible to generate entanglement. This is
in contrast with the possibility of entanglement generation starting, for in-
stance, with a separable state in the case of two non-interacting two-level
systems immersed in a common bath [32]. At the same time we notice that
in the case of two identical harmonic oscillators interacting with a general
environment, characterized by general diffusion and dissipation coefficients,
we obtain that for separable initial states and for definite values of these co-
efficients, entanglement generation or a periodic generation and collapse of
entanglement take place [40, 44]. In discussing the entanglement decay, it is
interesting to mention that models have been elaborated to realize quantum
feedback control of continuous variable entanglement for a system consisting
of two interacting bosonic modes plunged into an environment, based on a
local technique [45], or on a nonlocal homodyne measurement [46].

The dynamics of entanglement of the two modes strongly depends on
the initial states and the coefficients describing the interaction of the system
with the thermal environment (dissipation constant and temperature). As
expected, the logarithmic negativity has a behaviour similar to that one of
the Simon function in what concerns the characteristics of the state of being
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separable or entangled [39, 40, 42, 44].

4.2 Asymptotic entanglement

On general grounds, one expects that the effects of decoherence is dom-
inant in the long-time regime, so that no quantum correlations (entangle-
ment) is expected to be left at infinity. Indeed, using the diffusion coefficients
given by Eqs. (39), we obtain from Eq. (32) the following elements of the
asymptotic matrices A(∞) and B(∞) :

mω1σxx(∞) =
σpxpx(∞)

mω1
=

1

2
coth

ω1

2kT
, σxpx(∞) = 0,

mω2σyy(∞) =
σpypy(∞)

mω2
=

1

2
coth

ω2

2kT
, σypy(∞) = 0 (45)

and of the entanglement matrix C(∞) :

σxy(∞) = σxpy(∞) = σypx(∞) = σpxpy(∞) = 0. (46)

Then the Simon expression (34) takes the following form in the limit of large
times:

S(∞) =
1

16

(
coth2 ω1

2kT
− 1
)(

coth2 ω2

2kT
− 1
)
, (47)

and, correspondingly, the equilibrium asymptotic state is always separable
in the case of two non-interacting bosonic modes immersed in a common
thermal reservoir.

In Refs. [20, 21, 39, 40, 42, 44] we described the dependence of the
logarithmic negativity EN (t) on time and mixed diffusion coefficient for
two modes interacting with a general environment. In the present case of a
thermal bath, the asymptotic logarithmic negativity is given by (for ω1 ≤ ω2)

EN (∞) = − log2 coth
ω2

2kT
. (48)

It depends only on temperature, and does not depend on the initial Gaussian
state. EN (∞) < 0 for T ̸= 0 and EN (∞) = 0 for T = 0, and this confirms
the previous statement that the asymptotic state is always separable.

4.3 Gaussian quantum discord

The separability of quantum states has often been described as a prop-
erty synonymous with the classicality. However, recent studies have shown
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that separable states, usually considered as being classically correlated,
might also contain quantum correlations. Quantum discord was introduced
[4, 5] as a measure of all quantum correlations in a bipartite state, including
– but not restricted to – entanglement. Quantum discord has been defined as
the difference between two quantum analogues of classically equivalent ex-
pression of the mutual information, which is a measure of total correlations
in a quantum state. For pure entangled states quantum discord coincides
with the entropy of entanglement. Quantum discord can be different from
zero also for some mixed separable state and therefore the correlations in
such separable states with positive discord are an indicator of quantum-
ness. States with zero discord represent essentially a classical probability
distribution embedded in a quantum system.

For an arbitrary bipartite state ρ12, the total correlations are expressed
by quantum mutual information [47]

I(ρ12) =
∑

i=1,2

S(ρi) − S(ρ12), (49)

where ρi represents the reduced density matrix of subsystem i and S(ρ) =
−Tr(ρ ln ρ) is the von Neumann entropy. Henderson and Vedral [6] proposed
a measure of bipartite classical correlations C(ρ12) based on a complete set
of local projectors {Πk

2} on the subsystem 2: the classical correlation in the
bipartite quantum state ρ12 can be given by

C(ρ12) = S(ρ1) − inf{Πk
2}{S(ρ1|2)}, (50)

where S(ρ1|2) =
∑

k p
kS(ρk

1) is the conditional entropy of subsystem 1 and
inf{S(ρ1|2)} represents the minimal value of the entropy with respect to

a complete set of local measurements {Πk
2}. Here, pk is the measurement

probability for the kth local projector and ρk
1 denotes the reduced state of

subsystem 1 after the local measurements. Then the quantum discord is
defined by

D(ρ12) = I(ρ12) − C(ρ12). (51)

Originally the quantum discord was defined and evaluated mainly for
finite dimensional systems. Recently [48, 49] the notion of discord has been
extended to the domain of continuous variable systems, in particular to the
analysis of bipartite systems described by two-mode Gaussian states. Closed
formulas have been derived for bipartite thermal squeezed states [48] and
for all two-mode Gaussian states [49].
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The Gaussian quantum discord of a general two-mode Gaussian state
ρ12 can be defined as the quantum discord where the conditional entropy
is restricted to generalized Gaussian positive operator valued measurements
(POVM) on the mode 2 and in terms of symplectic invariants it is given by
(the symmetry between the two modes 1 and 2 is broken) [49]

D = f(
√
β) − f(ν−) − f(ν+) + f(

√
ε), (52)

where

f(x) =
x+ 1

2
log

x+ 1

2
− x− 1

2
log

x− 1

2
, (53)

ε =





2γ2 + (β − 1)(δ − α) + 2|γ|
√
γ2 + (β − 1)(δ − α)

(β − 1)2
,

if (δ − αβ)2 ≤ (β + 1)γ2(α+ δ)

αβ − γ2 + δ −
√
γ4 + (δ − αβ)2 − 2γ2(δ + αβ)

2β
,

otherwise,

(54)

α = 4detA, β = 4 detB, γ = 4 detC, δ = 16 detσ, (55)

and ν∓ are the symplectic eigenvalues of the state, given by

2ν2
∓ = ∆ ∓

√
∆2 − 4 detσ, (56)

where ∆ = detA+ detB + 2detC. Notice that Gaussian quantum discord
only depends on | detC|, i.e., entangled (detC < 0) and separable states are
treated on equal footing.

The evolution of the Gaussian quantum discord D is illustrated in Fig.
2, where we represent the dependence of D on time t and temperature T
for an entangled initial non-symmetric Gaussian state, taken of the form of
a two-mode squeezed thermal state (42), for such values of the parameters
which satisfy for all times the first condition in formula (54). The Gaus-
sian discord has nonzero values for all finite times and this fact certifies the
existence of non-classical correlations in two-mode Gaussian states, either
separable or entangled. Gaussian discord asymptotically decreases in time,
compared to the case of logarithmic negativity, which has an evolution lead-
ing to a sudden suppression of entanglement. For entangled initial states the
Gaussian discord remains strictly positive in time and in the limit of infinite
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Figure 2: Gaussian quantum discord D versus time t and temperature T for
an entangled initial non-symmetric squeezed thermal state with squeezing
parameter r = 3, n1 = 3, n2 = 1 and λ = 0.1, ω1 = 1, ω2 = 2. We take
m = ~ = k = 1.

time it tends asymptotically to zero, corresponding to the thermal product
(separable) state, with no correlations at all. One can easily show that for
a separable initial Gaussian state with covariance matrix (42) the quantum
discord is zero and it keeps this values during the whole time evolution of
the state.

From Fig. 2 we notice that, in agreement with the general properties
of the Gaussian quantum discord [49], the states can be either separable
or entangled for D ≤ 1 and all the states above the threshold D = 1 are
entangled. We also notice that the decay of quantum discord is stronger
when the temperature T is increasing. It should be remarked that the decay
of quantum discord is very similar to that of the entanglement before the
time of the sudden death of entanglement. Near the threshold of zero loga-
rithmic negativity (EN = 0), the nonzero values of the discord can quantify
the non-classical correlations for separable mixed states and one considers
that this fact could make possible some tasks in quantum computation [50].
The discord is increasing with the squeezing parameter r and it is decreasing
with increasing the ratio of the frequencies ω1 and ω2 of the two modes and
the difference of parameters a and b.
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4.4 Classical corellations and quantum mutual information

The measure of classical correlations for a general two-mode Gaussian
state ρ12 can also be calculated and it is given by [49]

C = f(
√
α) − f(

√
ε), (57)

while the expression of the quantum mutual information, which measures
the total correlations, is given by

I = f(
√
α) + f(

√
β) − f(ν−) − f(ν+). (58)
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Figure 3: Quantum mutual information I versus time t and temperature T
for an entangled initial non-symmetric squeezed thermal state with squeez-
ing parameter r = 3, n1 = 3, n2 = 1 and λ = 0.1, ω1 = 1, ω2 = 2. We take
m = ~ = k = 1. There are also represented the Gaussian quantum discord
and classical correlations.

In Fig. 3 we illustrate the evolution of classical correlations C and quan-
tum mutual information I, as functions of time t and temperature T for an
entangled initial Gaussian state, taken of the form of a two-mode squeezed
thermal state (42). These two quantities manifest a qualitative behaviour
similar to that one of the Gaussian discord: they have nonzero values for all
finite times and in the limit of infinite time they tend asymptotically to zero,
corresponding to the thermal product (separable) state, with no correlations
at all. One can also see that the classical correlations and quantum mutual
information decrease with increasing the temperature of the thermal bath.
One can show that the classical correlations and quantum mutual informa-
tion increase with increasing the squeezing parameter r and the difference of
parameters a and b. At the same time classical correlations increase with the
ratio of the frequencies ω1 and ω2 of the two modes, while quantum mutual
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information is decreasing with increasing this ratio. For comparison these
quantities as well as quantum discord are represented on the same graphic.
In the considered case the value of classical correlations is larger than that
of quantum correlations, represented by the Gaussian quantum discord.

5 Conclusion

We have given a brief review of the theory of open quantum systems
based on completely positive quantum dynamical semigroups and mentioned
the necessity of the complete positivity for the existence of entangled states
of systems interacting with an external environment. In the framework of
this theory, by using the Peres-Simon necessary and sufficient condition for
separability of two-mode Gaussian states, we investigated the Markovian
dynamics of quantum correlations for a subsystem composed of two non-
interacting bosonic modes embedded in a thermal bath. We have analyzed
the influence of the environment on the dynamics of quantum entanglement
and quantum discord for Gaussian initial states. We have described the
time evolution of the logarithmic negativity, which characterizes the degree
of entanglement of the quantum state, in terms of the covariance matrix
for squeezed vacuum states and squeezed thermal states, for the case when
the asymptotic state of the considered open system is a Gibbs state cor-
responding to two independent quantum harmonic oscillators in thermal
equilibrium. For all values of the temperature of the thermal reservoir, an
initial separable Gaussian state remains separable for all times. The dynam-
ics of the quantum entanglement strongly depends on the initial states and
the parameters characterizing the environment (temperature and dissipa-
tion constant). For an entangled initial squeezed vacuum state and squeezed
thermal state, entanglement suppression (entanglement sudden death) takes
place for all values of the temperatures of the environment, including zero
temperature. The time when the entanglement is suppressed decreases with
increasing the temperature and dissipation.

We described also the time evolution of Gaussian quantum discord, which
is a measure of all quantum correlations in the bipartite state, including en-
tanglement. The values of quantum discord decrease asymptotically in time.
This is in contrast to the sudden death of entanglement. The time evolu-
tion of quantum discord is very similar to that of entanglement before the
sudden suppression of the entanglement. Quantum discord is decreasing
with increasing the temperature. After the sudden death of entanglement
the nonzero values of discord manifest the existence of quantum correlations
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for separable mixed states. One considers that the robustness of quantum
discord could favorize the realization of scalable quantum computing in con-
trast to the fragility of the entanglement [50]. We described also the time
evolution of classical correlations and quantum mutual information, which
measures the total correlations of the quantum system.

The existence of quantum correlations between the two bosonic modes
interacting with a common environment is the result of the competition be-
tween entanglement and quantum decoherence. From the formal point of
view, entanglement suppression corresponds to the finite time vanishing of
the Simon separability function or, respectively, of the logarithmic negativ-
ity.

Presently there is a large debate relative to the physical interpretation
existing behind the fascinating phenomena of quantum decoherence and
existence of quantum correlations - quantum entanglement and quantum
discord. Due to the increased interest manifested towards the continuous
variables approach [7, 51] to quantum information theory, the present re-
sults, in particular the existence of quantum discord and the possibility
of maintaining a bipartite entanglement in a thermal environment for long
times, might be useful in controlling entanglement and discord in open sys-
tems and also for applications in the field of quantum information processing
and communication.

6 Appendix

1. Quantum information is the study of the information processing
tasks that can be accomplished using quantum mechanical systems [1].

Quantum theory, formalized in the first few decades of the 20th century,
contains elements that are radically different from the classical description
of Nature. An important aspect in these fundamental differences is the
existence of quantum correlations in the quantum formalism. In the clas-
sical description of Nature, if a system is formed by different subsystems,
complete knowledge of the whole system implies that the sum of the infor-
mation of the subsystems makes up the complete information for the whole
system. This is no longer true in the quantum formalism. In the quantum
world, there exist states of composite systems for which we might have the
complete information, while our knowledge about the subsystems might be
completely random. One may reach some paradoxical conclusions if one
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applies a classical description to states which have characteristic quantum
signatures. During the last decades, it was realized that these fundamen-
tally nonclassical states, also denoted as entangled states, can provide us
with something else than just paradoxes. They may be used to perform
tasks that cannot be achieved with classical states. As benchmarks of this
turning point in our view of such nonclassical states, one might mention
the spectacular discoveries of (entanglement-based) quantum cryptography,
quantum dense coding, and quantum teleportation [52].

Let us consider a bipartite system, which is traditionally supposed to
be in possession of Alice (A) and Bob (B), who can be located in distant
regions. Let Alice’s physical system be described by the Hilbert space HA
and that of Bob by HB. Then the joint physical system of Alice and Bob is
described by the tensor product Hilbert space HA ⊗ HB.

A pure state, i.e., a projector |ψAB >< ψAB| on a vector |ψAB >∈
HA ⊗ HB, is a product state if the states of local subsystems are also pure
states, that is, if |ψAB >= |ψA > ⊗|ψB > . However, there are states that
cannot be written in this form. These states are called entangled states.

An example of entangled state is the well-known singlet state (|01 >
−|10 >)/

√
2 (Bell state), where |0 > and |1 > are two orthonormal states.

A mixed state described by a density operator ρAB of a two-party system
is separable if and only if it can be represented as a convex combination of
the product states:

ρAB =
∑

i

piρ
i
A ⊗ ρi

B,

where pi is a probability distribution. Otherwise, the mixed state is said to
be inseparable (entangled).

An important operational entanglement criterion is the positive partial
transposition (PPT) criterion for detecting entanglement: given a bipartite
state ρAB, find the eigenvalues of any of its partial transpositions with re-
spect to one of the subsystems (transposition is equivalent to time reversal,
or, expressed in terms of continuous variables, sign change of the momenta).
A negative eigenvalue immediately implies that the state is entangled. Ex-
amples of states for which the partial transposition has negative eigenvalues
include the singlet state.

The notion of entanglement appeared explicitly in the literature first
in 1935, long before the dawn of the relatively young field of quantum in-
formation, and without any reference to discrete-variable qubit states. In
fact, the entangled states treated in this 1935 paper by Einstein, Podolsky,
and Rosen (EPR) were two-particle states quantum mechanically correlated
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with respect to their positions and momenta. The concept of entanglement
has played an important role in quantum physics ever since its discovery
last century and has now been recognized as a key resource in quantum
information science.

The superposition principle leads to the existence of entangled states of
two or more quantum systems and such states are characterized by the exis-
tence of correlations between the systems, the form of which cannot be sat-
isfactorily accounted for by any classical theory. These have played a central
role in the development of quantum theory since early in its development,
starting with the famous paradox or dilemma of EPR. No less disturbing
than the EPR dilemma is the problem of Schrödinger cat, an example of the
apparent absurdity of following entanglement into the macroscopic world.
It was Schrödinger who gave us the name entanglement (in German, ”Ver-
schränkung”); he emphasized its fundamental significance when he wrote,
”I would call this not one but the characteristic trait of quantum mechanics,
the one that enforces the entire departure from classical thought”.

The prime example for an entangled Gaussian state is the pure two-mode
squeezed (vacuum) state, described by the Gaussian Wigner function

Wsvs =
4

π2
× exp{−e−2r[(xA + xB)2 + (pA − pB)2] −

e+2r[(xA − xB)2 + (pA + pB)2]},
where xA, pA, xB, pB are the coordinates and momenta of the the two-mode
system and r is the squeezing parameter.

A unique measure of bipartite entanglement for pure states is given by
the partial von Neumann entropy. This is the von Neumann entropy, of the
reduced system after tracing out either subsystem: TrρA ln ρA = TrρB ln ρB,
where ρA = TrBρAB, ρB = TrAρAB.

In order to quantify the degrees of entanglement of an infinite-dimensional
bipartite system states it is suitable to use the logarithmic negativity. The
logarithmic negativity of a bipartite system consisting of two subsystems A
and B is EN = log2 ∥ρTB∥1, where ρTB means the partial transpose of a
mixed state density matrix operator ρAB with respect to subsystem B. The
operation ∥ · ∥1 denotes the trace norm, which for any Hermitian operator
O is defined as ∥O∥1 ≡ Tr|O| ≡ Tr

√
O†O and it is calculated as the sum of

absolute values of the eigenvalues of O.
Logarithmic negativity quantifies the degree of violation of PPT criterion

for separability, i.e. how much the partial transposition of ρ fails to be
positive and it is based on negative eigenvalues of the partial transpose of the
subsystem density matrix. For a Gaussian density operator, the negativity



Quantum correlations in open systems 141

is completely defined by the symplectic spectrum of the partial transpose of
the covariance matrix.

2. The damped quantum harmonic oscillator is considered in the
framework of the theory of open systems based on completely positive quan-
tum dynamical semigroups [33, 34]. The basic assumption is that the general
form of a bounded mapping L given by Lindblad theorem is also valid for
an unbounded completely dissipative mapping L:

L(ρ) = − i

~
[H, ρ] +

1

2~
∑

j

([Vjρ, V
†
j ] + [Vj , ρV

†
j ]).

This assumption gives one of the simplest way to construct an appropri-
ate model for this quantum dissipative system. Another simple condition
imposed to the operators H,Vj , V

†
j is that they are functions of the basic ob-

servables of the one-dimensional quantum mechanical system q and p with
[q, p] = i~I, where I is the identity operator on H of such kind that the
obtained model is exactly solvable. A precise version for this last condition
is that linear spaces spanned by the first degree (respectively second degree)
noncommutative polynomials in p and q are invariant to the action of the
completely dissipative mapping L. This condition implies that Vj are at
most first degree polynomials in p and q and H is at most a second degree
polynomial in p and q.

Beacause in the linear space of the first degree polynomials in p and q
the operators p and q give a basis, there exist only two C-linear independent
operators V1, V2 which can be written in the form

Vi = aip+ biq, i = 1, 2,

with ai, bi complex numbers. The constant term is omitted because its
contribution to the generator L is equivalent to terms in H linear in p and
q which for simplicity are chosen to be zero. Then H is chosen of the form

H = H0 +
µ

2
(pq + qp), H0 =

1

2m
p2 +

mω2

2
q2.

With these choices the Markovian master equation can be written:

dρ

dt
= − i

~
[H0, ρ] − i

2~
(λ+ µ)[q, ρp+ pρ] +

i

2~
(λ− µ)[p, ρq + qρ]

−Dpp

~2
[q, [q, ρ]] − Dqq

~2
[p, [p, ρ]] +

Dpq

~2
([q, [p, ρ]] + [p, [q, ρ]]).
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Here we used the notations:

Dqq =
~
2

∑

j=1,2

|aj |2, Dpp =
~
2

∑

j=1,2

|bj |2,

Dpq = Dqp = −~
2
Re

∑

j=1,2

a∗
jbj , λ = −Im

∑

j=1,2

a∗
jbj ,

where Dpp, Dqq and Dpq are the diffusion coefficients and λ the friction
constant. They satisfy the following fundamental constraints:

i) Dpp > 0

ii) Dqq > 0

iii) DppDqq −Dpq
2 ≥ λ2~2/4.

We introduce the following notations:

σq(t) = Tr(ρ(t)q),

σp(t) = Tr(ρ(t)p),

σqq = Tr(ρ(t)q2) − σ2
q (t),

σpp = Tr(ρ(t)p2) − σ2
p(t),

σpq(t) = Tr(ρ(t)
pq + qp

2
) − σp(t)σq(t).

In the Heisenberg picture the master equation has the following sym-
metric form:

dΦ̃t(A)

dt
= L̃(Φ̃t(A)) =

i

~
[H0, Φ̃t(A)] − i

2~
(λ+ µ)([Φ̃t(A), q]p+ p[Φ̃t(A), q])

+
i

2~
(λ− µ)(q[Φ̃t(A), p] + [Φ̃t(A), p]q) − Dpp

~2
[q, [q, Φ̃t(A)]]

−Dqq

~2
[p, [p, Φ̃t(A)]] +

Dpq

~2
([p, [q, Φ̃t(A)]] + [q, [p, Φ̃t(A)]]).

Denoting by A any selfadjoint operator we have

σA(t) = Tr(ρ(t)A), σAA(t) = Tr(ρ(t)A2) − σ2
A(t).

It follows that
dσA(t)

dt
= TrL(ρ(t))A = Trρ(t)L̃(A)
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and

dσAA(t)

dt
= TrL(ρ(t))A2 −2

dσA(t)

dt
σA(t) = Trρ(t)L̃(A2)−2σA(t)Trρ(t)L̃(A).

An important consequence of the precise version of solvability condition
is the fact that whenA is put equal to p or q, then dσp(t)/dt and dσq(t)/dt are
functions only of σp(t) and σq(t) and dσpp(t)/dt, dσqq(t)/dt and dσpq(t)/dt
are functions only of σpp(t), σqq(t) and σpq(t). This fact allows an immedi-
ate determination of the functions of time σp(t), σq(t), σpp(t), σqq(t), σpq(t).
Indeed we obtain:

dσq(t)

dt
= −(λ− µ)σq(t) +

1

m
σp(t),

dσp(t)

dt
= −mω2σq(t) − (λ+ µ)σp(t)

and
dσqq(t)

dt
= −2(λ− µ)σqq(t) +

2

m
σpq(t) + 2Dqq,

dσpp

dt
= −2(λ+ µ)σpp(t) − 2mω2σpq(t) + 2Dpp,

dσpq(t)

dt
= −mω2σqq(t) +

1

m
σpp(t) − 2λσpq(t) + 2Dpq.

The integration of these systems of equations of motion is straightfor-
ward. There are two cases: a) µ > ω (overdamped) and b) µ < ω (under-
damped). In the case a) with the notation ν2 = µ2 − ω2 we obtain:

σq(t) = e−λt((cosh νt+
µ

ν
sinh νt)σq(0) +

1

mν
sinh νtσp(0)),

σp(t) = e−λt(−mω
2

ν
sinh νtσq(0) + (cosh νt− µ

ν
sinh νt)σp(0)).

If λ > ν, then σq(∞) = σp(∞) = 0. If λ < ν, then σq(∞) = σp(∞) → ∞.
In the case b) with the notation Ω2 = ω2 − µ2, we obtain:

σq(t) = e−λt((cosΩt+
µ

Ω
sinΩt)σq(0) +

1

mΩ
sinΩtσp(0)),

σp(t) = e−λt(−mω
2

Ω
sinΩtσq(0) + (cosΩt− µ

Ω
sinΩt)σp(0))

and σq(∞) = σp(∞) = 0.
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In order to integrate the system of equations for the covariances it is
convenient to consider the vector

X(t) =

(
mωσqq(t)

1

mω
σpp(t)σpq(t)

)
.

Introducing the following matrices: in the overdamped case (µ > ω, ν2 =
µ2 − ω2)

T =
1

2ν
(µ+ νµ− ν2ωµ− νµ+ ν2ω − ω − ω − 2µ) ,

K = (−2(λ− ν)000 − 2(λ+ ν)000 − 2λ) ,

and in the underdamped case (µ < ω, Ω2 = ω2 − µ2)

T =
1

2iΩ
(µ+ iΩµ− iΩ2ωµ− iΩµ+ iΩ2ω − ω − ω − 2µ) ,

K = (−2(λ− iΩ)000 − 2(λ+ iΩ)000 − 2λ) ,

the solution can be written in the form [33, 34]

X(t) = (TeKtT )(X(0) −X(∞)) +X(∞).

Between the asymptotic values of σqq(t), σpp(t), σpq(t) and the diffusion
coefficients Dqq, Dpp, Dpq there exist the following connection, which is the
same for both cases, underdamped and overdamped:

Dqq = (λ− µ)σqq(∞) − 1

m
σpq(∞),

Dpp = (λ+ µ)σpp(∞) +mω2σpq(∞),

Dpq =
1

2
(mω2σqq(∞) − 1

m
σpp(∞) + 2λσpq(∞)).

These relations show that the asymptotic values σqq(∞), σpp(∞), σpq(∞) do
not depend on the initial values σqq(0), σpp(0), σpq(0).

If the asymptotic state is a Gibbs state (T denotes the temperature of
the thermal bath)

ρG(∞) = e−
H0
kT /Tr(e−

H0
kT ),

then

σqq(∞) =
~

2mω
coth

~ω
2kT

, σpp(∞) =
~mω

2
coth

~ω
2kT

, σpq(∞) = 0
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and

Dpp =
λ+ µ

2
~mω coth

~ω
2kT

, Dqq =
λ− µ

2

~
mω

coth
~ω
2kT

, Dpq = 0

and the fundamental constraints are satisfied only if λ > µ and

(λ2 − µ2) coth2 ~ω
2kT

≥ λ2.

If the initial state is the ground state of the harmonic oscillator, then

σqq(0) =
~

2mω
, σpp(0) =

m~ω
2

, σpq(0) = 0.

The explicit time dependence of σqq(t), σpp(t), σpq(t) can be given for
both under- and overdamped cases if we have the matrix elements of TeKtT .
In the overdamped case (µ > ω, ν2 = µ2 − ω2) we have (in this case the
restriction λ > ν is necessary):

TeKtT =
e−2λt

2ν2
(a11a12a13a21a22a23a31a32a33) ,

with
a11 = (µ2 + ν2) cosh 2νt+ 2µν sinh 2νt− ω2,
a12 = (µ2 − ν2) cosh 2νt− ω2,
a13 = 2ω(µ cosh 2νt+ ν sinh 2νt− µ),
a21 = (µ2 − ν2) cosh 2νt− ω2,
a22 = (µ2 + ν2) cosh 2νt− 2µν sinh 2νt− ω2,
a23 = 2ω(µ cosh 2νt− ν sinh 2νt− µ),
a31 = −ω(µ cosh 2νt+ ν sinh 2νt− µ),
a32 = −ω(µ cosh 2νt− ν sinh 2νt− µ),
a33 = −2(ω2 cosh 2νt− µ2).
In the underdamped case (µ < ω, Ω2 = ω2 − µ2) we have

TeKtT = −e
−2λt

2Ω2
(b11b12b13b21b22b23b31b32b33)

with
b11 = (µ2 − Ω2) cos 2Ωt− 2µΩsin 2Ωt− ω2,
b12 = (µ2 + Ω2) cos 2Ωt− ω2,
b13 = 2ω(µ cos 2Ωt− Ωsin 2Ωt− µ),
b21 = (µ2 + Ω2) cos 2Ωt− ω2,
b22 = (µ2 − Ω2) cos 2Ωt+ 2µΩsin 2Ωt− ω2,



146 Aurelian Isar

b23 = 2ω(µ cos 2Ωt+ Ω sin 2Ωt− µ),
b31 = −ω(µ cos 2Ωt− Ωsin 2Ωt− µ),
b32 = −ω(µ cos 2Ωt+ Ω sin 2Ωt− µ),
b33 = −2(ω2 cos 2Ωt− µ2).
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process. From a mathematical point of view, it is about the Smoluchowski
coagulation equation (see [18], [13], [19]) with the displacement of drops de-
termined by their mass; it is an integro-differential equation for an unknown
function σ = σ(m, t, x, y, z), that represents the density (compared to the air
volume) of the liquid water contained in the drops of mass m at time t and
at position (x, y, z) ∈ R3. The air motion in consideration is a horizontal
wind in the direction of the x axis which depends on y (i.e v = v(y)). In [10]
the authors proved the existence of the stationary solution with presence of
a constant horizontal wind whereas in [2] the authors proved the existence
and the uniqueness of the global solution of the same equation in a domain
with one-dimensional space. In this work, we prove the existence and the
uniqueness of the global solution in a three-dimensional domain with pres-
ence of a horizontal wind and with initial and boundary conditions (entry
conditions) in a suitable spaces.

From a technical point of view, this work uses the techniques developed
in [10] and [2], in particular the introduction of the curves family on which
we consider the coagulation integral operator, and their properties, and on
the construction of “cone of dependence” for the solution.

2 Position of the problem

Let’s consider the domain R2 × [0, 1], which represents a “horizontal” area
in which the drops move due to the gravitational force and with the wind.
Let’s indicate by σ(m, t, x, y, z) the density of the water liquid contained in
the drops of mass m at the point (x, y, z) ∈ R2×]0, 1[ at the moment t ∈ R+.

In the same way to [10] and [2], we suppose that the drops undergo the
coagulation process and at the same time move by the gravitational force
and the air motion in which they are undergoing the friction effect with this
last; these considerations bring us to the following equation (see [1], [16],
[10], [2])

∂tσ(m, t, x, y, z) +∇(x,y,z) · (σ(m, t, x, y, z)u(m)) = (1)

=
m

2

∫ m

0
β(m−m′,m′)σ(m′, t, x, y, z)σ(m−m′, t, x, y, z)dm′+

−m
∫ ∞

0
β(m,m′)σ(m, t, x, y, z)σ(m′, t, x, y, z)dm′,

where ∇(x,y,z) = (∂x, ∂y, ∂z), while β(m1,m2) represents the probability of
meeting between a drop with mass m1 and another with mass m2, and u(m)
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indicates the velocity of drops with mass m. We suppose that

β(·, ·) ∈ C(R+ × R+), β(m1,m2) ≥ 0 ∀(m1,m2) ∈ R+ × R+,

β(m1,m2) = β(m2,m1)

and we admit that u = u(m) is given by

u = u(m) =
(
v(y), 0,− g

α(m)

)
, (2)

where v(y) is the air velocity, g is a positive constant representing the grav-
itational acceleration and α(m) is the friction coefficient between drops and
air. The relation (2) corresponds, in a good approximation, at the real
velocity of drops in the atmosphere (see for example [17], [1], [16]).

As the small drops evaporate immediately due to the very high curve of
surface (see [15], [8]) and on the other hand the very large drops fragment
due to the friction with surrounding air, we consider that the drops are
absent apart from an interval [ma,mA] and consequently the function σ
verifies

σ(m) = 0 for m ∈ [0,ma[∪ ]mA,∞[.

This permit us to define the functions α(·), β(·, ·) such that

0 < inf
m∈R+

α(m) ≤ sup
m∈R+

α(m) <∞

and
β(m1,m2) = 0 for m1 +m2 > mA.

We pose
α0 = sup

m∈R+

α (m) . (3)

3 Stationary solution

We consider the following stationary equation of (1)

∇(x,y,z) · (σ(m,x, y, z)u(m)) = (4)

=
m

2

∫ m

0
β(m−m′,m′)σ(m′, x, y, z)σ(m−m′, x, y, z)dm′+

−m
∫ ∞

0
β(m,m′)σ(m,x, y, z)σ(m′, x, y, z)dm′

with the boundary condition (entry condition)

σ(m,x, y, 1) = σ(m,x, y). (5)
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3.1 Preliminaries

To solve the equation (4) with the condition (5), we will use the idea to
transform it into an ordinary differential equation, by introducing the change
of variables (m,x, y, z) 7→ (m̃, ξ, ỹ, z̃) defined by





m̃ = m,

ξ = x− v(y)α(m)
g (1− z),

ỹ = y,
z̃ = z

(6)

and let us define

σ̃(m̃, ξ, ỹ, z̃) = σ(m,x, y, z) = σ(m, ξ + v(y)
α(m)

g
(1− z), y, z).

In the following, we will simply write m, y, z and σ(m, ξ, y, z) instead of m̃,
ỹ, z̃ and σ̃(m̃, ξ, ỹ, z̃), thus, the equation (4) will be

∂

∂z
σ(m, ξ, y, z) = (7)

= −mα(m)

2g

∫ m

0
β(m−m′,m′)σ(m′, η(m,m′, ξ, y, z), y, z)×

×σ(m−m′, η(m,m−m′, ξ, y, z), y, z)dm′+

+
mα(m)

g

∫ ∞

0
β(m,m′)σ(m, ξ, y, z)σ(m′, η(m,m′, ξ, y, z), y, z)dm′,

where

η(m,m′, ξ, y, z) = ξ + v(y)
α(m)− α(m′)

g
(1− z)

and the condition (5) will be:

σ(m, ξ, y, 1) = σ(m, ξ, y). (8)

Consequently we will reformulate the equation (7) into an ordinary dif-
ferential equation in a Banach space (or in a Frechet space). To suitably
treat the integral operator in a functional framework, we introduce, for each
fixed y ∈ R, z ∈ [0, 1], the curves family given by:

γτ = γτ,y,z = {(m, ξ) ∈ R+ × R | ξ = τ − v(y)
α(m)

g
(1− z)}, τ ∈ R. (9)
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This curves family γτ is similar to that used in [10], however this last depends
of y .

In a similar way to [10] we define a measure µγ on the curves γτ . More
precisely, indicating by PR+ the projection of γτ on R+, we define the mea-
surable sets of γτ and the measure µγ on γτ by the relations

i) A′ ⊂ γτ is measurable if and only if PR+A
′ is measurable according to

Lebesgue on R+,

ii) µγ(A′) = µL,R+(PR+A
′), where µL,R+(·) is the Lebesgue’s measure on

R+.

As the curves γτ , τ ∈ R, are parallel, it is seen that the projection PR+ and
the measure µγ(·) do not depend on τ ∈ R.

We remember that the measure µγ(·) has the same properties with those
proved in [10], indeed we have the following lemmas.

Lemma 1 Let A a measurable set (according to Lebesgue) on R+ ×R. We
pose

Aτ = {m ∈ R+ | ∃ξ ∈ R such that (m, ξ) ∈ γτ ∩A },
Am = {τ ∈ R | ∃ξ ∈ R such that (m, ξ) ∈ γτ ∩A}.

Then we have

µL,R+×R(A) = µ̃(A) =

∫ ∞

−∞
µγ(Aτ )dτ =

∫

γ0

µL,R(Am)µγ(dm) =

=

∫ ∞

0
µL,R(Am)dm. (10)

(We indicate by dm, dτ , dξ etc... instead of µL,R+(dm), µL,R(dτ), µL,R(dξ)
etc...).

Lemma 2 Let σ(m, ξ) ∈ L1(R+ × R). Then, for almost any τ ∈ R the
restriction of σ(m, ξ) to γτ belongs to L1(γτ , µγ).

Lemma 3 Let σ(m, ξ) ∈ L1(R+ × R). Then we have
∫

R+×R
σ(m, ξ)dmdξ =

∫

R+×R
σ(m, ξ)dµ̃ =

=

∫ ∞

−∞

(∫

γτ

σ(m, ξ)µγ(dm)
)
dτ =

∫

γ0

(∫ ∞

−∞
σ(m, ξ(m, τ))dτ

)
µγ(dm) =

=

∫ ∞

0

(∫ ∞

−∞
σ(m, ξ)dξ

)
dm =

∫ ∞

−∞

(∫ ∞

0
σ(m, ξ)dm

)
dξ,

where ξ(m, τ) = τ − v(y) α(m)
g (1− z).
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Lemma 4 Let f and g two functions belonging in L1(γτ , µγ). We pose

(f ∗ g)(m) =

∫

γτ

f(m−m′)g(m′)µγ(dm′).

Then we have f ∗ g ∈ L1(γτ , µγ) and

‖f ∗ g‖L1(γτ ,µγ) ≤ ‖f‖L1(γτ ,µγ)‖g‖L1(γτ ,µγ).

For the proof of this lemmas see [10].

We pose

τ(m, ξ, y, z) = ξ + v(y)
α(m)

g
(1− z), γ[0,m]

τ = γτ ∩ [0,m]× R. (11)

Then we can write the equation (7) in the form

∂

∂z
σ(z) = Fz(σ(z)), σ(z) = σ(·, ·, ·, z) (12)

with

Fz(σ(z)) = Fz(σ(z))(m, ξ, y) =

= −mα(m)

2g

∫

γ
[0,m]
τ(m,ξ,y,z)

β(m−m′,m′)σ(m′, η′, y, z)σ(m−m′, η′′, y, z)µγ(dm′)+

+
mα(m)

g

∫

γτ(m,ξ,y,z)

β(m,m′)σ(m′, η′, y, z)σ(m, ξ, y, z)µγ(dm′),

where η′ and η′′ are defined such that

(m′, η′) ∈ γτ(m,ξ,y,z), (m−m′, η′′) ∈ γτ(m,ξ,y,z).

3.2 Existence and uniqueness of the solution with the data
in L1

To prove the existence and the uniqueness for the solution of the equation
(12) with the condition (8), we suppose that:

σ(·, ·, ·) ∈ L1(R+ × R2) ∩ L∞(R+ × R2), (13)

σ(m, ξ, y) ≥ 0 a.e. in R+ × R2, (14)

supp(σ) ⊂ [ma,mA]× R2, (15)
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‖σ‖L∞(R+×R2) <
1

M1(mA −ma)
, (16)

where

M1 = sup
2ma≤m≤mA,ma≤m′≤m−ma

mα(m)

2g
β(m−m′,m′). (17)

Then we have the following result.

Proposition 1 If σ(m, ξ, y) satisfies the conditions (13)–(16), then the equa-
tion (12) with the condition (8) admits one and only one solution σ verifying

σ ∈ C([0, 1];L1(R+ × R2))× L∞(R+ × R2 × [0, 1]). (18)

Proof. As in the equation (12) neither the derivative nor the integral
compared to y arise, this circumstance implies that the equation for each
fixed y ∈ R can be solved independently. That permit us to consider (12),
(8) separately for each y ∈ R. Therefore, we pose σ(m, ξ, z) = σ(m, ξ, y, z),
σ(m, ξ) = σ(m, ξ, y) and we write v instead of v(y), the proposition is proved
in the same meaner as proposition 5.1 in [10]. �

3.3 Existence and uniqueness of the solution with the data
in L∞

To prove the existence and the uniqueness of the solution for (12), (8) in a
general case, we will use the “cone of dependance” property.

Let ω in R+×R2 a measurable set such that 0 < mes(ω) <∞, we define

D[ω] =
⋃

(m,ξ,y)∈ω
D(m,ξ,y), (19)

where

D(m,ξ,y) =
⋃

0≤z≤1

( ⋃

τ−(m,ξ,y,z)≤τ≤τ+(m,ξ,y)

γτ,y,z

)
= (20)

= {(m′, η′, y′, z′) ∈ R+ × R2 × [0, 1] / η′ = τ − v(y′)
α(m′)
g

(1− z′),

y′ = y, τ−(m, ξ, y′, z′) ≤ τ ≤ τ+(m, ξ, y′)}
with
{
τ+(m, ξ, y) = τ(m, ξ, y, 0) = ξ + v(y)α(m)

g ,

τ−(m, ξ, y, z) = τ+(m, ξ, y)− v(y)α0
g z = ξ + v(y)α(m)

g − v(y)α0
g z.

(21)



GLOBAL SOLUTION FOR THE COAGULATION EQUATION 157

We also define Dω(z) by

Dω(z) =
⋃

(m,ξ,y)∈ω

( ⋃

τ−(m,ξ,y,z)≤τ≤τ+(m,ξ,y)

γτ,y,z

)
= (22)

= {(m′, η′, y′, z′) ∈ D[ω] | z′ = z}

thus Dω(z1) is the intersection of
⋃

(m,ξ,y)∈ω
D(m,ξ,y) with the plan z = z1.

According to the definition of the set D(m,ξ,y) we remark that

(m′, η′, y′, z′) ∈ D(m,ξ,y) ⇒ γτ(m′,η′,y′,z′),y′,z′ ⊂ D(m,ξ,y),

τ(m1, ξ1, y1, 0) = τ(m2, ξ2, y2, 0)⇒ D(m1,ξ1,y1) = D(m2,ξ2,y2);

consequently, if (m1, ξ1) and (m2, ξ2) are on a curve γτ,y,0, then they define
the same set.

The “cone of dependence” property is given by the following lemma.

Lemma 5 Let σ[1] and σ[2] be two functions defined on R+ ×R2 satisfying
the conditions of proposition 1. Let σ[1] (resp. σ[2]) be the solution of (12),
(8) with σ = σ[1] (resp. σ = σ[2]). If we have

σ[1] = σ[2] on Dω(1), (23)

then

σ[1] = σ[2] a.e. in D[ω]·

Proof. Writing the equation (12) into an integral form, we have

σ[i](m, ξ, y, z) = σ[i](m, ξ, y)+

+
mα(m)

2g

∫ 1

z

∫

γ
[0,m]

τ(m,ξ,y,z′),y,z′

β(m−m′,m′)σ[i](m′, η′, y, z′)σ[i](m−m′, η′′, y, z′)

µγ(dm′)dz′ − mα(m)

g

∫ 1

z

∫

γτ(m,ξ,y,z′),y,z′
β(m,m′)σ[i](m′, η′, y, z′)×

×σ[i](m, ξ, y, z′)µγ(dm′)dz′, i = 1, 2.

Making the difference for i = 1 and i = 2, we have

∣∣σ[1](m, ξ, y, z)− σ[2](m, ξ, y, z)
∣∣ ≤

∣∣σ[1](m, ξ, y)− σ[2](m, ξ, y)
∣∣+
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+Cβ

[ ∫ 1

z

∫

γ
[0,m]

τ(m,ξ,y,z′),y,z′

(∣∣σ[1](m−m′, η′′, y, z′)− σ[2](m−m′, η′′, y, z′)
∣∣

σ[2](m′, η′, y, z′) +
∣∣σ[1](m′, η′, y, z′)−σ[2](m′, η′, y, z′)

∣∣σ[1](m−m′, η′′, y, z′)
)

µγ(dm′)dz′ +
∫ 1

z

∫

γτ(m,ξ,y,z′),y,z′

(∣∣σ[1](m, ξ, y, z′)− σ[2](m, ξ, y, z′)
∣∣σ[2](m′, η′, y, z′)+

+
∣∣σ[1](m′, η′, y, z′)− σ[2](m′, η′, y, z′)

∣∣σ[1](m, ξ, y, z′)
)
µγ(dm′)dz′

]
,

where

Cβ = max[ sup
0<m′<m<∞

mα(m)

2g
β(m−m′,m′), sup

m,m′∈R+

mα(m)

g
β(m,m′)].

We deduce from it that

∣∣σ[1](m, ξ, y, z)− σ[2](m, ξ, y, z)
∣∣ ≤

∣∣σ[1]((m, ξ, y)− σ[2](m, ξ, y)
∣∣+ (24)

+Cβ

[ ∫ 1

z

(
‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

‖σ[2](·, ·, y, z′)‖L1(γτ(m,ξ,y,z′),y,z′ ) + ‖σ[1](·, ·, y, z′)‖L1(γτ(m,ξ,y,z′),y,z′ )

‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

)
dz′+

+

∫ 1

z

(
‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

‖σ[2](·, ·, y, z′)‖L1(γτ(m,ξ,y,z′),y,z′ ) + (mA −ma)×

‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

‖σ[1](·, ·, y, z′)− σ[2](·, ·, y, z′)‖L∞(γτ(m,ξ,y,z′),y,z′ )

)
dz′
]
.

Now let’s consider a generic point (m, ξ, y, z) of D[ω], by virtue of (20)–
(21) there exists (m0, ξ0, y0) ∈ ω ⊂ R+ × R2 such that

ξ0 + v(y0)
α(m0)

g
− v(y0)

α0

g
z = τ−(m0, ξ0, y0, z) ≤

≤ ξ + v(y)
α(m)

g
(1− z) ≤ τ+(m0, ξ0, y0) = ξ0 + v(y0)

α(m0)

g
,

y = y0.
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From this inequalities, the inequality v(y)α(m)
g ≤ v(y)α0

g < 0, implies that

for 0 ≤ z ≤ z′ ≤ 1, we have

{
ξ0 + v(y0)α(m0)

g − v(y0)α0
g z
′ ≤ ξ + v(y)α(m)

g (1− z′) ≤ ξ0 + v(y0)α(m0)
g ,

y = y0,

by virtue of (11) and (21), we have

{
τ−(m0, ξ0, y0, z

′) ≤ τ(m, ξ, y, z′) ≤ τ+(m0, ξ0, y0),
y = y0

and, according to the definition (22) of the set Dω(z), we prove that

γτ(m,ξ,y,z′),y,z′ ⊂ Dω(z′) for 0 ≤ z ≤ z′ ≤ 1.

We recall that we have moreover, for i = 1, 2

‖σ[i](·, ·, y, z)‖L1(γτ (m,ξ,y,z),y,z,µγ) ≤ (mA −ma)‖σ[i](·, ·, y, z)‖L∞(Dω(z)),

for almost any (m, ξ, y) ∈ R+ × R2.
From (24) we deduce that

‖σ[1](·, ·, ·, z)− σ[2](·, ·, ·, z)‖L∞(Dω(z)) ≤ ‖σ[1] − σ[2]‖L∞(Dω(1))

+C

∫ 1

z

(
‖σ[1](·, ·, ·, z′)‖L∞(Dω(z′)) + ‖σ[2](·, ·, ·, z′)‖L∞(Dω(z′))

)
×

×‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(Dω(z′))dz
′,

where C is a constant independent of z, using the Gronwall’s lemma, we
obtain

‖σ[1](·, ·, ·, z)− σ[2](·, ·, ·, z)‖L∞(Dω(z)) ≤ ‖σ[1] − σ[2]‖L∞(Dω(1))× (25)

× exp
(
C

∫ 1

z
(‖σ[1](·, ·, ·, z′)‖L∞(Dω(z′)) + ‖σ[2](·, ·, ·, z′)‖L∞(Dω(z′)))dz

′
)
.

However, under the assumption (23) we have

‖σ[1] − σ[2]‖L∞(Dω(1)) = 0,

that enables us to deduce from (25) that

‖σ[1](·, ·, ·, z)− σ[2](·, ·, ·, z)‖L∞(Dω(z)) ≤ 0



160 Hanane Belhireche, Mohamed Zine Aissaoui, Fateh Ellaggoune

and, taking into account the relation D[ω] =
⋃

0≤z≤1
Dω(z), we have

σ[1](m, ξ, y, z) = σ[2](m, ξ, y, z) a.e. in D[ω].

The lemma is proved. �
Now we can prove the principal theorem.

Theorem 1 If σ1 ∈ L∞(R+ × R2) satisfies the conditions

σ1(m, ξ, y) ≥ 0 a.e. on R+ × R2, (26)

σ1(m, ξ, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[, (27)

‖σ1‖L∞(R+×R2) <
1

M1(mA −ma)
, (28)

then the equation (12) with the condition (8) admits one and only one so-
lution verifying

σ ∈ L∞(R+ × R2 × [0, 1])

with
σ(m, ξ, y, z) ≥ 0 a.e. in R+ × R2 × [0, 1],

σ(m, ξ, y, z) = 0 for m ∈ [0,ma] ∪ [mA,∞[·

Proof. We consider a measurable and bounded sets family ωi, i ∈ N∗,
defined by

ωi =
{

(m, ξ, y) ∈ R+ × R2 / ma ≤ m ≤ mA, −i ≤ ξ ≤ i, −i ≤ y ≤ i
}
.

(29)
The definition of D[ω] permits us to define a number N such that

Dωi(1) ⊂
{

(m, ξ, y) ∈ R+ × R2 / ma ≤ m ≤ mA, −i−N ≤ ξ ≤ i+N,

−i− 1 ≤ y ≤ i+ 1
}
.

We consider the function ψi ∈ C∞(R2); ψi ≥ 0 such that

ψi(ξ, y) =

{
1 if |ξ| ≤ i+N and |y| ≤ i+ 1,
0 if |ξ| ≥ i+N + 1 and |y| ≥ i+ 2,

(30)

then we have

Dωi(1) ⊂ {(m, ξ, y) ∈ R+ × R2 / ψi(ξ, y) = 1} for i ∈ N∗. (31)
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Let the equations family

∂zσ
[i](m, ξ, y, z) = F (σ[i](z))(m, ξ, y), i ∈ N∗ (32)

(with F (·) defined in (12)), completed by the condition

σ[i] = ψi σ on R+ × R2. (33)

According to the proposition 1, the problem (32)–(33) admits one solution

σ = σ[i] ∈ C([0, 1];L1(R+ × R2) ∩ L∞(R+ × R2 × [0, 1])),

such that
σ[i] ≥ 0 a.e. in R+ × R2 × [0, 1],

σ[i](m, ξ, y, z) = 0 for m ∈ [0,ma] ∪ [mA,∞[.

In addition, according to the definition of the sets ωi, we have

D[ωi] ⊂ D[ωi′ ] for i ≤ i′,

therefore, by virtue of lemma 5 and of (33), we have

σ[i] = σ[i′] a.e. in D[ωi] for i ≤ i′.

Defining σ by

σ =

{
σ[1] in D[ω1],

σ[i] in D[ωi]\D[ωi−1], i = 2, ·, ·, ·,

we have
σ = σ[i] a.e. in Dωi(1) ∀i ∈ N∗

and from (32), (61) we obtain

∂zσ(m, ξ, y, z) = F (σ(z))(m, ξ, y) in D[ωi] ∀i ∈ N∗,

σ = σ[i] = σ on Dωi(1).

Remembering the relations R+ × R2 × [0, 1] ⊂ ⋃
i∈N∗

D[ωi] and R+ × R2 ⊂
⋃
i∈N∗

Dωi(1) which result from the definition of ωi, D[ωi], Dωi(1), we can

conclude that there exists a solution of (12), (8). To prove the uniqueness,
let’s consider two possible solutions σ1 and σ2 with σ1 6= σ2 on a set of
strictly positive measure, then we can choose a measurable set ω such that
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0 < mes(ω) < ∞ and that mes({(m, ξ, y, z) ∈ D[ω] / σ1 6= σ2}) > 0.
However as σ1 and σ2 are solutions of (12), (8), σ1 = σ2 on R+ × R2 × {1}
and in particular σ1 = σ2 on R+×R2×{1}⋂D[ω]; consequently, according
to lemma 5, we have σ1 = σ2 in D[ω], this proves that it is not possible
to have two solutions σ1 and σ2 which are different on a set from strictly
positive measure. The uniqueness of the solution is proved. �

For the existence and the uniqueness of the solution in the (m,x, y, z)
co-ordinates, we have the following theorem.

Theorem 2 If σ ∈ L∞(R+ × R2) satisfies the conditions

σ(m,x, y) ≥ 0 a.e on R+ × R2,

σ(m,x, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[,

‖σ‖L∞(R+×R2) <
1

M1(mA −ma)
,

then the equation (4) with the condition (5) admits one solution σ and only
one verifying

σ ∈ L∞(R+ × R2 × [0, 1]),

such that

σ(m,x, y, z) ≥ 0 a.e on R+ × R2 × [0, 1],

σ(m,x, y, z) = 0 for m ∈ [0,ma] ∪ [mA,∞[.

Proof. We associate to the problem (4)-(5), where the unknown function
to find is σ, the problem (12), (8) by a bijective mapping defined by the
change of variables (m,x, y, z) 7→ (m̃, ξ, ỹ, z̃) introduced in (6) with

σ(m,x, y, z) = σ̃(m, ξ + v(y)
α(m)

g
(1− z), y, z).

If σ̃(m, ξ, y, z) is the solution of the problem (12), (8) in which the existence
and the uniqueness have been proved in theorem 1, then, we obtain the
existence and the uniqueness of the solution σ for (4)-(5) verifying the same
conditions. �
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4 Global solution for the coagulation equation of
the drops in fall with a horizontal wind

We will consider the problem to find a function σ(m, t, x, y, z), that verifies
the equation (1) for

(m, t, x, y, z) ∈ R+ × R+ × R2 × [0, 1]

and the following boundary condition (entry condition) and initial condition

σ(m, t, x, y, 1) = σ1(m, t, x, y), (34)

σ(m, 0, x, y, z) = σ0(m,x, y, z). (35)

In the same way to the stationary case, to solve the equation (1) with
the conditions (34)-(35), we will transform it into an ordinary differential
equation, by introducing the following variables (m, t, x, y, z) 7→ (m̃, t̃, ξ, ỹ, z̃)





m̃ = m,

ξ = x− v(y)α(m)
g (1− z),

ỹ = y,
z̃ = z,

t̃ = t− α(m)
g (1− z)

(36)

and the unknown function to find would be

σ̃(m̃, t̃, ξ, ỹ, z̃) = σ(m, t, x, y, z) =

= σ
(
m, t̃+

α(m)

g
(1− z), ξ + v(y)

α(m)

g
(1− z), y, z

)
,

we will note bym, y, z and σ(m, t̃, ξ, y, z) instead of m̃, ỹ, z̃ and σ̃(m̃, t̃, ξ, ỹ, z̃),
the equation (1) is changed into

∂

∂z
σ
(
m, t̃, ξ, y, z

)
= (37)

= −m α(m)

2g

∫ m

0
β(m−m′,m′)σ(m′, t̃∗(m,m′, t̃, z), η(m,m′, ξ, y, z), y, z)×

×σ(m−m′, t̃∗(m,m−m′, t̃, z), η(m,m−m′, ξ, y, z), y, z)dm′+

+
m α(m)

g

∫ ∞

0
β(m,m′)σ(m, t̃, ξ, y, z)×
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×σ(m′, t̃∗(m,m′, t̃, z), η(m,m′, ξ, y, z), y, z)dm′,

where {
t̃∗(m,m′, t̃, z) = t̃+ α(m)−α(m′)

g (1− z),
η(m,m′, ξ, y, z) = ξ + v(y)α(m)−α(m′)

g (1− z).

We introduce for each fixed y ∈ R, z ∈ [0, 1], the curves family

γτ,ζ = γτ,ζ,y,z =
{

(m, t̃, ξ) ∈ R+ × R2 / t̃ = τ − α(m)

g
(1− z), (38)

ξ = ζ − v(y)
α(m)

g
(1− z)

}

with τ, ζ ∈ R.

Let τ , ζ, γ
[0,m]
τ,ζ such that

τ(m, t̃, z) = t̃+
α(m)

g
(1− z), ζ(m, ξ, y, z) = ξ + v(y)

α(m)

g
(1− z),

γ
[0,m]
τ,ζ = γτ,ζ ∩ [0,m]× R2.

We note by

κ = (τ, ζ), ϑ = (t̃, ξ), q = q(y) = (1, v(y))T ,

then the curves defined in (38) can be written in the following form

γκ = γκ,y,z =

{
(m,ϑ) ∈ R+ × R2 / ϑ = κ− q(y)

α(m)

g
(1− z)

}
(39)

with

κ(m,ϑ, y, z) = ϑ+ q(y)
α(m)

g
(1− z), γ[0,m]

κ = γκ ∩ [0,m]× R2.

The curves family γκ is similar to that defined in (9) in the stationary
case, so in the same way, we define a measure µγ on the curves γκ and the
equation (37) will be

∂

∂z
σ(z) = Fz(σ(z)), σ(z) = σ(·, ·, ·, ·, z), (40)

where

Fz(σ(z)) = Fz(σ(z))(m,ϑ, y) = (41)
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= −mα(m)

2g

∫

γ
[0,m]
κ(m,ϑ,y,z)

β(m−m′,m′)σ(m′, ϑ′, y, z)σ(m−m′, ϑ′′, y, z)µγ(dm′)+

+
mα(m)

g

∫

γκ(m,ϑ,y,z)

β(m,m′)σ(m′, ϑ′, y, z)σ(m,ϑ, y, z)µγ(dm′)

with ϑ′ and ϑ′′ are defined by the relation

(m′, ϑ′) ∈ γκ(m,ϑ,y,z), (m−m′, ϑ′′) ∈ γ[0,m]
κ(m,ϑ,y,z).

We remark that this equation is in the same type of the equation (12) in the
stationary case and that the integral operator appearing in (41) verifies the
same properties in lemmas 1, 2, 3 and 4.

In the same way, the boundary and the initial conditions will be changed
into

σ
(
m, t̃, ξ, y, 1

)
= σ∗1(m, t̃, ξ, y) = σ∗1(m,ϑ, y) (42)

and

σ(m,−α(m)

g
(1− z), ξ, y, z) = σ∗0(m, ξ, y, z), (43)

where σ∗0 and σ∗1 are the functions obtained of σ0 and σ1 by the change of
variables introduced in (36).

4.1 Solution with an entry condition in class L1

We define the domain in which we will consider the equation (40) by

Ω = ∪
κ∈R∗+×R, y∈R, 0<z<1

γκ,y,z = (44)

=

{
(m,ϑ, y, z) = (m, t̃, ξ, y, z) ∈ R+ × R3×]0, 1[ / t̃ >

α(m)

g
(z − 1)

}

and we pose

Γa =

{
(m,ϑ, y, z) = (m, t̃, ξ, y, z) ∈ R+ × R3 × [0, 1] / t̃ =

α(m)

g
(z − 1)

}
,

Γb = {z = 1} ∩ Ω.

The conditions (42)–(43) can be written in the form

σ = σ∗1 on Γb, σ = σ∗0 on Γa. (45)
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Proposition 2 Let σ(a) ∈ L1(Γa) ∩ L∞(Γa) and σ(b) ∈ L1(Γb) ∩ L∞(Γb)
such that

σ(a)(m,ϑ, y, z) ≥ 0 a.e. on Γa, σ(b)(m,ϑ, y) ≥ 0 a.e. on Γb,

σ(a)(m,ϑ, y, z) = σ(b)(m,ϑ, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[.

If

max(‖σ(a)‖L∞(Γa), ‖σ(b)‖L∞(Γb)) <
1

M1(mA −ma)
,

then there exists unique solution σ of the equation (40) satisfying to the
conditions

σ = σ(b) on Γb, σ = σ(a) on Γa, (46)

with

σ ∈ C([0, 1];L1(Ωz) ∩ L∞(Ω)), (47)

where

Ωz = {(m,ϑ, y) = (m, t̃, ξ, y) ∈ R+ × R2 × R / t̃ >
α(m)

g
(z − 1)}. (48)

Proof. In (40) and (41), the absence of derivative and integral compared
to y is remarked, as in (12), this implies that the equation (40) can be solved
separately for each y ∈ R.

We define for each point (m,ϑ) ∈ R+ × R2 the number ζ1(m,ϑ) ∈ [0, 1]
such that

ζ1(m,ϑ) = ζ1(m, t̃, ξ) = ζ1(m, t̃) =

{
max(0, 1 + t̃

α(m)g) if t̃ ≤ 0,

1 if t̃ > 0
(49)

and we have

(m,ϑ, y, ζ1(m,ϑ)) ∈ Γb ∪ Γa ∀(m,ϑ, y) ∈ R+ × R2 × R, t̃ ≥ −α(m)

g
,

these permit us to replace (t, x) ∈ R2 by the time axis, then we find the
conditions for the proof of proposition 4.1 in [2], consequently renewing the
stages of the proof of this one, we prove the proposition. �



GLOBAL SOLUTION FOR THE COAGULATION EQUATION 167

4.2 Existence and uniqueness of the global solution in time
with a horizontal wind

In the same way to the stationary case, to obtain the existence and the
uniqueness of the global solution with an horizontal wind in a general case,
we use the “cone of dependence” property and the proposition 2.

We consider a set ω ∈ R+×R3 such that 0 < mes(ω) <∞ and we define

D[ω] =
⋃

(m,ϑ,y)∈ω
D(m,ϑ,y), (50)

where
D(m,ϑ,y) =

( ⋃

0≤z≤1

( ⋃

κ−(m,ϑ,y,z)≤κ≤κ+(m,ϑ,y)

γκ,y,z

))
= (51)

= {(m′, ϑ′, y′, z′) ∈ R+ × R3 × [0, 1]/ ϑ′ = κ− q(y′)α(m′)
g

(1− z′),

y′ = y, κ−(m,ϑ, y, z′) ≤ κ ≤ κ+(m,ϑ, y)}
with{

κ+(m,ϑ, y) = κ(m,ϑ, y, 0) = ϑ+ q(y)α(m)
g ,

κ−(m,ϑ, y, z) = κ+(m,ϑ, y)− q(y)α0
g z = ϑ+ q(y)α(m)

g − q(y)α0
g z.

(52)
We define Dω(z) by

Dω(z) =
⋃

(m,ϑ,y)∈ω

( ⋃

κ−(m,ϑ,y,z)≤κ≤κ+(m,ϑ,y)

γκ,y,z

)
=

= {(m′, ϑ′, y′, z′) ∈ D[ω] | z′ = z}.
We remark that D[ω] in the evolution case is defined in a similar way to

the stationary case (see (19), (20), (21)) then we have the following lemma.

Lemma 6 Let σ
[1]
(a) and σ

[2]
(a) two functions defined on Γa, σ

[1]
(b) and σ

[2]
(b) two

functions defined on Γb. We suppose that σ
[1]
(a), σ

[2]
(a), σ

[1]
(b), σ

[2]
(b) satisfy the con-

ditions of the proposition 2. Let σ[1](resp. σ[2]) the solution of the equation

(40) with the condition (46) and σ(a) = σ
[1]
(a), σ(b) = σ

[1]
(b) (resp. σ(a) = σ

[2]
(a),

σ(b) = σ
[2]
(b)). If we have

σ
[1]
(b) = σ

[2]
(b) on Γb ∩D[ω], σ

[1]
(a) = σ

[2]
(a) on Γa ∩D[ω], (53)

then
σ[1] = σ[2] a.e. in D[ω].



168 Hanane Belhireche, Mohamed Zine Aissaoui, Fateh Ellaggoune

Proof. Writing the equation (40) into an integral form, we have

σ[i](m,ϑ, y, z) = σ[i](m,ϑ, y, ζ1(m,ϑ))+

+
mα(m)

2g

∫ ζ1

z

∫

γ
[0,m]

κ(m,ϑ,y,z′),y,z′

β(m−m′,m′)σ[i](m′, ϑ′, y, z′)σ[i](m−m′, ϑ′′, z′)

µγ(dm′)dz′ − mα(m)

g

∫ ζ1

z

∫

γκ(m,ϑ,y,z′),y,z′
β(m,m′)σ[i](m′, ϑ′, y, z′)σ[i](m,ϑ, y, z′)

µγ(dm′)dz′, i = 1, 2.

From (45) it results that

σ[i](m,ϑ, y, ζ1(m,ϑ)) =





σ
[i]
(a) on Γa,

σ
[i]
(b) on Γb,

ζ1(m,ϑ) is the number defined in (49).
Making the difference for i = 1 and i = 2, we have

|σ[1](m,ϑ, y, z)− σ[2](m,ϑ, y, z)| ≤ |σ[1](m,ϑ, y, ζ1)− σ[2](m,ϑ, y, ζ1)|+

+Cβ

[∫ ζ1

z

∫

γ
[0,m]

κ(m,ϑ,y,z′),y,z′

(∣∣σ[1](m−m′, ϑ′′, y, z′)−σ[2](m−m′, ϑ′′, y, z′)
∣∣σ[2](m′, ϑ′, y, z′)+

+
∣∣σ[1](m′, ϑ′, y, z′)− σ[2](m′, ϑ′, y, z′)

∣∣σ[1](m−m′, ϑ′′, y, z′)
)
µγ(dm′)dz′+

+

∫ ζ1

z

∫

γκ(m,ϑ,y,z′),y,z′

(∣∣σ[1](m,ϑ, y, z′)− σ[2](m,ϑ, y, z′)
∣∣σ[2](m′, ϑ′, y, z′)+

+
∣∣σ[1](m′, ϑ′, y, z′)− σ[2](m′, ϑ′, y, z)

∣∣σ[1](m,ϑ, y, z′)
)
µγ(dm′)dz′

]
,

we deduce from it that

|σ[1](m,ϑ, y, z)−σ[2](m,ϑ, y, z)| ≤ |σ[1](m,ϑ, y, ζ1)−σ[2](m,ϑ, y, ζ1)|+ (54)

+Cβ

[ ∫ 1

z

(
‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )

‖σ[2](·, ·, ·, z′)‖L1(γκ(m,ϑ,y,z′),y,z′ ) + ‖σ[1](·, ·, ·, z′)‖L1(γκ(m,ϑ,y,z′),z′ )
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‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )

)
dz′+

+

∫ 1

z

(
‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )×

×‖σ[2](·, ·, ·, z′)‖L1(γκ(m,ϑ,y,z′),y,z′ )+

+(mA −ma)‖σ[1](·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )×

×‖σ[1](·, ·, ·, z′)− σ[2](·, ·, ·, z′)‖L∞(γκ(m,ϑ,y,z′),y,z′ )

)
dz′
]
.

We remark that this inequality is similar to the inequality (24) in the proof
of lemma 5 and by the same way we obtain the result. �

Now we can prove the principal theorem.

Theorem 3 If σ∗0 ∈ L∞(Γa) and σ∗1 ∈ L∞(Γb) satisfy to the conditions

σ∗0(m, ξ, y, z) ≥ 0 a.e. on Γa, σ∗1(m,ϑ, y) ≥ 0 a.e. on Γb, (55)

σ∗0(m, ξ, y, z) = 0, σ∗1(m,ϑ, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[, (56)

max
(
‖σ∗0‖L∞(Γa); ‖σ∗1‖L∞(Γb)

)
<

1

M1(mA −ma)
, (57)

then the equation (40) with the condition (45) admits one solution σ and
only one verifying

σ ∈ L∞(Ω)

with

σ(m,ϑ, y, z) ≥ 0 a.e. in Ω,

σ(m,ϑ, y, z) = 0, for m ∈ [0,ma] ∪ [mA,∞[.

Proof. We consider a measurable and bounded sets family ωi, i ∈ N∗,
defined by

ωi =
{

(m,ϑ, y) = (m, t̃, ξ, y) ∈ R+ × R3 / ma ≤ m ≤ mA, (58)

−α(m)

g
≤ t̃ ≤ i, −i ≤ ξ ≤ i, −i ≤ y ≤ i

}

= Ω0 ∩ {(m,ϑ, y) = (m, t̃, ξ, y) ∈ [ma,mA]× R3 / t̃ ≤ i},
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where Ω0 is the set defined in (48) with z = 0. The definition of D[ω] (see
(50)) permits us to define a number N such that

Dωi(1) ⊂
{

(m,ϑ, y) = (m, t̃, ξ, y) ∈ R+ × R3 / ma ≤ m ≤ mA,

t̃ ≤ i+N, −i−N ≤ ξ ≤ i+N, −i− 1 ≤ y ≤ i+ 1
}

(59)
and we consider a function ψi ∈ C∞(R3); ψi ≥ 0 such that

ψi(ϑ, y) = ψi(t̃, ξ, y) =

{
1 if t̃ ≤ i+N, |ξ| ≤ i+N, |y| ≤ i+ 1
0 if t̃ ≥ i+N + 1, |ξ| ≥ i+N + 1, |y| ≥ i+ 2,

(60)
then we have

Dωi(1) ⊂ {(m,ϑ, y) ∈ R+ × R3 / ψi(ϑ, y) = 1} i ∈ N∗. (61)

The theorem will be proved in the same way to theorem 5.1 of [2] (see
also theorem 1 of the stationary case) by renewing the same stages. �

The existence and the uniqueness of the solution in the (m, t, x, y, z)
co-ordinates is given in the following theorem.

Theorem 4 If σ0 ∈ L∞(R+ × R2 × [0, 1]) and σ1 ∈ L∞(R+ × R+ × R2)
satisfy the conditions

σ0(m,x, y, z) ≥ 0 a.e. on R+ × R2 × [0, 1],

σ1(m, t, x, y) ≥ 0 a.e. on R+ × R+ × R2,

σ0(m,x, y, z) = σ1(m, t, x, y) = 0 for m ∈ [0,ma] ∪ [mA,∞[,

max
(
‖σ0‖L∞(R+×R2×[0,1]); ‖σ1‖L∞(R+×R+×R2)

)
<

1

M1(mA −ma)
,

then the equation (1) with the conditions (34) and (35) admits one solution
σ and only one verifying

σ ∈ L∞(R+ × R+ × R2×]0, 1[),

where

σ(m, t, x, y, z) ≥ 0 a.e. in R+ × R+ × R2×]0, 1[,

σ(m, t, x, y, z) = 0 for m ∈ [0,ma] ∪ [mA,∞[.
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Proof. We associate to the problem (1), (34),(35), where the unknown
function to find is σ, the problem (40), (45) by a bijective mapping defined
by the change of variables (m, t, x, y, z) 7→ (m̃, t̃, ξ, ỹ, z̃) introduced in (36)
with

σ(m, t, x, y, z) = σ̃
(
m, t− α(m)

g
(1− z), x+ v(y)

α(m)

g
(1− z), y, z

)
.

If σ̃(m, t̃, ξ, y, z) is the solution of the problem (40), (45) in which the exis-
tence and the uniqueness have been proved in theorem 3, then, we obtain
the existence and the uniqueness of the solution σ of (1), (34),(35) verifying
the same conditions. �
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1 A method for constructing asymptotic series and
applications

The problem of approximating the gamma function goes back to Laplace
formula which is the continuous version of the Stirling formula. In 1916
Srinivasa Ramanujan (see [4]) proposed a formula which was later studied
by E. A. Karatsuba in [13] and Alzer [2].

A method for improving some approximation formulas for large factorials
is to consider the corresponding asymptotic series. It is presented in [16] an
original approach to the asymptotic evaluation of sums and products. As for
usual, to an approximation formula f(n) ∼ g(n), it is associated the series

f(n) ∼ g(n) exp

( ∞∑

k=1

ak
nk

)
, (1)

also called an asymptotic series. Such series have the advantage that in a
truncated form, provides approximations to any accuracy n−k.

The strategy in [16] is based on the idea that when series (1) is truncated
at the mth term, the approximation obtained should be the most precise
possible among all approximations

f(n) ∼ g(n) exp

(
m∑

k=1

a′k
nk

)
, (2)

where a′1, a
′
2, . . . , a

′
m are any real numbers.

The first task is to compare the accuracy of two approximation formulas.
We do this by associate to an approximation formula f (n) ∼ g (n) the
relative error sequence rn by the relations

f (n) = g (n) exp rn , n ≥ 1.

We consider f (n) ∼ g (n) as better as rn converges to zero faster.
Now a new task appears, that is to measure the speed of convergence of

the sequence rn. The tool used is the following

Lemma 1 (Speed of Convergence Lemma). If (rn)n≥1 is conver-
gent to zero and

lim
n→∞

nk(rn − rn+1) = l , then lim
n→∞

nk−1rn =
l

k − 1
, (k ≥ 2) .

In other words, rn is of n−(k−1) speed of convergence, in case rn − rn+1 is
of order n−k.
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We cite from Batir [3]: “This lemma, despite of its simple appearance,
is a strong tool to accelerate and measure the speed of convergence of some
sequences having limit zero, and has proved by C. Mortici in [16]”. As the
reviewer of [16] asked, a detailed proof of Lemma 1 was presented for sake
of completness.

We introduce the relative error sequence (λn)n≥1 by

f(n) = g(n) exp

(
m∑

k=1

ak
nk

)
expλn , n ≥ 1.

In order to use Lemma 1, we write

λn − λn+1 =

m+1∑

k=2

xk − yk
nk

+O

(
1

nm+2

)
,

where
m∑

k=1

ak
nk
−

m∑

k=1

ak
(n+ 1)k

=
m+1∑

k=2

yk
nk

+O

(
1

nm+2

)

with

a1 −
(
k − 1

1

)
a2 + · · ·+ (−1)k

(
k − 1

k − 2

)
ak−1 = (−1)k yk, 2 ≤ k ≤ m+ 1

and assuming

ln
f(n)g(n+ 1)

g(n)f(n+ 1)
=

∞∑

k=2

xk
nk
. (3)

The following main result is stated in [16].

Theorem 1. Suppose there is some k such that 2 ≤ k ≤ m + 1 and
xk 6= yk, and let s = min {k | 2 ≤ k ≤ m+ 1, xk 6= yk} . Then

lim
n→∞

ns−1λn =
xs − ys
s− 1

∈ Rr {0} ,

and therefore the speed of convergence of (λn)n≥1 is n−(s−1).

If s ≥ 3, conditions xk = yk, for 2 ≤ k ≤ s − 1, are equivalent to the
triangular system

xk = (−1)k
(
a1 −

(
k − 1

1

)
a2 + · · ·+ (−1)k

(
k − 1
k − 2

)
ak−1

)
, (4)
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which defines uniquely the best coefficients ak, 1 ≤ k ≤ s− 2.
These theoretical results were applied in [16] to deduce the series as-

sociated with some approximation formulas: Stirling, Burnside, Glaisher-
Kinkelin, Wallis. Standard construction of these series makes appeal to
Bernoulli numbers and Euler-Maclaurin summation formula.

To the Glaisher-Kinkelin constant defined by

A = lim
n→∞

112233 · · ·nn
nn2/2+n/2+1/12e−n2/4

,

the following asymptotic series is considered

112233 · · ·nn ∼ A · nn2+n
2

+ 1
12 e−n

2/4 exp

( ∞∑

k=1

ak
nk

)
.

Here we have f(n) = 112233 · · ·nn and g(n) = A · nn2+n
2

+ 1
12 e−n

2/4. The
values xk in (3) are

xk = (−1)k
(

1

2k + 2
− 1

2k + 4
− 1

12k

)
,

and the solution of the triangular system (4) is a1 = 0, a2 = 1/720, a3 =
0, a4 = −1/5040, a5 = 0, a6 = 1/10080, . . . . Hence

112233 · · ·nn ∼ A·nn2+n
2

+ 1
12 e−n

2/4 exp

(
1

720n2
− 1

5040n4
+

1

10 080n6
− · · ·

)
.

The asymptotic series associated to Wallis formula is

π

2
∼




n∏

j=1

4j2

4j2 − 1


 exp

( ∞∑

k=1

ak
nk

)
.

With f(n) = π
2 and g(n) =

∏n
j=1

4j2

4j2−1 in (3), we get

xk =
(−1)k

k

(
3k + 1

2k
− 2

)
.

The solution of the triangular system (4) is a1 = 1/4, a2 = −1/8, a3 = 5/96,
a4 = −1/64, . . . . Hence

π

2
∼




n∏

j=1

4j2

4j2 − 1


 exp

(
1

4n
− 1

8n2
+

5

96n3
− 1

64n4
+ · · ·

)
.
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By using standard transforms on asymptotic series, it is obtained in [16] the
following formula

n∏

j=1

4j2

4j2 − 1
∼ π

2

(
1− 1

4n
+

5

32n2
− 11

128n3
+

31

768n4
− · · ·

)
,

which is an extension of the following formula presented by Hirschhorn in
[12]:

n∏

j=1

4j2

4j2 − 1
∼ π

2
− π

8n
+O

(
1

n2

)
as n→∞.

Undoubtedly the most used formula for estimating big factorials is the fol-
lowing

n! ∼
√

2πn
(n
e

)n

now known as Stirling’s formula. Classical methods for constructing the
corresponding asymptotic series use some equations involving numeric se-
ries and improper integrals, Euler-Maclaurin summation formula, Legendre
duplication formula, or the analytic definition of Bernoulli numbers. The
method proposed in [16] is quite elementary. For the asymptotic series

n! ∼
√

2πn
(n
e

)n
exp

( ∞∑

k=1

ak
nk

)
, (5)

with f(n) = n! and g(n) =
√

2πn
(
n
e

)n
, we have in (3)

xk = (−1)k
k − 1

2k(k + 1)
.

The solution of the triangular system (4) is a1 = 1/12, a2 = 0, a3 = −1/360,
a4 = 0, a5 = 1/1260, a6 = 0, a7 = −1/1680, which are coefficients in (5).

It is presented in [17] the following asymptotic expansion in terms of
Bernoulli numbers for every p ∈ [0, 1]:

Γ (x+ 1) ∼
√

2πe · e−p
(
x+ p

e

)x+ 1
2

· exp

{ ∞∑

k=1

ap (x)

xk

}
, n→∞, (6)

where

ap (x) =
1

k (k + 1)

[
Bk+1 − (−1)k pk

((
p− 1

2

)
k − 1

2

)]
.
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The class of approximations (6) was also recently studied by Nemes [22].
Particular case p = 1/2 is Burnside series [6]:

Γ (x+ 1) ∼
√

2π

(
x+ 1

2

e

)x+ 1
2

exp

( ∞∑

k=1

(
Bk+1 +

(−1)k

2k+1

)
1

k (k + 1)xk

)
,

while p = 1 case provides the following formula:

Γ (x+ 1) ∼
√

2π

e

(
x+ 1

e

)x+ 1
2

exp

( ∞∑

k=1

(
Bk+1 − (−1)k

k − 1

2

)
1

k (k + 1)xk

)
.

As usually truncations of these series provide upper- and lower- estimates.
The following double inequalities were presented in [17]:

Theorem 2. For every x ≥ 1, we have

√
2π

(
x+ 1

2

e

)x+ 1
2

exp a (x) < Γ (x+ 1) <
√

2π

(
x+ 1

2

e

)x+ 1
2

exp b (x) ,

where

a (x) = − 1

24x
+

1

48x2
− 23

2880x3
+

1

640x4
+

11

40 320x5
+

1

5376x6
− 143

215 040x7

and

b (x) = a (x) +
143

215 040x7
.

Theorem 3. For every x ≥ 1, we have

√
2π

e

(
x+ 1

e

)x+ 1
2

exp c (x) < Γ (x+ 1) <

√
2π

e

(
x+ 1

e

)x+ 1
2

exp d (x) ,

where

c (x) =
1

12x
− 1

12x2
+

29

360x3
− 3

40x4
+

17

252x5
− 5

84x6

and

d (x) = c (x) +
89

1680x7
.

Liu [15] established the following integral version of Stirling’s formula

Γ (n+ 1) =
√

2πn
(n
e

)n
· exp

(∫ ∞

n

1
2 − {t}

t
dt

)
.
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An extension to Nemes’ family was presented in [18]. The following formula
is valid for every p ∈ [0, 1] :

Γ (n+ 1) =
√

2πe · e−p
(
n+ p

e

)n+ 1
2

· exp

(∫ ∞

n

(
3
2 − p− {t}

t+ p
+

p

p {t}+ [t]
− 1

t

)
dt

)
.

According to our discussion in general case, the Stirling series in terms of
Bernoulli numbers

Γ (n+ 1) ∼
√

2πn
(n
e

)n
exp

{ ∞∑

k=1

B2k

2k (2k − 1)n2k−1

}
(7)

is of best performance from the approximation point of view when it is
truncated at every term. However better results can be obtained if we
consider the truncations in (7) as rational functions of the form

m∑

k=1

B2k

2k (2k − 1)n2k−1
=

Rm
(
n2
)

12nTm (n2)
,

where Rm, Tm are polynomials of (m− 1) th degree, with the leading co-
efficients equal to unity. It is indicated in [19] how can be constructed
polynomials Pm, Qm of (m− 1) th degree such that the approximation

Γ (n+ 1) ∼
√

2πn
(n
e

)n
exp

Pm
(
n2
)

12nQm (n2)
(8)

is the best possible among all approximations of the form

Γ (n+ 1) ∼
√

2πn
(n
e

)n
exp

P ′m
(
n2
)

12nQ′m (n2)
,

where P ′m and Q′m are every polynomials of (m− 1) th degree with leading
coefficient equal to unity. New obtained approximations (8) are more accu-
rate than the mth approximation of the classical Stirling series (7). Initial
approximations

n! ∼
√

2πn
(n
e

)n
exp

n2 + 53
210

12n
(
n2 + 2

7

) =: ρ1 (9)
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n! ∼
√

2πn
(n
e

)n
exp

n4 + 2559
1430n

2 + 22999
90090

12n
(
n4 + 782

429n
2 + 263

858

) =: ρ2 (10)

are more accurate than the classical approximations arising from Stirling
series truncated at the second, respective at the third term, namely

n! ≈
√

2πn
(n
e

)n
exp

30n2 − 1

360n3
=: σ1, (11)

n! ≈
√

2πn
(n
e

)n
exp

210n4 − 7n2 + 2

2520n5
=: σ2. (12)

In order to offer an initial image, we consider a comparison table to prove
the superiority of (9)-(10) over (11)-(12).

n ln (n!/σ1) ln (ρ1/n!)

10 7. 8× 10−9 3. 6× 10−11

100 7. 9× 10−14 3. 6× 10−18

250 8. 1× 10−16 6. 0× 10−21

n ln (σ2/n!) ln (n!/ρ2)

10 5. 8× 10−11 5. 2× 10−15

100 5. 9× 10−18 5. 7× 10−26

250 9. 7× 10−21 3. 1× 10−27

Rigorous proofs of these facts are presented in [19]. Remark that the first
approximations (8) are the approximations obtained by truncation the clas-
sical Stieltjes continued fraction to gamma function, but the proof of this
result is left as an open problem in [19].

In order to show our method, let us search the best constants a1, a2 in
m = 2 case:

n! ∼
√

2πn
(n
e

)n
exp

n2 + a1
12 (n3 + a2n)

.

For the relative error sequence zn defined by

n! =
√

2πn
(n
e

)n
exp

n2 + a1
12 (n3 + a2n)

exp zn , (n ≥ 1) ,

we used Maple software for symbolic computation to deduce

zn − zn+1 =

(
−1

4
a1 +

1

4
a2 −

1

120

)
1

n4
− 2

(
−1

4
a1 +

1

4
a2 −

1

120

)
1

n5

+

(
5

6
a2 −

5

6
a1 +

5

12
a1a2 −

5

12
a22 −

1

42

)
1

n6

+

(
5

4
a1 −

5

4
a2 −

5

4
a1a2 +

5

4
a22 +

5

168

)
1

n7
+O

(
1

n8

)
.

Now the fastest sequence zn is obtained when the first two coefficients in
this power series vanish, that is a1 = 53

210 , a2 = 2
7 .
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In case m = 3, we define the sequence tn by

n! =
√

2πn
(n
e

)n
exp

n4 + b1n
2 + b2

12 (n5 + b3n3 + b4n)
exp tn , (n ≥ 1) .

As

tn − tn+1 =

(
−1

4
b1 +

1

4
b3 −

1

120

)
1

n4
− 2

(
−1

4
b1 +

1

4
b3 −

1

120

)
1

n5

+

(
5

6
b3 −

5

12
b2 −

5

6
b1 +

5

12
b4 +

5

12
b1b3 −

5

12
b23 −

1

42

)
1

n6
+O

(
1

n7

)
,

we get b1 = 2559
1430 , b2 = 22 999

90 090 , b3 = 782
429 , b4 = 263

858 . In this case,

tn − tn+1 = − 80 713

12 972 960n12
+O

(
1

n13

)
.

The following estimates were stated in [19]:

Theorem 4. For every positive integer n, we have

exp

(
P2

(
n2
)

12nQ2 (n2)
− 13

35280n7

)
<

n!√
2πn

(
n
e

)n < exp
P2

(
n2
)

12nQ2 (n2)
.

We illustrate our method by providing

The proof of Theorem 4. We have to prove that an > 0 and bn < 0,
where

an =
P2

(
n2
)

12nQ2 (n2)
− ln

n!√
2πn

(
n
e

)n ,

bn =
P2

(
n2
)

12nQ2 (n2)
− 13

35280n7
− ln

n!√
2πn

(
n
e

)n .

As an, bn converge to zero, it suffices to show that an is strictly decreasing,
while bn is strictly increasing. In this sense, an+1 − an = f (n) , bn+1 − bn =
g (n) , where

f (x) =

(
x+

1

2

)
ln

(
1 +

1

x

)
− 1 +

P2

(
(x+ 1)2

)

12 (x+ 1)Q2

(
(x+ 1)2

) − P2

(
x2
)

12xQ2 (x2)

and

g (x) = f (x)−
(

13

35280 (x+ 1)7
− 13

35280x7

)
.
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The function f is strictly concave, while g is strictly convex with f (∞) =
g (∞) = 0, so f (x) < 0 and g (x) > 0, for every x ∈ [1,∞) and the theorem
is proved.�

In the same manner, the following result is stated in [19]:

Theorem 5. For every positive integer n, we have

exp

(
P3

(
n2
)

12nQ3 (n2)
− 80713

142702560n11

)
<

n!√
2πn

(
n
e

)n < exp
P3

(
n2
)

12nQ3 (n2)
.

2 Landau constants

E. Landau studied the asymptotic behaviour of the constants

Gn = 1 +

(
1

2

)2

+

(
1 · 3
2 · 4

)2

+ ...+

(
1 · 3 · ... · (2n− 1)

2 · 4 · ... · (2n)

)2

,

(now known as Landau constants) proving the asymptotic formula Gn ∼
(1/π) lnn, see e.g. [14]. Then Watson [24] proposed

Gn = c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+O

(
1

n2

)
,

where c0 = 1
π (γ + 4 ln 2) = 1.06627... and γ = 0.577... is Euler-Mascheroni

constant. Further improvements were presented by Brutman [5]

1 +
1

π
ln (n+ 1) < Gn < 1.0663 +

1

π
ln (n+ 1)

and Falaleev [9]

1.0662 +
1

π
ln

(
n+

3

4

)
< Gn < 1.0916 +

1

π
ln

(
n+

3

4

)
. (13)

It is showed in [20] that 3/4 is the best possible constant that can be used
in (13). The proofs are based on inequalities

s (x) < ln Γ (x+ 1) < t (x) (14)

where

s (x) = ln
√

2π +

(
x+

1

2

)
lnx− x+

1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
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and

t (x) = ln
√

2π+

(
x+

1

2

)
lnx−x+

1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
+

1

1188x9
.

They are a consequence of a result of Alzer [2, Theorem 8].
By (14), we get

eu(x) <
1

16x

(
Γ (2x+ 1)

(Γ (x+ 1))2

)2

< ev(x), (15)

where

u (x) = 2s (2x)− 4t (x)− x ln 16 , v (x) = 2t (2x)− 4s (x)− x ln 16.

Mortici [20] used (15) to establish the following

Theorem 6. For every integer n ≥ 1, we have

c0 +
1

π
ln

(
n+

3

4

)
< Gn < c0 +

1

π
ln

(
n+

3

4
+

11

192n

)
. (16)

Proof. As n = 1, 2 cases can be easily proven, we assume n ≥ 3. The
sequence

an = Gn − c0 −
1

π
ln

(
n+

3

4

)

converges to zero and it suffices to show that (an)n≥3 is strictly decreasing.
As

an−an−1=
1

16n

(
Γ (2n+ 1)

(Γ (n+ 1))2

)2

− 1

π
ln

(
1 +

1

n− 1
4

)
<ev(n)− 1

π

4∑

k=1

(−1)k−1

k
(
n− 1

4

)k ,

we have to prove that f (x) < 0, where

f (x) = v (x)− ln

(
1

π

4∑

k=1

(−1)k−1

k
(
x− 1

4

)k

)
.

This function has its derivative f ′ > 0 on [3,∞). Now f is strictly increasing
on [3,∞), with f (∞) = 0, so f (x) < 0, for every x ∈ [3,∞).

For the right-hand side inequality (16), define the sequence

bn = Gn − c0 −
1

π
ln

(
n+

3

4
+

11

192n

)
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and proceed as above. We have

bn − bn−1 =
1

16n

(
Γ (2n+ 1)

(Γ (n+ 1))2

)2

− 1

π
ln

(
1 +

1 + 11
192n − 11

192(n−1)
n− 1

4 + 11
192(n−1)

)

> eu(n) − 1

π

5∑

k=1

(−1)k−1

k

(
n− 1

4
+ 11

192(n−1)

1+ 11
192n
− 11

192(n−1)

)k .

The function

g (x) = u (x)− ln




1

π

5∑

k=1

(−1)k−1

k

(
x− 1

4
+ 11

192(x−1)

1+ 11
192x
− 11

192(x−1)

)k


 ,

is strictly decreasing on [3,∞), with g (∞) = 0, so g (x) > 0, for every
x ∈ [3,∞).�

Zhao [25] extended the asymptotic expansion of Gn to

Gn = c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+

5

192π (n+ 1)2
+O

(
1

(n+ 1)3

)
,

then Mortici [20] proved the following improvement

Theorem 7. For every integer n ≥ 1, we have

c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+

5

192π (n+ 1)2
(17)

+
3

128π (n+ 1)3
− 341

122880π (n+ 1)4
− 75

8192π (n+ 1)5
< Gn

< c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+

5

192π (n+ 1)2
+

3

128π (n+ 1)3
−

-
341

122880π (n+ 1)4

and the following asymptotic formula holds as n→∞ :

Gn = c0 +
1

π
ln (n+ 1)− 1

4π (n+ 1)
+

5

192π (n+ 1)2
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+
3

128π (n+ 1)3
− 341

122880π (n+ 1)4
+O

(
1

(n+ 1)5

)
.

Cvijović and Klinowski [8] presented some estimates in terms of the digamma
function

c0 +
1

π
ψ

(
n+

5

4

)
< Gn < 1.0725 +

1

π
ψ

(
n+

5

4

)

and

0.9883 +
1

π
ψ

(
n+

3

2

)
< Gn < c0 +

1

π
ψ

(
n+

3

2

)
(n ≥ 0),

as Alzer [1] proved the following double sharp inequality

c0 +
1

π
ψ (n+ α) < Gn < c0 +

1

π
ψ (n+ β) , (n ≥ 1) ,

where α = 5/4 and β = ψ−1 (π (1− c0)) = 1.26621... .
Mortici [20] improved the above results of Cvijović, Klinowski and Alzer

as follows:

Theorem 8. For every positive integer n, we have

c0 +
1

π
ψ

(
n+

5

4

)
+

1

64πn2
− 3

128πn3
< Gn

< c0 +
1

π
ψ

(
n+

5

4

)
+

1

64πn2
− 3

128πn3
+

173

8192πn4
. (18)

Cases n = 1, 2 are true, so we assume n ≥ 3. The sequence

tn = Gn − c0 −
1

π
ψ

(
n+

5

4

)
− 1

64πn2
+

3

128πn3

is strictly decreasing. As

tn − tn−1 =
1

16n
(Γ (2n+ 1))2

(Γ (n+ 1))4
− 1

π
(
n+ 1

4

)

− 1

64πn2
+

3

128πn3
+

1

64π (n− 1)2
− 3

128π (n− 1)3
,

we have to prove that m < 0, where

m (x) = v (x)−
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− ln

(
1

π
(
x+ 1

4

) +
1

64πx2
− 3

128πx3
− 1

64π (x− 1)2
+

3

128π (x− 1)3

)
.

But m is strictly increasing with m (∞) = 0, so m < 0 on [3,∞).

For the right-hand side inequality (18), the sequence

zn = Gn − c0 −
1

π
ψ

(
n+

5

4

)
− 1

64πn2
+

3

128πn3
− 173

8192πn4

is strictly increasing and the argument is similar.�

Recent studies on Landau and Lebesgue constants were performed by
Chen and Choi [7], Granath [10], or Nemes [23].
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In this survey we present our recent results on analysis of gamma
function and related functions. The results obtained are in the the-
ory of asymptotic analysis, approximation of gamma and polygamma
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1 Introduction and Motivation

By a completely monotonic function on an interval I we mean a function
z : I → R which admits derivatives of any order and satisifies the following
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inequalities for every x ∈ I and integer n ≥ 0 :

(−1)n z(n) (x) ≥ 0.

The definition and further properties of other classes of completely mono-
tonic functions (including (almost) completely monotonic, (almost) logarith-
mically completely monotonic, strongly completely monotonic, completely
monotonic of nth order) can be found for example in [6], [7], [15], [16], [29],
or [34].

Completely monotonic functions are of great help in the problem of ap-
proximating the function z itself as well the derivatives z(n). More precisely,
if we take into account that the derivative of z(n) keep constant sign and
consequently the function z(n) is monotone, z(n) (x) lies between z(n) (a) and
z(n) (b) , as x runs between a and b.

Moreover, completely monotone functions involving gamma function pro-
vide sharp bounds for gamma and polygamma functions.

A tool for proving the complete monotonicity of a function is Bernstein-
Widder-Hausdorff theorem (see, e.g., [35, p. 161]) which states that a func-
tion is completely monotonic on (0,∞) if and only if the following integral
representation is valid for every x > 0 :

z (x) =

∫ ∞

0
e−xtdµ (t) . (1)

Here µ is a non-negative measure on [0,∞) such that the integral converges
for all x > 0.

The Euler gamma function is defined by the following formula for every
real x > 0 :

Γ (x) =

∫ ∞

0
tx−1e−tdt,

while the logarithmic derivative of Γ is called digamma (or psi) function,

ψ (x) =
d

dx
(ln Γ (x)) =

Γ′ (x)

Γ (x)
.

Further derivatives ψ′, ψ′′, ψ′′′, ... are called tri-, tetra-, penta-gamma func-
tion, and in general, ψ(n) with n = 1, 2, 3, ... are polygamma functions.

In order to prove the complete monotonicity of a function involving
gamma and polygamma functions on (0,∞) using (1), the following inte-
gral representations are of main help:

1

xr
=

1

Γ (r)

∫ ∞

0
tr−1e−txdt (x > 0, r > 1) (2)
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ψ (x) =

∫ ∞

0

(
e−t

t
− e−xt

1− e−t
)
dt (x > 0)

and

ψ(n) (x) = (−1)n+1
∫ ∞

0

tn

1− e−t e
−txdt (x > 0, n ≥ 1). (3)

For further details, please see [1].

Usually to an approximation formula of the gamma function of type

Γ (x+ 1) ∼ ω (x) (4)

in the sense that the ratio Γ (x+ 1) /ω (x) tends to 1, as x approaches infin-
ity, the following function is attached:

F (x) = ln
Γ (x+ 1)

ω (x)
. (5)

If F (sometimes −F ) is completely monotonic then important results related
to approximation formula (4) can be established. Let us assume for example
that F is completely monotonic on [1,∞), possible on (0,∞) . As F ′ < 0,
the function F is strictly decreasing on [1,∞). Thus F (∞) < F (x) ≤ F (1) ,
which can be rearranged in the form of the following double inequality valid
for every x ∈ [1,∞) :

α · ω (x) < Γ (x+ 1) < β · ω (x) .

Here the constants α = expF (1) and β = expF (∞) = 1 are the best
possible.

Furthermore, we can exploit the monotonicity of F ′ to obtain sharp
bounds for the digamma function. Assuming that ω is derivable, we get

F ′ (x) = ψ (x+ 1)− ω′ (x)

ω (x)
.

But F ′′ > 0, so F ′ is strictly increasing on [1,∞), which can be written
as F ′ (1) ≤ F ′ (x) < F ′ (∞) . The following sharp inequalities hold true for
every real x ∈ [1,∞) :

α′ +
ω′ (x)

ω (x)
≤ ψ (x+ 1) < β′ +

ω′ (x)

ω (x)
,

where α′ = F ′ (1) and β′ = F ′ (∞) .
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These are the first illustration of our method for establishing sharp
bounds for gamma and digamma functions related to approximation for-
mula (4). In a similar manner inequalities for polygamma functions can be
stated using the nth derivative of F.

In conclusion the study of the monotonicity of the function F associated
to an approximation formula (4) is of great importance in the theory of
approximation of gamma, polygamma and other related functions.

2 The Technique

In order to illustrate the technique, we present the results stated in [18].
Undoubtedly the most used formula for approximating large factorials is
Stirling’s formula

Γ (x+ 1) ∼
√

2πx
(x
e

)x
.

A slightly better result was proposed by Burnside (see, e.g. [5]):

Γ (x+ 1) ∼
√

2π

(
x+ 1/2

e

)x+ 1
2

. (6)

It has been proved in [24] that the function

F (x) = ln
Γ (x+ 1)

√
2π
(
x+1/2
e

)x+ 1
2

.

associated to the Burnside formula is completely monotonic.
For sake of completness, we reproduce here a sketch of proof of the above

result stated in [24]. As

F (x) = ln Γ (x+ 1)− ln
√

2π −
(
x+

1

2

)
ln

(
x+

1

2

)
+ x+

1

2
,

we obtain

F ′ (x) = ψ (x+ 1)− ln

(
x+

1

2

)
.

Using the recurrence formula

ψ (x+ 1) = ψ (x) +
1

x
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(see, e.g., [1, p. 258]), we obtain

F ′ (x) = ψ (x) +
1

x
− ln

(
x+

1

2

)
,

then

F ′′ (x) = ψ′′ (x)− 1

x2
− 1

x+ 1
2

.

Using (2) and (3), we deduce that

F ′′ (x) =

∫ ∞

0

te−xt

1− e−tdt−
∫ ∞

0
te−xtdt−

∫ ∞

0
e−(x+ 1

2)tdt,

or

F ′′ (x) =

∫ ∞

0

e−(x+1)t

1− e−t ϕ (t) dt,

where
ϕ (t) = t− e− 1

2
t
(
et − 1

)
.

The function ϕ is strictly decreasing, since ϕ′ (t) = −1
2e
− 1

2
t
(
e

1
2
t − 1

)2
< 0.

For t > 0, we have ϕ (t) < ϕ (0) = 0. According to Bernstein- Widder-
Hausdorff theorem, −F ′′ is strictly completely monotonic. using the defini-
tion, we obtain

(−1)n
(
−F ′′

)(n) ≥ 0,

for every integer n ≥ 0. By replacing (−F ′′)(n) by (−F )n+2 , we deduce

(−1)n F (n) ≥ 0, (7)

for every integer n ≥ 2. In order to finalize our proof, we have to show that
(7) is valid also for n = 1 and n = 0.

In this sense, note that F ′ is strictly decreasing, since F ′′ < 0. But
limx→∞ F ′ (x) = 0, so F ′ (x) > 0 and consequently, F is strictly increasing.
Using the fact that limx→∞ F (x) = 0, we deduce that F < 0. This assures
the veridicity our assertion that −F is strictly completely monotonic.

As applications of the complete monotonicity of −F , the following sharp
bounds for the gamma and digamma function were presented in [24] for
every real x ≥ 1 :

ω ·
√

2π

(
x+ 1

2

e

)x+ 1
2

≤ Γ (x+ 1) <
√

2π

(
x+ 1

2

e

)x+ 1
2

,
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where the constant ω = 2
3
√
3π
e3/2 = 0.97323 · · · is best possible. For every

real x ≥ 1, it holds

ln

(
x+

1

2

)
− 1

x
< ψ (x) ≤ ln

(
x+

1

2

)
− 1

x
+ ζ,

with best possible constant ζ = 1− ln 3
2 − γ = 0.01731 · · · .

The same technique was used in [27] to prove the complete monotonicity
of a class of functions related to the following inequalities

1√
π
(
n+ 1

2

) <
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
<

1√
π
(
n+ 1

4

) , n ≥ 1,

now called Kazarinoff’s inequalities. Please see further details in [4], [8], [9],
[12], [13]. Precisely, the function

Fa (x) = ln Γ (x+ 1)− ln Γ

(
x+

1

2

)
− 1

2
ln (x+ a)

is completely monotonic when a ∈
[
0, 14
]
, while−Fb is completely monotonic

when b ∈
[
1
2 ,∞

)
. The following integral representation is valid

F ′′a (x) =

∫ ∞

0

te−(x+1+a)t

1− e−t ϕa (t) dt,

where ϕa admits the following expansion in power series in t :

ϕa (t) =
∞∑

k=2

wkt
k,

with

wk = ak −
(
a+

1

2

)k
+

1

2
.

It is stated in [27, Lemma 2.1] that wk ≥ 0, if a ∈
[
0, 14
]

and wk ≤ 0, if
a ∈

[
1
2 ,∞

)
, so the previuos assertions on complete montonicity of functions

Fa are now proved. As a consequence, the following inequalities hold true
for every x ≥ 1, √

x+
1

4
<

Γ (x+ 1)

Γ
(
x+ 1

2

) ≤ ω
√
x+

1

4
,

and

µ

√
x+

1

2
≤ Γ (x+ 1)

Γ
(
x+ 1

2

) <
√
x+

1

2
,
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where the constants ω = 4√
5π

= 1.00930 · · · and µ = 2
√
2√

3π
= 0.92132 · · · are

best possible.
It is studied in [19] the following class of approximations for every real

parameter a :

Γ (x+ 1) ∼ νx (a) :=
√

2πee−a
(
x+ a

e

)x+ 1
2

. (8)

This class incorporates Stirling’s formula Γ (x+ 1) ∼ νx (0) , Burnside’s for-
mula Γ (x+ 1) ∼ νx

(
1
2

)
, but also a recent formula discovered by Schuster

[32]

Γ (x+ 1) ∼
√

2πe
− 1√

12

(
x+ 1

2 + 1√
12

e

)x+ 1
2

,

which can be written as

Γ (x+ 1) ∼ νx
(

1

2
+

1√
12

)
.

Schuster’s formula demonstrates the preoccupation of the researchers to find
increasingly better approximations of type (8). It is proven in [26] that the
best approximations possible (8) are Γ (x+ 1) ∼ νx (ω) and Γ (x+ 1) ∼
νx (ζ) , where

ω =
3−
√

3

6
, ζ =

3 +
√

3

6
.

The following result was presented in [18] relative to the functions associated
to (8):

Ga (x) = ln
Γ (x+ 1)

√
2πee−a

(
x+a
e

)x+ 1
2

.

This function Ga is completely monotonic when a ∈ [0, ω] , while −Gb is
completely monotonic when b ∈

[
1
2 , ζ
]
. As a consequence of the complete

monotonicity of Gω and −Gζ , the following double inequalities are valid for
every x ≥ 0 :

√
2πe · e−ω

(
x+ ω

e

)x+1/2

< Γ (x+ 1) ≤ α ·
√

2πe · e−ω
(
x+ ω

e

)x+1/2

,

where α = 1.07204 · · · , and

β ·
√

2πe · e−ζ
(
x+ ζ

e

)x+1/2

< Γ (x+ 1) ≤
√

2πe · e−ζ
(
x+ ζ

e

)x+1/2

,
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where β = 0.98850 · · · . By exploiting the monotonicity of G′ω and −G′ζ ,
the following sharp inequalities on digamma function were presented in [18,
Theorem 2.2]:

ln

(
x+

3−
√

3

6

)
+

√
3

6x+ 3−
√

3
− τ ≤ ψ (x) +

1

x
<

ln

(
x+

3−
√

3

6

)
+

√
3

6x+ 3−
√

3

and

ln

(
x+

3 +
√

3

6

)
−

√
3

6x+ 3 +
√

3
<

ψ (x) +
1

x
≤ ln

(
x+

3 +
√

3

6

)
−

√
3

6x+ 3 +
√

3
+ σ,

where τ = 0.00724 · · · and σ = 0.00269 · · · .
Furthermore using the monotonicity of G′′ω and −G′′ζ , the following sharp

inequalities on trigamma function were estabilshed in [18, Theorem 2.3]:

6

6x+ 3−
√

3
− 6

√
3

(
6x+ 3−

√
3
)2

< ψ′ (x)− 1

x2
≤ 6

6x+ 3−
√

3
− 6

√
3

(
6x+ 3−

√
3
)2 + λ

and

6

6x+ 3 +
√

3
+

6
√

3
(
6x+ 3 +

√
3
)2 − ν ≤ ψ′ (x)− 1

x2
<

6

6x+ 3 +
√

3
+

6
√

3
(
6x+ 3 +

√
3
)2 ,

where λ = 0.01612 · · · and ν = 0.00436 · · · .



Methods and Algorithms for Approximating the Gamma Function II 197

As another example we present the following class of lower and upper
bounds for gamma function:

nn+1e−n
√

2π√
n− α ≤ Γ (n+ 1) <

nn+1e−n
√

2π√
n− β , (9)

where α, β are any real numbers. Sandor and Debnath [31] found (9) with
α = 0, β = 1, while Batir [3] proposed better estimates using α = 1− 2πe−2

and β = 1/6.
Motivated by the fact that the double inequality (9) can be rearranged

as
√

2πn
(n
e

)n( n

n− α

)1/2

≤ n! <
√

2πn
(n
e

)n( n

n− β

)1/2

, (10)

Mortici [21] introduced the class of approximations

Γ (n+ 1) ∼ µn (a, b) :=
√

2πn
(n
e

)n(n+ a

n+ b

)1/2

. (11)

which enclose the previous formulas by Sandor and Debnath and Batir. It is
proven that the most accurate approximation (11) is obtained in a = 1/12,
b = −1/12 case. The corresponding approximation is better than those
arising in (9)-(10). The next comparison table shows the superiority of (11)
over

Γ (n+ 1) ∼ κn :=
√

2πn
(n
e

)n
(

n

n− 1
6

)1/2

,

which is the best approximation among (9)-(10).

n ln (κn/Γ (n+ 1)) ln (µn/Γ (n+ 1))

25 1. 13× 10−5 1. 90× 10−7

50 2. 80× 10−6 2. 37× 10−8

100 6. 97× 10−7 2. 97× 10−9

1000 6. 94× 10−9 2. 97× 10−12

It is considered in [21] the function associated to approximation formula
(11):

G (x) = ln
Γ (x+ 1)

√
2πx

(
x
e

)x (x+ 1
12

x− 1
12

)1/2

and it has been proved that −G is completely monotonic. As a direct con-
sequence of this fact, the following sharp inequalities are valid for every real
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x ≥ 1 :

ω ·
√

2πx
(x
e

)x
(
x+ 1

12

x− 1
12

)1/2

< Γ (x+ 1) <
√

2πx
(x
e

)x
(
x+ 1

12

x− 1
12

)1/2

,

where ω = e
√

11
26π = 0.99754 · · · , and

1

2
(
x+ 1

12

)− 1

2
(
x− 1

12

) < ψ (x)−
(

lnx− 1

2x

)
≤ 1

2
(
x+ 1

12

)− 1

2
(
x− 1

12

)+τ,

with τ = −γ + 167
286 = 0.00670 · · · .

3 Further completely monotone functions

One of the first estimate for the remainder λn in the Stirling formula

n! =
√

2πn
(n
e

)n
eλn

was presented by Robbins [30], who proved

1

12n+ 1
< λn <

1

12n
.

Increasingly better estimates were found by Maria [14], Nanjundiah, [28], or
Shi et al [33]. Representations of the form

Γ (x+ 1) =
√

2π
(x
e

)x
eθ(x)/12x

were introduced in the recent past. Shi et al [33] proved that θ (x) is mono-
tonically increasing on [1,∞). This result was extended by Mortici [22], who
proved that θ decreases monotonically on (0, β) and increases monotonically
on (β,∞) , where β = 0.34142... is the solution of the equation

ln Γ (x+ 1) + xψ (x+ 1)− ln
√

2π − 2x lnx+ x = 0.

Moreover θ is strictly convex on (0,∞) and the function −x−1θ′′′ is com-
pletely monotonic on (0,∞) .
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It has been studied in [20] the remainder w of the Burnside formula (6)

Γ (x+ 1) =
√

2π

(
x+ 1/2

e

)x+1/2

ew(x)

and stated that −w is completely monotonic, in particular w is concave.
Kečkić and Vasić [10] presented the following double inequality

xx−1ey

yy−1ex
≤ Γ (x)

Γ (y)
≤ xx−

1
2 ey

yy−
1
2 ex

, (12)

for all x ≥ y > 1, which can be rewritten as

exΓ (x)

xx−1/2
≤ eyΓ (y)

yy−1/2
and

eyΓ (y)

yy−1
≤ exΓ (x)

xx−1
.

This becomes equivalent to the fact that the function

f (x) = x+ ln Γ (x)−
(
x− 1

2

)
lnx− ln

√
2π

is decreasing and the function

g (x) = x+ ln Γ (x)− (x− 1) lnx

is increasing. It is proved in [23] that the functions f and g′ are completely
monotonic on (0,∞) . As a direct consequence, Kečkić-Vasić inequality (12)
follows and it holds also for every x ≥ y > 0. By using the monotonicity
of f ′ and g′, there are established the following sharp inequalities for every
real x ≥ 1 :

lnx− 1

2x
− τ ≤ ψ (x) < lnx− 1

2x
,

where the constant τ = γ − 1
2 = 0.07721 · · · is the best possible, and for

every real x ≥ 1 :

lnx− 1

x
< ψ (x) ≤ lnx− 1

x
+ σ,

where the constant σ = −γ + 1 = 0.42278 · · · is the best possible.
In 1965, Minc and Sathre [17] have given one of the first estimates of the

expression φ (r) = (r!)1/r and the ratio φ(r + 1)/φ(r) for every real r ≥ 1 :

1 <
φ (r + 1)

φ (r)
< 1 +

1

r
. (13)
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Inequalities involving the function φ (r) are of interest in some branches of
pure and applied mathematics and they have important applications in the
theory of (0, 1)-matrices.

Mortici [25] improved (13) in the sense of the following inequality for
every x ≥ 1 :

Γ (x+ 2)1/(x+1)

Γ (x+ 1)1/x
≥ (4x+ 4)1/(x+1)

(4x)1/x

(
1 +

1

x

)
> 1.

The corresponding function

h (x) = x (x+ 1) ln
xΓ (x+ 1)1/(x+1)

(x+ 1) Γ (x)1/x

is considered and the complete monotonicity on (1,∞) of h′ is established.
In particular h′ is positive, so h is strictly increasing. In consequence, for
every x ≥ 1, we have h (1) ≤ h (x) . As h (1) = − ln 4, we obtain

− ln 4 ≤ x (x+ 1) ln
xΓ (x+ 1)1/(x+1)

(x+ 1) Γ (x)1/x
,

or

Γ (x+ 1)1/(x+1)

Γ (x)1/x
≥ 4

−1
x(x+1)

(
1 +

1

x

)
> 1,

where the constant 4 is best possible. The obtained approximation formula

Γ (x+ 2)1/(x+1)

Γ (x+ 1)1/x
∼ (4x+ 4)1/(x+1)

(4x)1/x

(
1 +

1

x

)
,

is much better than Minc-Sathre. See [25].
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In the present paper, we introduce new subclass STΣ(b, φ) of bi-
univalent functions defined in the open disk. Furthermore, we find
upper bounds for the second and third coefficients for functions in
these new subclass using differential operator.
MSC: 30C45

Keywords: bi-univalent functions, coefficient estimates, starlike function,
convex function, differential operator.

1 Introduction. Definitions And Preliminaries

Let A denote the class of functions f (z) of the form

f (z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, by
S we shall denote the class of functions f ∈ A which are univalent in U.

Since univalent functions are one-to-one, they are invertible and the in-
verse functions need not be defined on the entire unit disk U. However, the

∗Accepted for publication in revised form on April 5-th, 2014
†Presidency College, Chennai-600 005, Tamilnadu, India, pamc9439@yahoo.co.in
‡R.M.K.Engineering College, R.S.M.Nagar, Kavaraipettai-601 206, Tamilnadu, India

gtvenkat79@gmail.com

204



Coefficient bounds for a subclass of Bi-univalent functions 205

famous Koebe one-quarter theorem ensures that the image of the unit disk
U under every function f ∈ A contains a disk of radius 1/4. Thus every
univalent function f has an inverse f−1 satisfying f−1 (f(z)) = z, (z ∈ U)
and f

(
f−1(w)

)
= w,

(
|w| < r0(f), r0(f) ≥ 1

4

)
where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z)
are univalent in U. We let Σ to denote the class of bi-univalent functions in
U given by (1.1). If f(z) is bi-univalent, it must be analytic in the boundary
of the domain and such that it can be continued across the boundary of the
domain so that f−1(z) is defined and analytic throughout |w| < 1. Examples
of functions in the class Σ are

z

1− z ,−log (1− z)

and so on.

The coefficient estimate problem for the class S, known as the Bieberbach
conjecture, is settled by de-Branges [4], who proved that for a function

f (z) = z +

∞∑

n=2

anz
n in the class S, |an| ≤ n, for n = 2, 3, · · · , with equality

only for the rotations of the Koebe function

K0(z) =
z

(1− z)2
.

In 1967, Lewin [9] introduced the class Σ of bi-univalent functions and
showed that |a2| < 1.51 for the functions belonging to Σ. It was earlier
believed that for f ∈ Σ, the bound was |an| < 1 for every n and the ex-
tremal function in the class was z

1−z . E.Netanyahu [11] in 1969, ruined this
conjecture by proving that in the set Σ, max

f∈Σ
|a2| ≤ 4/3. In 1969, Suffridge

[15] gave an example of f ∈ Σ for which a2 = 4/3 and conjectured that
|a2| ≤ 4/3. In 1981, Styer and Wright [14] disproved the conjecture that
|a2| > 4/3. Brannan and Clunie [2] conjectured that |a2| ≤

√
2. Kedzier-

awski [7] in 1985 proved this conjecture for a special case when the function
f and f−1 are starlike functions. Brannan and Clunie [2] conjectured that
|a2| ≤

√
2. Tan [16] in proved that |a2| ≤ 1.485 which is the best known

estimate for functions in the class of bi-univalent functions.

Brannan and Taha [3] introduced certain subclasses of the bi-univalent
function class Σ similar to the familiar subclasses S∗ (α) and C (α) of the
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univalent function class Σ. Recently, Ali et al.[1] extended the results of
Brannan and Taha [3] by generalising their classes using subordination.

An analytic function f is subordinate to an analytic function g, writ-
ten f(z) ≺ g(z), provided there is a Schwarz function w defined on U with
w(0) = 0 and |w(z)| < 1 satisfying f (z) = g (w(z)). Ma and Minda [10],
unified various subclasses of starlike and convex functions for which either

of the quantity
zf ′(z)
f(z)

or 1 +
zf ′′(z)
f ′(z)

is subordinate to a more general super-

ordinate function. For this purpose, they considered an analytic function φ
with positive real part in the unit disk U , φ(0) = 1, φ′(0) > 0 and φ maps U
onto a region starlike with respect to 1 and symmetric with respect to the
real axis. Such a function has a series expansion of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , (B1 > 0). (1.3)

Recently Selvaraj and Karthikeyan [8] defined the following operator
Dm
λ (α1, β1) f : U→ U by

D0
λ(α1; β1)f(z) = f(z) ∗ Gq, s(α1, β1; z),

D1
λ(α1; β1)f(z) = (1− λ)(f(z)∗Gq, s(α1, β1; z))+λ z(f(z)∗Gq, s(α1, β1; z))

′
,

Dm
λ (α1; β1)f(z) = D1

λ(Dm−1
λ (α1; β1)f(z)),

(1.4)
where m ∈ N0, λ ≥ 0.

If f ∈ A, then from (1.4) we may easily deduce that

Dm
λ (α1; β1)f(z) = z +

∞∑

n=2

[
1 + (n− 1)λ

]m (α1)n−1 . . . (αq)n−1

(β1)n−1 . . . (βs)n−1

anz
n

(n− 1)!
.

(1.5)
Special cases of the operator Dm

λ (α1; β1)f includes various other linear oper-
ators which were considered in many earlier work on the subject of analytic
and univalent functions. If we let m = 0 in Dm

λ (α1; β1)f , we have

D0
λ(α1; β1)f(z) = H1

q(α1; β1)f(z)

where H1
q, s(α1; β1) is Dziok-Srivastava operator for functions in A (see [6])

and for q = 2, s = 1 α1 = β1, α2 = 1 and λ = 1, we get the operator
introduced by Salagean([13]). It can be easily verified from the definition of
(1.5),

z (Dm
λ (α1, β1) f (z))′ = (α1 + 1)Dm

λ (α1 + 1, β1) f (z)−α1D
m
λ (α1, β1) f (z) .

(1.6)
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Definition 1.1 Let b be a non-zero complex number. A function f(z)
given by (1.1) is said to be in the class STΣ (b, φ) if the following conditions
are satisfied:

f ∈ Σ and 1 +
1

b

(
Dm+1
λ (α1, β1) f (z)

Dm
λ (α1, β1) f (z)

− 1

)
≺ φ (z) , z ∈ U (1.7)

and 1 +
1

b

(
Dm+1
λ (α1, β1) g (w)

Dm
λ (α1, β1) g (w)

− 1

)
≺ φ (z) , z ∈ U (1.8)

where the function g is given by (1.2).

Definition 1.2 Let b be a non-zero complex number. A function f(z)
given by (1.1) is said to be in the class STΣ (α1, β1, b, φ) if the following
conditions are satisfied:

f ∈ Σ and 1 +
1

b

(
Dm
λ (α1 + 1, β1) f (z)

Dm
λ (α1, β1) f (z)

− 1

)
≺ φ (z) , z ∈ U (1.9)

and 1 +
1

b

(
Dm
λ (α1 + 1, β1) g (w)

Dm
λ (α1, β1) g (w)

− 1

)
≺ φ (w) , w ∈ U, (1.10)

where the function g is given by (1.2).

2 Coefficient estimates

Lemma 2.1 [12] If p ∈ ℘, then |ck| ≤ 2 for each k, where ℘ is the family of
functions p analytic in U for which Rep (z) > 0, p (z) = 1 + c1z+ c2z

2 + · · ·
for z ∈ U.

Theorem 2.2 Let the function f (z) ∈ A be given by (1.1). If f ∈ STΣ (b, φ),
then

|a2| ≤
B1

√
B1 |b|√(

4 (1 + 2λ)m − (1 + λ)2m
)
B2

1bλ+ (B1 −B2)λ2 (1 + λ)2m

(2.1)

and

|a3| ≤
(B1 + |B2 −B1|) |b|

λ
(

4 (1 + 2λ)m − (1 + λ)2m
) .
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Proof. Since f ∈ STΣ (b, φ), there exists two analytic functions r, s : U→ U,
with r(0) = 0 = s(0), such that

1 +
1

b

(
Dm+1
λ (α1, β1) f (z)

Dm
λ (α1, β1) f (z)

− 1

)
= φ (r(z)) (2.2)

and

1 +
1

b

(
Dm+1
λ (α1, β1) g (w)

Dm
λ (α1, β1) g (w)

− 1

)
= φ (s(z)) .

It is also written as

1 +
1

b

(
Dm+1
λ (α1, β1) f (z)−Dm

λ (α1, β1) f (z)

Dm
λ (α1, β1) f (z)

)
= φ (r(z)) and

1 +
1

b

(
Dm+1
λ (α1, β1) g (w)−Dm

λ (α1, β1) g (w)

Dm
λ (α1, β1) g (w)

)
= φ (s(z)) .

(2.3)

Define the functions p and q by

p (z)=
1 + r(z)

1− r(z) =1+p1z+p2z
2+· · · and q (z)=

1 + s(z)

1− s(z) =1+q1z+q2z
2+· · · .

(2.4)
Or equivalently,

r (z) =
p(z)− 1

p(z) + 1
=

1

2

(
p1z +

(
p2 −

p2
1

2

)
z2+

(
p3 +

p1

2

(
p2

1

2
− p2

)
− p1p2

2

)
z3 + · · · (2.5)

and

s (z) =
q(z)− 1

q(z) + 1
=

1

2

(
q1z +

(
q2 −

q2
1

2

)
z2+

(
q3 +

q1

2

(
q2

1

2
− q2

)
− q1q2

2

)
z3 + · · · . (2.6)

It is clear that p and q are analytic in U and p(0) = 1 = q(0). Also p
and q have positive real part in U and hence |pi| ≤ 2 and |qi| ≤ 2. In the
view of (2.3), (2.4)and (2.5), clearly,
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Using (2.5) and (2.6), one can easily verify that

φ

(
p(z)− 1

p(z) + 1

)
= 1 +

B1p1

2
z +

(
B1

2

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1

)
z2 + · · · (2.7)

and

φ

(
q(w)− 1

q(w) + 1

)
= 1 +

B1q1

2
w +

(
B1

2

(
q2 −

q2
1

2

)
+
B2q

2
1

4

)
w2 + · · · . (2.8)

Since f ∈ Σ has the Maclaurin series given by (1.1), computation shows
that its inverse g = f−1 has the expansion given by (1.2). It follows from
(2.6), (2.7) and (2.8) that

(1 + λ)m a2 =
1

2λ
B1p1b, (2.9)

4λ (1 + 2λ)m a3 − λ (1 + λ)2m a2
2 =

1

2
bB1

(
p2 −

1

2
p2

1

)
+

1

4
bB2p

2
1 (2.10)

and

− (1 + λ)m a2 =
1

2λ
B1bq1, (2.11)

λ
(

8λ (1 + 2λ)m − (1 + λ)2m
)
a2

2 − 4λ (1 + 2λ)m a3 =
1

2
bB1

(
q2 −

1

2
q2

1

)

+
1

4
bB2q

2
1. (2.12)

From (2.9) and (2.11), it follows that

p1 = −q1. (2.13)

Now (2.10), (2.12) and (2.13) gives

a2
2 =

B3
1b

2 (p2 + q2)

4
[(

4 (1 + 2λ)m − (1 + λ)2m
)
B2

1bλ+ (B1 −B2)λ2 (1 + λ)2m
] .

(2.14)

Using the fact that |p2| ≤ 2 and |q2| ≤ 2 gives the desired estimate on
|a2|,
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|a2| ≤
B1

√
B1 |b|√(

4 (1 + 2λ)m − (1 + λ)2m
)
B2

1bλ+ (B1 −B2)λ2 (1 + λ)2m

.

From (2.10)-(2.12), gives

a3 =
bB1

2

[
8
(
1 + 2λ)m − (1 + λ)2m

)
p2 + (1 + λ)2mq2

]

8λ [4(1 + 2λ)2m − (1 + λ)2m(1 + 2λ)m]

+
2(1 + 2λ)mp2

1 (B2 −B1) b

8λ [4(1 + 2λ)2m − (1 + λ)2m(1 + 2λ)m]

Using the inequalities |p1| ≤ 2, |p2| ≤ 2 and |q2| ≤ 2 for functions with
positive real part yields the desired estimation of |a3|.

For a choice of φ (z) =
1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, we have the

following corollary.

Corollary 2.3 Let −1 ≤ B < A ≤ 1. If f ∈ STΣ

(
b, 1+Az

1+Bz

)
, then

|a2| ≤
|b| (A−B)√(

4 (1 + 2λ)m − (1 + λ)2m
)

(A−B) bλ+ (1 +B)λ2 (1 + λ)2m

and

|a3| ≤
|A−B| (1 + |1 +B|) |b|

λ
(

4 (1 + 2λ)m − (1 + λ)2m
) .

Theorem 2.4 Let the function f (z) ∈ A be given by (1.1). If
STΣ (α1, β1, b, φ), then

|a2| ≤
(α1 + 1)B1

√
B1 |b|√(

4 (1 + 2λ)m − (1 + λ)2m
)
B2

1b (α1 + 1) + (B1 −B2) (1 + λ)2m

(2.15)

and

|a3| ≤
(α1 + 1) (B1 + |B2 −B1|) |b|(

4 (1 + 2λ)m − (1 + λ)2m
) .
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Proof. Since STΣ (α1, β1, b, φ), there exists two analytic functions r, s : U→
U, with r(0) = 0 = s(0), such that

1 +
1

b

(
Dm
λ (α1 + 1, β1) f (z)

Dm
λ (α1, β1) f (z)

− 1

)
= φ (r(z)) (2.16)

and

1 +
1

b

(
Dm
λ (α1 + 1, β1) g (w)

Dm
λ (α1, β1) g (w)

− 1

)
= φ (s(z)) .

Using (2.3), (2.4), (2.7) and (2.8), one can easily verified that

(1 + λ)m a2 =
(α1 + 1)

2
B1p1b, (2.17)

4 (1 + 2λ)m a3 − (1 + λ)2m a2
2 = (α1 + 1)

[
1

2
bB1

(
p2 −

1

2
p2

1

)
+

1

4
bB2p

2
1

]

(2.18)
and

− (1 + λ)m a2 =
(α1 + 1)

2
B1p1b, (2.19)

(
8 (1 + 2λ)m − (1 + λ)2m

)
a2

2 − 4 (1 + 2λ)m a3 =

= (α1 + 1)

[
1

2
bB1

(
q2 −

1

2
q2

1

)
+

1

4
bB2q

2
1

]
. (2.20)

From (2.17) and (2.19), it follows that

p1 = −q1. (2.21)

Now (2.18), (2.20), (2.21) and using the fact that |p2| ≤ 2 and |q2| ≤ 2,

|a2| ≤
|α1 + 1|B1

√
B1 |b|√(

4 (1 + 2λ)m − (1 + λ)2m
)
B2

1b (α1 + 1) + (B1 −B2) (1 + λ)2m

.

From (2.18)-(2.20), gives

|a3| ≤
|α1 + 1| (B1 + |B2 −B1|) |b|(

4 (1 + 2λ)m − (1 + λ)2m
) .
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OPTIMAL THICKNESS OF A

CYLINDRICAL SHELL∗

Paul Ziemann†

Abstract

In this paper an optimization problem for a cylindrical shell is
discussed. The aim is to look for an optimal thickness of a shell to
minimize the deformation under an applied external force. As a side
condition, the volume of the shell has to stay constant during the opti-
mization process. The deflection is calculated using an approach from
shell theory. The resulting control-to-state operator is investigated an-
alytically and a corresponding optimal control problem is formulated.
Moreover, necessary conditions for an optimal solution are stated and
numerical solutions are presented for different examples.
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1 Introduction

In this paper we discuss an optimization problem in linear elasticity,
particularly in shape optimization. In this field, much research has been
done in the last years. Some few representative books from Sokolowski
[1], Pironneau [2], Haslinger [3] and Delfour [4] should be mentioned here.
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In particular, the book from Neittanmaki, Sprekels and Tiba [5] deals with
similar problems, though they are using a different model for calculating the
deformation. A related problem is also investigated in a paper by Nestler [6],
where a simplified (rotational symmetric) case has been handled. That paper
was inspired by works from Lepik, Lepikult, Lellep and Schmidt [7, 8, 9, 10].

The task is to look for an optimal thickness of a cylindrical shell to min-
imize the deformation under an applied external force. In this paper, the
stationary case with a loading applied on the shell’s midsurface is treated.
As an additional restriction, the volume of the shell has to stay constant
during the optimization process. Moreover, the thickness should only vary
between specified bounds. The deflection is modelled using the “basic shell
model” from Chapelle and Bathe [11] which makes use of the Hypothesis
from Mindlin and Reissner. As a main result it is shown, that the resulting
control-to-state operator is continuous and Gâteaux-differentiable. Followed
by this, a corresponding optimal control problem is formulated and neces-
sary conditions for an optimal solution are deduced. Necessary conditions
for similar problems can be found e.g. for the rotational symmetric case in
[6] and for elastic beams with piecewise constant thickness in [12]; those re-
strictions are not necessary in this paper. We also investigate the particular
numerical implementation of the problem which makes use of an analytically
calculated formula for the objective gradient. Finally, numerical solutions
for different examples are presented and investigated in relation to the ful-
fillment of the necessary conditions and convergence properties on refined
grids.

2 Geometrical description of the shell

For the geometrical description, we first need a chart describing the
midsurface of the shell. Let ω ⊂ R2 be open and connected and ϕ : ω →
R3 be an injective mapping with ϕ ∈ W 2,∞(ω). We call S = ϕ(ω) the
midsurface of the shell. We assume that the vectors aα := ∂ϕ

∂ξα , α = 1, 2
are linearly independent and additionally consider an orthonormal vector
a3 := a1×a2

∥a1×a2∥ . We call a1, a2 a covariant basis of the tangent plane of

the midsurface and denote the corresponding contravariant basis by a1, a2.
Moreover, denote by aαβ := aα · aβ, α, β = 1, 2 the covariant components of
the first fundamental form.

In our particular case involving a cylindrical shell, the set ω can be
chosen as ω = {(0, L)×(ψa, ψb)} and the mapping ϕ is defined as ϕ(ξ1, ξ2) =
(ξ1, R cos ξ2, R sin ξ2), where R is the radius of the shell.
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We introduce t : S → R+, t ∈ C0,1(S) as the thickness of the shell and
suppress the parametrization ϕ in t ◦ ϕ : ω → R+ when the context is clear.
Let us define the 3D-reference domain

Ω(t) :=

{
(ξ1, ξ2, ξ3) ∈ R3 | (ξ1, ξ2) ∈ ω, ξ3 ∈

(−t(ξ1, ξ2)
2

,
t(ξ1, ξ2)

2

)}
(1)

together with the mapping

Φ(t) : Ω(t) → R3, Φ(t)(ξ
1, ξ2, ξ3) = ϕ(ξ1, ξ2) + ξ3a3. (2)

Note that Φ(t) depends on the parameter t only via its domain, but not on
the right hand side. So the thickness parameter is surpressed for Φ and the
derived geometrical quantities in the following text.

We call B(t) := Φ(Ω(t)) the shell body, see e.g. figure 1. Let us denote
the local covariant and contravariant basis with gi and gi, i = 1, 2, 3 and the
covariant and contravariant components of the metric tensor with gij = gi·gj ,
gij = gi · gj , i, j = 1, 2, 3, resp. Furthermore we assume t(ξ1, ξ2) < 2R
which is satisfied in general, since for any shell model one assumes that the
thickness is much smaller than the principal radii of curvature. In our case,
this means t(ξ1, ξ2) ≪ R. Back to our problem, we get

B(t) =








ξ1

(R+ ξ3) cos(ξ2)
(R+ ξ3) sin(ξ2)


 | (ξ1, ξ2) ∈ ω, ξ3 ∈

(−t(ξ1, ξ2)
2

,
t(ξ1, ξ2)

2

)

(3)

together with the contravariant basis

g1 =




1
0
0


 , g2 =

1

R+ ξ3




0
− sin(ξ2)
cos(ξ2)


 , g3 =




0
cos(ξ2)
sin(ξ2)


 . (4)

The surface and volume element for our shell are given by

dS =
√
a dξ1 dξ2, a = det(aαβ) = R2

dV =
√
g dξ1 dξ2 dξ3, g = det(gmn) =

√
a(1 + ξ3

R ).
(5)

3 Modeling the displacement

We consider a small displacement U : B(t) → R3 of the shell body.
For modeling we use the Reissner-Mindlin kinematical assumptions which
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Figure 1: Cylindrical shell with non-constant thickness

state that normals to the midsurface remain straight and unstretched during
deformation. This leads to the displacement ansatz

U(ξ1, ξ2, ξ3) = u(ξ1, ξ2) + ξ3θ(ξ1, ξ2) (6)

with u = u1a
1 + u2a

2 + u3a3 describing an infinitesimal displacement of
all points on a line normal to the midsurface in ϕ(ξ1, ξ2) and θ = θ1a

1 +
θ2a

2 representing a rotation vector. We introduce the space of admissible
displacements

V :=
{
(u, θ) | (u1, u2) ∈ H1(S)2, u3 ∈ H1(S), θ ∈ H1(S)2

}
∩ BC (7)

where H1(S) and H1(S)2 are Sobolev-spaces for scalar functions and first
order tensors on the midsurface, resp. Again, we suppress the parametriza-
tion in u ◦ ϕ and θ ◦ ϕ defined on ω when the meaning is clear. Let us
assume for the boundary conditions BC that the shell body is softclamped
over the whole boundary ∂S, i.e. u|∂S = 0. We next consider the linear
3D-Green-Lagrange-strain tensor which is given by

eij =
1

2
(gi · U ,j + gj · U ,i), i, j = 1, 2, 3, (8)

where U ,i means the partial derivative of U w.r.t. ξi. By Hooke’s Law, we
get for the components of the stress tensor

σij =

3∑

k,l=1

H ijklekl (9)
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with H ijkl = L̃1g
ijgkl + L̃2(g

ikgjl + gilgjk) and L̃1, L̃2 being the Lamé
constants. Using the assumption that the normal stress σ33 is zero this
simplifies to

σαβ =
2∑

λ,µ=1

Cαβλµeλµ, C
αβλµ = E

2(1+ν)

(
gαλgβµ + gαµgβλ + 2ν

1−ν g
αβgλµ

)
,

σα3 =

2∑

λ=1

1

2
Dαλeλ3, Dαλ = 2E

1+ν g
αλ, α, β = 1, 2,

(10)
where E is Young’s modulus and ν is Poisson’s ratio. Calculating these
quantities for our original problem leads to

e :=




e11

e22√
2e12


 =




u1,1 + ξ3θ1,1

u2,2 +Ru3 + ξ3
(
θ2,2 + 1

Ru2,2 + u3

)
+ (ξ3)2

R θ2,2

1√
2
(u1,2 + u2,1) + ξ3

√
2

(
θ1,2 + θ2,1 + 1

Ru2,1

)
+ (ξ3)2√

2R
θ2,1




ζ :=

(
e13

e23

)
= 1

2

(
θ1 + u3,1

θ2 + u3,2 − 1
Ru2

)
.

(11)
This special vector notation is chosen according to [13] and allows us to
rewrite the equilibrium conditions in an elegant way for implementation
purposes. Introducing the two-dimensional Lamé-constants

L1 = E
ν

(1 + ν)(1 − ν)
, L2 =

E

2(1 + ν)
(12)

we get for the stress tensor and its matrix representation

C :=




L1 + 2L2
1

(R+ξ3)2
L1 0

1
(R+ξ3)2

L1
1

(R+ξ3)4
(L1 + 2L2) 0

0 0 2
(R+ξ3)2

L2




D :=


4L2 0

0 4
(R+ξ3)2

L2


 .

(13)

Now consider a force f ∈ L2(S) which is applied orthogonal to the mid-
surface and formulate the equilibrium conditions for the stationary case
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according to the basic shell model from Chapelle and Bathe [11]: Find
(u, θ) ∈ V with

∫

Ω(t)

2∑

α,β,λ,µ=1

Cαβλµeαβ(u, θ)eλµ(v, ψ) +Dαλeα3(u, θ)eλ3(v, ψ) dV

=

∫

ω
fv3 dS

(14)

for all (v, ψ) ∈ V. We define the bilinear form A(t)(u, θ; v, ψ) for the left
hand side and the linear form F (v, ψ) for the right hand side of (14). The
bilinear form can be rewritten using matrix-vector-notation and symmetry
properties of the strain and stress tensor as

A(t)(u, θ; v, ψ) =

∫

Ω(t)

eTCe + ζTDζ dV. (15)

4 Analysis of the model equations

We know from [11] that A(t) is coercive and continuous for fixed t, as
well as F is continuous. According to the Lax-Milgram-Lemma there is a
unique solution to (14). Therefore the control-to-state operator G which
maps the control t to the corresponding displacement (u, θ) is well-defined.
Let us define the set

Ureg := {t ∈ C0,1(S) | 0 < tmin ≤ t(ξ1, ξ2) ≤ tmax < 2R in S} (16)

which is a closed subset of C0,1(S). We now want to investigate the conti-
nuity of G : Ureg → V.

Lemma 1 For all t ∈ Ureg the bilinear forms A(t) have a common coercivity
constant, i.e.

A(t)(u, θ;u, θ) ≥ c ∥(u, θ)∥2
V ∀ (u, θ) ∈ V. (17)

Proof. The proof can easily be derived from the original proof of coercivity
in [11].

2

We next consider a sequence tn ∈ Ureg that converges strongly to t̄ ∈ Ureg

w.r.t. to ∥t∥C0,1(S) = ∥t∥∞ + Lip(t) and denote the corresponding sequence
of states by yn := (un, θn) := G(tn). Using the above Lemma we see that

c ∥(un, θn)∥2
V ≤ A(tn)(un, θn;un, θn) = F (un, θn) ≤ ∥f∥L2(S) ∥(un, θn)∥V ,

(18)
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i.e. the sequence yn is bounded. Hence there is a weakly convergent subse-
quence, also denoted by yn, with weak limit ȳ ∈ V.

Lemma 2 The weak limit ȳ is solution of (14) with thickness t̄.

Proof. We first find an alternative form for A(t), namely

A(t)(u, θ; v, ψ) =

∫

Ω(tmax)

3∑

i,j,k,l=1

H ijkleij(u, θ)ekl(v, ψ)χ(t) dV (19)

with

χ(t)(ξ
1, ξ2, ξ3) :=

{
1, if − t(ξ1,ξ2)

2 < ξ3 < t(ξ1,ξ2)
2

0, otherwise
. (20)

This can be done since the integrand does not explicitly depend on t and
χ(t) is the characteristic function for Ω(t). Another expression in terms of
the L2(B(tmax)) scalar product for second order tensors is

A(t)(u, θ; v, ψ) =

∫

Ω(tmax)

⟨σ(v, ψ)χ(t), e(u, θ)⟩ dV

= ⟨σ(v, ψ)χ(t), e(u, θ)⟩L2(B(tmax))
,

(21)

where σ(v, ψ)χ(t) has components

(σ(v, ψ)χ(t))
ij = σ(v, ψ)ijχ(t). (22)

We have σ(v, ψ)χ(tn) → σ(v, ψ)χ(t̄) in L2(B(tmax)) for fixed (v, ψ) ∈ V,
because

∥∥σ(v, ψ)χ(tn) − σ(v, ψ)χ(t̄)

∥∥2

L2(Btmax )

≤
3∑

i,j,k,l=1

∣∣∣∣∣

∫

Ω(tmax)

gikgjlσ
ij(v, ψ)σkl(v, ψ)(χ(tn) − χ(t̄)) dV

∣∣∣∣∣ .
(23)

It holds χ(tn) − χ(t̄) → 0 pointwise a.e., so we can conclude

gikgjlσ
ij(v, ψ)σkl(v, ψ)(χ(tn) − χ(t̄)) → 0 pointwise a.e. (24)

Furthermore |gikgjlσ
ij(v, ψ)σkl(v, ψ)χ(tmax)| is an integrable majorant and

we get the convergence of the right hand side from (23) to 0. From (un, θn) ⇀
(ū, θ̄) in V it follows that all components and covariant derivatives converge
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weakly to the corresponding limit in L2(S), and so e(un, θn) ⇀ e(ū, θ̄) in
L2(B(tmax)). We get

⟨σ(v, ψ)χ(tn), e(un, θn)⟩L2(B(tmax))
→ ⟨σ(v, ψ)χ(t̄), e(ū, θ̄)⟩L2(B(tmax))

, (25)

and therefore F (v, ψ) = lim
n→∞

A(tn)(un, θn; v, ψ) = A(t̄)(ū, θ̄; v, ψ).

2

From the uniqueness of the limit (ū, θ̄) we conclude that the whole se-
quence converges weakly.

Theorem 1 The convergence of (un, θn) to (ū, θ̄) is also strong. Hence the
operator G : Ureg → V is continuous.

Proof. It holds for (v, ψ) ∈ V

0 = lim
n→∞

(
A(tn)(un − ū; θn − θ̄; v, ψ) +A(tn)(ū, θ̄; v, ψ) −A(t̄)(ū, θ̄; v, ψ)

)
.

(26)
We now take (v, ψ) := (un − ū, θn − θ̄) and get for the last two terms of (26)

lim
n→∞

(
A(tn)(ū, θ̄;un − ū, θn − θ̄) −A(t̄)(ū, θ̄;un − ū, θn − θ̄)

)
= 0, (27)

because
∣∣A(tn)(ū, θ̄;un − ū, θn − θ̄) −A(t̄)(ū, θ̄;un − ū, θn − θ̄)

∣∣
≤
∣∣∣⟨σ(ū, θ̄)(χ(tn) − χ(t̄)), e(un − ū, θn − θ̄)⟩L2(B(tmax))

∣∣∣ . (28)

Analog to the proof of the above Lemma we can show

σ(ū, θ̄)(χ(tn) − χ(t̄)) → 0 in L2(B(tmax))

e(un − ū, θn − θ̄) ⇀ 0 in L2(B(tmax)).
(29)

Both statements yield the convergence of the last term from (28) to 0.

From (26) it follows

0 = lim
n→∞

A(tn)(un−ū, θn− θ̄;un−ū, θn− θ̄) ≥ lim
n→∞

c
∥∥(un − ū, θn − θ̄)

∥∥2

V
≥ 0

(30)
and therefore the strong convergence (un, θn) → (ū, θ̄) in V. 2

Theorem 2 The control-to-state-operator G : Ureg → V is Gâteaux-diffe-
rentiable. For a fixed point t ∈ Ureg with state (u(t), θ(t)) and a direction
q ∈ C0,1(S) with t+λq ∈ Ureg for all sufficiently small λ ≥ 0 it holds G′(t)q =
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(r, ρ), where (r, ρ) is the (unique) solution to the variational problem: Find
(r, ρ) in V such that

A(t)(r, ρ; v, ψ) = Zq(v, ψ) (31)

holds for all (v, ψ) ∈ V where the linear form Zq is given by

Zq(v, ψ) = −
∫

ω

∑

ξ3
i ∈{± t

2
}

([
⟨σ(v, ψ), e(u(t), θ(t))⟩

(
1 +

ξ3

R

)]

ξ3=ξ3
i

)
q

2
dS.

(32)

Proof. Consider a direction q ∈ C0,1(S), 0 ≤ λ ∈ R as well as t ∈ Ureg like
in the theorem statement. For the solutions (u(t+λq), θ(t+λq)) and u(t), θ(t) of
(14) to the thicknesses t and t+ λq, resp. it holds

A(t)(u(t), θ(t); v, ψ) = F (v, ψ)

A(t+λq)(u(t+λq), θ(t+λq); v, ψ) = F (v, ψ)
(33)

for all (v, ψ) in V. It follows

0 =
1

λ

[
A(t+λq)(u(t+λq), θ(t+λq); v, ψ) −A(t)(u(t), θ(t); v, ψ)

]

=

∫

Ω(tmax)

⟨σ(v, ψ),
e(u(t+λq), θ(t+λq)) − e(u(t), θ(t))

λ
⟩χ(t) dV

+

∫

Ω(tmax)

⟨σ(v, ψ), e(u(t+λq), θ(t+λq))⟩
χ(t+λq) − χ(t)

λ
dV.

(34)

For the last summand from equation (34) the mapping Zλ : V × V → R,

Zλ(u, θ; v, ψ) :=

∫

Ω(tmax)

⟨σ(v, ψ), e(u, θ)⟩
χ(t+λq) − χ(t)

λ
dV (35)

is defined.

Lemma 3 The limit

− lim
λ→0

Zλ(u(t+λq), θ(t+λq); v, ψ) =: Zq(v, ψ) (36)

exists and is in V∗.

Proof. It holds that Zλ can be estimated for fixed λ, because

|Zλ(u, θ; v, ψ)| ≤ 1

λ

∫

Ω(tmax)

|⟨σ(v, ψ), e(u, θ)⟩| dV ≤ 1

λ
C ∥(v, ψ)∥V ∥(u, θ)∥V .

(37)
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The last inequality comes from the boundedness of A(tmax).
We now want to determine the pointwise limit

lim
λ→0

Zλ(u, θ; v, ψ). (38)

At first we consider the innermost integral by defining z : S → R,

z :=

∫ tmax
2

− tmax
2

⟨σ(v, ψ), e(u, θ)⟩
χ(t+λq) − χ(t)

λ

√
g dξ3. (39)

It holds a.e. in S

|z(ξ1, ξ2)| ≤ b(ξ1, ξ2)

∫ tmax
2

− tmax
2

∣∣∣∣
χ(t+λq) − χ(t)

λ

∣∣∣∣ dξ1 = b(ξ1, ξ2)|q(ξ1, ξ2)| (40)

where b ∈ L1(S) because of the boundedness of H ijkl and the polynomial
dependence of eij and

√
g in ξ3. So there is an integrable majorant and we

can write

lim
λ→0

Zλ(u, θ; v, ψ) = lim
λ→0

∫

ω

∫ tmax
2

− tmax
2

⟨σ(v, ψ), e(u, θ)⟩
χ(t+λq) − χ(t)

λ
dV

=

∫

ω
lim
λ→0

∫ tmax
2

− tmax
2

⟨σ(v, ψ), e(u, θ)⟩
χ(t+λq) − χ(t)

λ
(1 +

ξ3

R
) dξ3 dS.

(41)
Now we investigate the limit

lim
λ→0

∫ tmax
2

− tmax
2

f(ξ3)
χ(t+λq) − χ(t)

λ
dξ3

= lim
λ→ 0

1

λ

[∫ (t+λq)
2

− (t+λq)
2

f(ξ3) dξ3 −
∫ t

2

− t
2

f(ξ3) dξ3

]
.

(42)

for a continuous function f ∈ C([− tmax
2 , tmax

2 ]). This simplifies to the deriva-
tive of the integral bounds with respect to λ at λ = 0 which evaluates
according to Leibniz’s formula to

(
f

(
t

2

)
+ f

(
− t

2

))
q

2
. (43)

Therefore, we get

lim
λ→0

Zλ(u, θ; v, ψ) =

∫

ω

∑

ξ3
i ∈{± t

2
}

([
⟨σ(v, ψ), e(u, θ)⟩(1 +

ξ3

R
)

]

ξ3=ξ3
i

)
q

2
dS.

(44)
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Because of the convergence for fixed (u, θ) and (v, ψ), the mappings Zλ are
uniformly bounded by the Banach-Steinhaus theorem, i.e.

Zλ(u, θ; v, ψ) ≤ C ∥(u, θ)∥V ∥(v, ψ)∥V . (45)

Now we want to determine for fixed thickness t and direction q

lim
λ→0

Zλ(u(t+λq), θ(t+λq); v, ψ). (46)

It holds

|Zλ(u(t+λq), θ(t+λq); v, ψ) − Z(u(t), θ(t); v, ψ)|
≤ |Zλ(u(t+λq) − u(t), θ(t+λq) − θ(t); v, ψ)| + |(Zλ − Z)(u(t), θ(t); v, ψ)|
≤ C

∥∥(u(t+λq) − u(t), θ(t+λq) − θ(t))
∥∥
V

∥(v, ψ)∥V

+ |(Zλ − Z)(u(t), θ(t); v, ψ)|
→ 0, λ → 0

(47)
Since (u(t), θ(t)) is fixed, we write Z(v, ψ) instead of Z(u(t), θ(t); v, ψ) and
consider from now on Z as a mapping V → R. Hence we get

lim
λ→0

Zλ(u(t+λq), θ(t+λq); v, ψ) = Z(v, ψ) (48)

with Z ∈ V∗. To indicate the dependence from the initially chosen q, we
finally define

Zq(v, ψ) := −Z(v, ψ) (49)

and we get the linear form Zq(v, ψ) ∈ V∗.
2

Back to the proof of theorem 2 we again consider equation (34). Because
of the linearity of eij it follows

∫

Ω(tmax)

⟨σ(v, ψ),
e(u(t+λq), θ(t+λq)) − e(u(t), θ(t))

λ
⟩χ(t) dV

= A(t)

(
(u(t+λq), θ(t+λq)) − (u(t), θ(t))

λ
; v, ψ

)
.

(50)

By taking the limit in (34) and using the continuity of A(t) we get

A(t)

(
lim
λ→0

(u(t+λq), θ(t+λq)) − (u(t), θ(t))

λ
; v, ψ

)
= Zq(v, ψ) (51)
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for all (v, ψ) ∈ V. Now we insert (v, ψ) =
(u(t+λq),θ(t+λq))−(u(t),θ(t))

λ in this
equation. This yields

c

∥∥∥∥
(u(t+λq), θ(t+λq)) − (u(t), θ(t))

λ

∥∥∥∥
2

V

≤ A(t)

(
(u(t+λq),θ(t+λq))−(u(t),θ(t))

λ ;
(u(t+λq),θ(t+λq))−(u(t),θ(t))

λ

)

= Zq

(
(u(t+λq),θ(t+λq)))−(u(t),θ(t))

λ

)

≤ C

∥∥∥∥
(u(t+λq), θ(t+λq)) − (u(t), θ(t))

λ

∥∥∥∥
V

(52)

and we see that the sequence
(u(t+λq),θ(t+λq))−(u(t),θ(t))

λ is bounded. Hence,
there is a subsequence λn → 0 such that

(u(t+λnq), θ(t+λnq)) − (u(t), θ(t))

λn
→ (r, ρ), λn → 0 (53)

weakly in V. Passage to the limit in (51) leads to the variational equation:
Find (r, ρ) ∈ V, such that

A(t)(r, ρ; v, ψ) = Zq(v, ψ) (54)

for all (v, ψ) ∈ V. From the Lax-Milgram-Lemma we know that this equa-
tion has a unique solution, so the whole sequence converges to (r, ρ) for
λ → 0.

2

5 Optimization problem

In this section, the actual optimization problem shall be discussed. In our
case the minimization uses the compliance functional, where the deformation
is weighted with the incoming force. We state the optimization problem as
follows:

min
t∈C0,1(S),(u,θ)∈V

J(u, θ; t) := F (u, θ) +
λ

2
∥t∥2

H1(S)

s.t. : A(t)(u, θ; v, ψ) = F (v, ψ) ∀ (v, ψ) ∈ V

tmin ≤ t(ξ1, ξ2) ≤ tmax in S∫

ω
t dS = C

(55)

The constant C represents the volume of the shell and tmin, tmax are the lower
and upper bound for the thickness, resp. The introduction of a regularization
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term was essential for the quality of the numeric solutions. Additionally, we
introduce the set

Uad := {t ∈ C0,1(S) | tmin ≤ t(ξ1, ξ2) ≤ tmax in S,

∫

ω
t dS = C} ⊂ Ureg.

(56)
Note that the set Uad is convex, closed and bounded. By using the control-
to-state operator G we can define the reduced objective functional Js(t) :=
J(G(t); t) which we will use in this section. The problem (55) can be rewrit-
ten in the form

min
t∈Uad

Js(t) = F (G(t)) +
λ

2
∥t∥2

H1(S) (57)

Theorem 3 Let the set of admissible thicknesses be restricted to

UM
ad := {t ∈ Uad | Lip(t) < M} (58)

for fixed M > 0. Then the problem (57) has at least one solution.

Proof. We know from the Arzela-Ascoli theorem that UM
ad is a closed se-

quential compact subset of C(ω̄). Moreover, the objective Js is a composi-
tion of continuous mappings. Therefore a minimum exists by the Weierstrass
theorem.

2

The aim in this section is to derive necessary conditions for an (locally)
optimal solution. As a further result we will also get an expression for the
directional derivatives of the objective which is very useful for later numerical
calculations. We first define the adjoint state as the solution to:

Find (p, η) ∈ V, such that

A(t)(p, η; v, ψ) = ∇1J(u, θ; t)(v, ψ) (59)

holds for all (v, ψ) ∈ V, where ∇1J(u0, θ0; t0) denotes the Fréchet-derivative
of J with respect to (u, θ) at the point (u0, θ0; t0). We note that because of
∇1J(u0, θ0; t0)(v, ψ) = F (v, ψ) in our case the adjoint state is equal to the
corresponding original state (u(t), θ(t)).

Theorem 4 The directional derivative of the reduced objective Js at point
t in direction q is given by

J ′
s(t)q = Zq(u(t), θ(t)) + λ⟨t, q⟩H1(S) = Zq(G(t)) + λ⟨t, q⟩H1(S). (60)
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Proof. The proof is straightforward by using the chain rule and symmetry
of A(t) and can be found e.g. in [5]. The resulting expression then simplifies
because of ∇2J(u0, θ0; t0)q = λ⟨t0, q⟩H1(S) and the equality of adjoint and
original state.

2

With the help of the directional derivative (60) of the reduced objective
we can state necessary conditions for a (locally) optimal solution:

Corollary 1 Let t∗ ∈ Uad be a (locally) optimal solution for the problem
(55) with corresponding state (u(t∗), θ(t∗)). Then it holds

J ′
s(t

∗)(q − t∗) = Z(q−t∗)(u(t∗), θ(t∗)) + λ⟨t∗, q − t∗⟩H1(S) ≥ 0 (61)

for all directions q ∈ Uad.

Note, that we need the convexity of Uad for this statement.

6 Numerical implementation

For the numerical solution of the optimization problem a Fortran pro-
gram was written. The state equation is solved using standard FEM-methods.
We use an approach with general shell elements based on biquadratic 9-node
Lagrange elements that can be found in [11] or [14]. The finite element dis-
placements are thus given by

Vh =
n∑

i=1

hi(ξ
1, ξ2)(v(i) + ξ3η(i)), η(i) · a(i)

3 = 0 (62)

where v(i) = (v
(i)
1 , v

(i)
2 , v

(i)
3 )T , η(i) = (η

(i)
1 , η

(i)
2 , η

(i)
3 )T , t(i) and a

(i)
3 denote the

translational and rotational displacement components in Cartesian coordi-
nates, the thickness and the unit normal vector at node i, respectively. The
hi are chosen as the shape functions arising from biquadratic ansatz func-
tions λj , j = 1, . . . , 9 on the reference element. In local element coordinates,
this reads

Vh|E =

9∑

j=1

λj(r, s)(v
(j) + z

t(i)

2
η(i)). (63)

As in (7) we divide into translational and rotational components and con-
sider the finite element displacement space

Vh := {(vh, ηh) | vh =
n∑

i=1

hi(ξ
1, ξ2)v(i), ηh = π(

n∑

i=1

hi(ξ
1, ξ2)η(i)),

η(i) · a(i)
3 = 0} ∩ BC,

(64)
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where π denotes the projection operator onto the tangential plane at point
(ξ1, ξ2) ∈ S and BC imposes appropriate boundary conditions on the dis-
placements. Accordingly, the nodal thicknesses t(i) are interpolated using
the shape functions hi which leads to th =

∑n
i=1 hit

(i). The strain-vector e is
calculated using strain-displacement matrices arising from (11). The matri-
ces C and D are calculated using (13) and the value of the discretized bilin-
ear form A(th)(uh, θh; vh, ηh) is obtained using (15) together with Gaussian
quadrature. Accordingly, the discretized linear form Fh(vh, ηh) is calculated.
We now have to solve: Find (uh, θh) ∈ Vh, such that

A(th)(uh, θh; vh, ψh) = Fh(vh, ψh) for all (vh, ψh) ∈ Vh. (65)

Let the mapping Gh : Rn → Vh, t⃗ 7→ (uh, θh) which maps the vector of the
nodal thicknesses t⃗ via the function th to the solution of (65) be defined.
Finally, the volume constraint is discretized using Gaussian quadrature for
th over S. We can now state the finite dimensional optimization problem

min
t⃗∈Rn

Jh(⃗t) = Fh(Gh(⃗t))

s.t. : Bht⃗ = C

t⃗min ≤ t⃗ ≤ t⃗max

(66)

where the first constraint represents the volume condition and the second
one the pointwise bounds on the thickness.

The linear system arising from (65) is solved using a combination of
direct methods (Pardiso solver, see e.g. [15]) and the pcg-method. Namely,
the system is solved directly once at the beginning of an iteration of the
optimizer, while in the following line search steps the pcg-method is used. As
a preconditioner, the LU-factorization obtained from the direct solution does
very good work. This combination allows us to benefit from the advantages
of both direct and indirect methods.

The actual optimization is done with IpOpt, an Interior-Point algorithm
for Large-Scale nonlinear optimization. Here, the expression obtained in (60)
for the directional derivative of the objective is used to calculate the gradient
of the discrete objective which depends only on the nodal thicknesses. This
reduces the running time of the optimizer and raises the accuracy of the
solution considerably. The discrete gradient is calculated by evaluating the
expression

[∇Jh(⃗t)]i = Zhi
(Gh(⃗t)) + λ⟨th, hi⟩H1(S) (67)

where we go through all shape functions hi.
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Moreover, we can perform an “optimality test” using equation (61). For
a computed solution t⃗∗ this is done by checking

min
t∈Uad

J ′
s(t

∗)t ?
= J ′

s(t
∗)t∗, (68)

where the optimization problem can be brought into the discrete form

min
q∈Rn

∇Jh(⃗t∗) · q
s.t. : Bhq⃗ = C

t⃗min ≤ q⃗ ≤ t⃗max.

(69)

This is a standard linear program with solution q⃗∗. In general, our numerical
solution t⃗∗ will not be optimal, so there will be a difference ∇Jh(⃗t∗) · (q⃗∗ −
t⃗∗) = −ε < 0, where ε is an indicator for the precision of t⃗∗.

7 Examples

We discuss a part of a tube where different forces are applied on the
midsurface. For this, we consider the domain ω = (0, 1) × (0, π

2 ) together
with ϕ(ξ1, ξ2) = (ξ1, cos(ξ2), sin(ξ2)) to describe the midsurface. We choose
E = 210 and ν = 0.3 for the material parameters. The minimal and maximal
thickness as well as the volume of the shell are chosen as tmin = 0.05 and
tmax = 0.15 and C = π

20 , respectively. This allows us to start with a constant
thickness of 0.1 as a feasible initial solution. The regularization parameter λ
is chosen in a way that the regularization term is about two to three orders
of magnitude smaller than the objective value.

Example 1 We choose a rotational symmetric force f(ξ1, ξ2) = ξ1(1− ξ1)
which is also symmetric in ξ1. The corresponding optimal thickness profile
over the domain ω is shown in figure 2. We see that the thickness follows
approximately the profile of the force and is in particular symmetric in both
ξ1 and ξ2. The calculation started on a coarse grid and was refined iteratively
on finer grids. In the table from figure 2 the differences between the solution
on a very fine grid with step-size of 2−8 in ξ1-direction (“exact” solution)
and on coarser grids are listed, taken in the max-norm on the particular
grid. The step size in ξ1-direction for each grid is given in the first column.
The step-size in ξ2-direction is chosen to have the same number of nodes.
This shows good convergence properties for the thickness when the grid is
refined. Moreover, we can see by solution of (69), that the parameter ε in
the optimality test can be chosen as 4.5 ·10−7 which is an indicator for good
accuracy of the computed solution t∗h.
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t(
ξ
1
,
ξ
2
)

ξ2 ξ1
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
0.05

0.075

0.1

0.125

0.15

step − size hξ1

∥∥t⃗ex − t⃗h
∥∥

∞
2−4 1.16 · 10−2

2−5 1.23 · 10−3

2−6 9.92 · 10−4

2−7 6.87 · 10−4

Figure 2: Results for example 1, loading f(ξ1, ξ2) = ξ1(1 − ξ1)

Example 2 We choose a periodic force f(ξ1, ξ2) = sin(2πξ1). The corre-
sponding optimal thickness profile over the domain ω is shown in figure 3.
Again, the thickness follows approximately the magnitude of the incoming
force. It is noticeable for the first two examples that the optimal thickness
does depend on ξ2 while the incoming force does not. This could be due to
the fact that we consider a part of a tube rather than the full tube. The
table from figure 3 again shows good convergence properties for smaller step
sizes on the grid, though there is a slightly bigger error than in the first
example. The parameter ε from (69) can be chosen as 2.37 · 10−6 which
indicates good accuracy of the computed solution.

Example 3 In this example we choose an exponential load f(ξ1, ξ2) =
(exp(ξ1) − 1)(exp(ξ2) − 1) which is also asymmetric in ξ1 and ξ2. The cor-
responding optimal thickness profile over the domain ω is shown in figure
4. We see that the thickness is maximal in the region with largest incoming
force. But also the two elevations with peaks at (0.578, 0) and (0, 0.626)
should be mentioned. The values in the table from figure 4 show the conver-
gence properties on finer grids and the parameter ε from (69) can be chosen
as 6.34 · 10−6 which both indicates good accuracy of the solution.

Example 4 We choose a discontinuous force f(ξ1, ξ2) = 1[ 1
4
, 3
4
]×[π

4
− 1

4
, π
4
+ 1

4
].

The corresponding optimal thickness profile over the domain ω is shown in
figure 5. It is noticeable that the optimal thickness is maximal in a region
shaped like a cross while the incoming force is applied at a region shaped like
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t(
ξ
1
,
ξ
2
)

ξ2 ξ1
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
0.050.05

0.075

0.1

0.125

0.150.15

step − size hξ1

∥∥t⃗ex − t⃗h
∥∥

∞
2−4 4.22 · 10−2

2−5 2.40 · 10−2

2−6 7.68 · 10−3

2−7 1.55 · 10−3

Figure 3: Results for example 2, loading f(ξ1, ξ2) = sin(2πξ1)

t(
ξ
1
,
ξ
2
)

ξ2 ξ1
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
0.05

0.075

0.1

0.125

0.15

step − size hξ1

∥∥t⃗ex − t⃗h
∥∥

∞
2−4 2.48 · 10−2

2−5 5.04 · 10−3

2−6 1.04 · 10−3

2−7 2.12 · 10−4

Figure 4: Results for example 3, loading f(ξ1, ξ2) = (exp(ξ1)−1)(exp(ξ2)−1)
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a square, see figure 6. The discontinuity of the incoming force is reflected
quite good in the optimal thickness. The table from figure 5 shows similar
convergence properties as in the second example. The parameter ε from (69)
can be chosen as 3.15 · 10−6 which indicates good accuracy of the computed
solution.

t(
ξ
1
,
ξ
2
)

ξ2 ξ1
0

0.2
0.4

0.6
0.8

1

0
0.5

1
1.5

2
0.050.05

0.075

0.1

0.125

0.150.15

step − size hξ1

∥∥t⃗ex − t⃗h
∥∥

∞
2−4 4.45 · 10−2

2−5 1.96 · 10−2

2−6 7.04 · 10−3

2−7 1.88 · 10−3

Figure 5: Results for example 4, loading f(ξ1, ξ2) = 1[ 1
4
, 3
4
]×[π

4
− 1

4
, π
4
+ 1

4
]

ξ
2

ξ1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Figure 6: View from above, black line = discontinuity of f
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8 Concluding remarks

In this paper we discussed thickness optimization problems for cylindri-
cal shells where the load is applied to the shell’s midsurface. In particular we
showed the continuity and Gâteaux-differentiability of the control-to-state
operator arising from the model equations. The result was used to deduce an
expression for the directional derivative of the objective which was the com-
pliance functional in our case. This allowed us to state necessary conditions
for an optimal solution. An effective numerical implementation based on
direct methods was possible on quite fine grids by using the discretized ex-
pression for the directional derivative together with finite element methods.
Different examples were investigated where the optimal thickness followed
the incoming force in a reasonable way. The computed thicknesses on re-
fined grids showed a good convergence behaviour as well as the evaluation
of the necessary conditions indicated good accuracy of the solutions.
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1 Introduction

The signal filtering problem received much attention over the last seven
decades, starting with the early formulation and developments due to E.
Hopf and N. Wiener in the 1940’s. Two decades later, the well-known re-
sults of Kalman and Bucy ([10], [11]) have been successfully implemented in
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many applications including aerospace, signal processing, geophysics, etc.
and they have strongly influenced the research in this area. Some sur-
veys on linear filtering and estimation can be found for instance in [9] and
in [20]. Many papers devoted to this topics investigate the filtering per-
formances with respect to the uncertainty modelling errors of the system
which state is estimated. This interest is motivated by the fact that the
filter performance deteriorates in the presence of modelling errors. Some
of these papers consider the problem of robust filtering when the system
is subject to parametric uncertainty (see e.g. [3], [6], [12], and the ref-
erences therein). There are applications in which the system parameters
are corrupted with random perturbations leading to stochastic models with
multiplicative noise. Such stochastic systems have been intensively studied
over the last few decades (see [23] for early references), many of the re-
cent theoretical developments including optimal control and filtering results
([4], [6], [15]). Another important issue arising in filtering applications is
related to the input of the systems generating the filtered signals. Besides
developments based on Kalman filtering, also known as H2-type filtering
since the exogenous input signals are assumed white noises, alternative ap-
proaches have been proposed where deterministic bounded energy inputs
are considered. Such formulations and developments have been performed
in the framework of the H∞-norm minimisation ([7], [20]). Many practi-
cal applications require a compromise between the H2 and the H∞ filtering
since the H2 norm minimisation of the estimation error may not be suitable
when the considered signals are strongly coloured (e.g. periodic signals), and
that H∞-optimization may poorly perform when these signals are weakly
coloured (e.g. white noise), (see e.g. [1] and [16]). An promising alternative
to accomplish such compromise is to use the so-called a-anisotropic norm
(see e.g. [5], [13], [22]) since it offers and intermediate topology between the
H2 and H∞ norms. More precisely, if the coloured signal is generated by an
m-dimensional exogenous input, the a-anisotropic norm ‖|F‖|a of a stable
system F has the property 1/

√
m‖F‖2 ≤ ‖|F‖|a ≤ ‖F‖∞ (see, for instance

[13]).
In [22] a Bounded Real Lemma type result is proved for the anisotropic

norm of discrete-time deterministic systems. It is shown that the bound-
edness norm condition implies to solve a nonconvex optimization in which
frequency representation of the filtered signal plays a crucial role.

The aim of the present paper is to determine boundedness conditions
for the anisotropic norm of stochastic systems with multiplicative noise. By
contrast with the above mentioned papers, all the developments of this paper
use time representations of the signals and the obtained results provide a
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generalisation of the ones derived the absence of the multiplicative noise and
for the case when the system is subject to state-dependent noise [21].

Notation. Throughout the paper the superscript ‘T ’ stands for matrix
transposition, Rn denotes the n dimensional Euclidean space, Rn×m is the
set of all n×m real matrices, and the notation P >0 (P ≥ 0), for P ∈ Rn×n

means that P is symmetric and positive definite (positive semidefinite). The
trace of a matrix Z is denoted by Tr{Z}, and |v| denotes the Euclidian norm
of an n-dimensional vector v.

2 Preliminaries and Problem Statement

Consider the stochastic system with multiplicative noise

x(t+ 1) = (A0 +
∑r

i=1 ξi(t)Ai)x(t) + (B0 +
∑r

i=1 ξi(t)Bi)w(t)
y(t) = Cx(t) +Dw(t), t = 0, 1, ...

(1)

where ξ(t) = (ξ1(t), ..., ξr(t))
T is a sequence of independent random vectors

ξ : Ω → Rr on a probability space(Ω,F ,P). It is assumed that {ξ(t)}t≥0
satisfies the conditions E [ξ(t)] = 0 and E

[
ξ(t)ξT (t)

]
= Ir, t = 0, 1, ... . The

matrices of the state space model (1) have the dimensions Ai ∈ Rn×n, Bi ∈
Rn×m, i = 0, 1...., r, C ∈ Rp×n, D ∈ Rp×m.

It is assumed that the input w(t) are random variables generated by a
linear stochastic filter with multiplicative noise G

x̃(t+ 1) = (Af0 +
∑r

i=1 ξi(t)Afi) x̃(t) + (Bf0 +
∑r

i=1 ξi(t)Bfi) v(t)
w(t) = Cf x̃(t) +Dfv(t), t = 0, 1, ...

(2)

where the order nf and the matrices Afi ∈ Rnf×nf , Bfi ∈ Rnf×m, i =
0, 1...., r, Cf ∈ Rm×nf , D ∈ Rm×m are not prefixed and v(t) ∈ Rm are

white noise vectors with the properties E [v(t)] = 0 and E
[
v(t)vT (t)

]
=

Im, t = 0, 1, ... . It is assumed that {ξ(t)}t≥0 and {v(t)}t≥0 are independent
stochastic processes.

Definition 1 A stochastic system with multiplicative noise of form (1) with
Bi = 0, i = 0, 1, ..., r is called exponentially stable in mean square (ESMS) if
there exist β ≥ 1 and ρ ∈ (0, 1) such that E

[|Φ(t, s)x(0)|2] ≤ βρ(t−s)|x(0)|2
for all t ≥ s ≥ 0, x(0) ∈ Rn, where Φ(t, s) denotes the fundamental matrix
solution of (1).

Throughout the paper it will be assumed that both systems (1) and (2) are
ESMS.
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Definition 2 The H2-type norm of the ESMS system (1) is defined as

‖F‖2 =

[
lim
`→∞

1

`

∑̀

t=0

E
[
yT (t)y(t)

]]
1
2

.

The next result provides a method to compute the H2 norm of the stochastic
system (1) (see e.g. [4]).

Lemma 1 The H2 type norm of the ESMS system (1) is given by ‖F‖2 =
(
Tr
(∑r

i=0B
T
i XBi +DTD

)) 1
2 where X ≥ 0 is the solution of the Lyapunov

equation X =
∑r

i=0A
T
i XAi + CTC.

Let L2 (Z× Ω,Rm) the space of all sequences w = {w(t)}t∈Z+ of m-

dimensional vectors with ‖w‖2 :=
∑∞

t=−∞E|w(t)|2 <∞ and by L̃2 (Z+ × Ω,
Rm) the space of all w ∈ L2 (Z+ × Ω,Rm) such that w(t) are measurable
with respect to Ft for every t ∈ Z+, Ft ⊂ F denoting a family of σ-algebras
associated to the vectors ξ(t). In [14] it is proved that if the system (1) is
ESMS, one may define the linear bounded input-output operator

(Fw)(t) : L̃2 (Z+ × Ω,Rm)→ L̃2 (Z+ × Ω,Rp)

by

(Fw)(t) = Cx(t) +Dw(t), t ∈ Z+,

x(t) being the solution of (1) with zero initial condition. Denoting by ‖F‖∞
the norm of the above operator, one can prove the following Bounded Real
Lemma type result for stochastic systems of form (1) with respect to the
H∞ norm [14].

Lemma 2 The ESMS system (1) has the norm ‖F‖∞ < γ for a certain
γ > 0 if and only if the Riccati equation

P =
∑r

i=0A
T
i PAi+

(∑r
i=0A

T
i PBi + CTD

)(
γ2I −∑r

i=0B
T
i PBi −DTD

)−1

×
(∑r

i=0A
T
i PBi + CTD

)T
+ CTC

has a stabilizing solution P ≥ 0 such that γ2I −∑r
i=0B

T
i PBi −DTD > 0.

It is recalled that a symmetric solution P of the above Riccati equation
is called a stabilising solution if the stochastic system

x(t+ 1) =

(
A0 +B0K +

r∑

i=1

ξi(t) (Ai +BiK)

)
x(t)
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is ESMS, where by definition

K :=

(
γ2I −

r∑

i=0

BT
i PBi −DTD

)−1( r∑

i=0

AT
i PBi + CTD

)T

.

Given an ESMS filter of form (2), the mean anisotropy of the random vari-
able w(t) generated by G is defined as

Ā(G) = −1

2
ln det



mE

[
w̃(0)w̃T (0)

]

‖G‖22


 (3)

where w̃(0) = w(0) − E
[
w(0)| (w(k))k<0

]
denotes the prediction error of

w(0) based on w(k), k < 0 (see details in [5]). Then the a-anisotropic norm
of F is defined as ([5])

‖|F‖|a = sup
G∈Ga

‖FG‖2
‖G‖2

, (4)

where Ga denotes the set of all stochastic systems of form (2) with Ā(G) < a.

3 Main result

Theorem 1 The stochastic system with multiplicative noise (1) has the a-
anisotropic norm less than a given γ > 0 if there exists q ∈ (0,min

(
γ−2,

‖F‖−2∞
))

such that the Riccati equation

X =
∑r

i=0A
T
i XAi +

(∑r
i=0A

T
i XBi + CTD

)

×
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0A

T
i XBi + CTD

)T
+ CTC

(5)

has a stabilizing solution X ≥ 0 satisfying the following conditions

Ψq :=
1

q
I −

r∑

i=0

BT
i XBi −DTD > 0 (6)

and

det

(
1

q
− γ2

)
Ψ−1q ≤ e−2a. (7)
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Proof. Using the Definition 1 of the H2-type norm it follows that the
condition supG∈Ga

‖FG‖2
‖G‖2 < γ is equivalent with the condition

lim
`→∞

1

`

∑̀

t=0

E
[
|y(t)|2 − γ2|w(t)|2

]
< 0 (8)

for all w(t) generated by filters G ∈ Ga.
For the sake of simplicity writing, the following notations will be intro-

duced:

A(t) := A0 +
∑r

i=1 ξ(t)Ai

B(t) := B0 +
∑r

i=1 ξ(t)Bi .

Using (1) it follows that

xT (t+ 1)Xx(t+ 1)− xT (t)Xx(t) = [A(t)x(t)+
B(t)w(t)]TX[A(t)x(t) + B(t)w(t)]− xT (t)x(t)− yT (t)y(t) + xT (t)CTCx(t)

+xT (t)CTDw(t) + wT (t)DTCx(t) + wT (t)DTDw(t)

where we added the zero term yT (t)y(t)−(Cx(t)+Dw(t))T (Cx(t)+Dw(t)).
Collecting terms we readily obtain

yT (t)y(t) = xT (t)[A(t)TXA(t)−X + CTC]x(t) + wT (t)[DTD+
B(t)TXB(t)]w(t) + wT (t)[DTC + B(t)TXA(t)]x(t)

+xT (t)[CTD +A(t)TXB(t)]w(t) + xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1) .

Noting that the properties of the random sequence {ξ(t)}t≥0 imply
E{ATXA} =

∑r
i=0A

T
i XAi, E{BTXB} =

∑r
i=0B

T
i XBi and E{ATXB} =∑r

i=0A
T
i XBi, it follows from the above equation that

E{yT (t)y(t)} = E{xT (t)[
∑r

i=0A
T
i XAi −X + CTC]x(t)

+wT (t)[DTD +
∑r

i=0B
T
i XBi]w(t)

+wT (t)[DTC +
∑r

i=0B
T
i XAi]x(t) + xT (t)[CTD +

∑r
i=0A

T
i XBi]w(t)

+xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1)} .

Substituting from (5) into the first bracket in the above equation, one obtains

E
[|y(t)|2] = E

[
xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1)

+xT
(∑r

i=0A
T
i XBi

)
w(t) + wT (t)

(∑r
i=0B

T
i XAi

)
x(t)

−xT (t)
(∑r

i=0A
T
i XBi + CTD

) (
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1

×
(∑r

i=0A
T
i XBi + CTD

)T
x(t) + wT (t)

(∑r
i=0B

T
i XBi

)
w(t)

+xT (t)CTDw(t) + wT (t)DTCx(t) + wT (t)DTDw(t)
]
.

(9)
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Define

P(t) :=
[
wT (t)− xT (t)

(∑r
i=0A

T
i XBi + CTD

)

×
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1

−vT (t)
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2

]

×
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)

×
[
w(t)−

(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0B

T
i XAi +DTC

)
x(t)

−
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2 v(t)

]
.

(10)

Then, using the properties of {v(t)}t≥0 it follows that

E [P(t)] = E
[
wT (t)

(
1
q I −

∑r
i=0B

T
i XBi −DTD

)
w(t)

−wT (t)
(∑r

i=0B
T
i XAi +DTC

)
x(t)

−xT (t)
(∑r

i=0A
T
i XBi + CTD

)
w(t)

+xT (t)
(∑r

i=0A
T
i XBi + CTD

) (
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1

×
(∑r

i=0B
T
i XAi +DTC

)
x(t)

−2TrDf

(
1
q I −

∑r
i=0B

T
i XBi −DTD

) 1
2

]
+m.

(11)

Taking into account (9) and (11) one obtains

E
[|y(t)|2 − γ2|w(t)|2] = E

[
xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1)− P(t)

−2TrDf

(
1
q I −

∑r
i=0B

T
i XBi −DTD

) 1
2 +m+

(
1
q − γ2

)
wT (t)w(t)

]
.

(12)

Since the systems (1) and(2) are ESMS

lim
`→∞

1

`
E
[
xT (0)Xx(0)− xT (`)Xx(`)

]
= 0,

and then one directly obtains that

lim`→∞ 1
`

∑`
t=0E

[|y(t)|2 − γ2|w(t)|2]

= lim`→∞ 1
`E
[
−∑`

t=0 P(t) +
∑`

t=0

(
1
q − γ2

)
wT (t)w(t)

]

−2TrDf

(
1
q I −

∑r
i=0B

T
i XBi −DTD

) 1
2 +m.

(13)
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From (10) it follows that P(t) ≥ 0 and P(t) = 0 for

w(t) =
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0B

T
i XAi +DTC

)
x(t)

+
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2 v(t).

(14)

The above condition is fulfilled for a filter G having the state x̃(t) equal to
the state x(t) of F and if the following conditions are accomplished

Cf =
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0B

T
i XAi +DTC

)

Df =
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2 .

(15)

For w(t) given by (14) the first equation (1) becomes

x(t+ 1) = (A0 +
∑r

i=1 ξi(t)Ai)x(t) + (B0 +
∑r

i=1 ξi(t)Bi)

×
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0B

T
i XAi +DTC

)
x(t)

+ (B0 +
∑r

i=1 ξi(t)Bi)
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2 v(t).

(16)

Since x̃(t) equals x(t), t = 0, 1, ... from the above equation one obtains

Afi = Ai +Bi

(
1
q I −

∑r
j=0B

T
j XBj −DTD

)−1

×
(∑r

j=0B
T
j XAj +DTC

)

Bfi = Bi

(
1
q I −

∑r
j=0B

T
j XBj −DTD

)− 1
2 , i = 0, 1, ..., r.

(17)

Since X is the stabilising solution of the Riccati equation (5) it follows that
the filter with Afi , i = 0, 1, ..., r given above is ESMS.

Based on the expression (15) of Df and since x̃(t) = x(t), from the
second equation (2) it follows that

E
[
w̃(0)w̃T (0)

]
=

(
1

q
I −

r∑

i=0

BT
i XBi −DTD

)−1
. (18)

In the following it will be shown that under the assumption (7) from the

statement, for all ESMS filters G ∈ Ga having Df = Ψ
− 1

2
q the following

condition is accomplished

−m+

(
1

q
− γ2

)
‖G‖22 < 0. (19)
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Indeed, since G ∈ Ga and since Df = Ψ
− 1

2
q it follows that

det
mΨ−1q

‖G‖22
> e−2a. (20)

Taking into account (7) and the above inequality it follows that

det
mΨ−1q

‖G‖22
> det

(
1

q
− γ2

)
Ψ−1q

from which one directly obtains (19). Using the inequality (19), equations
(13), (11), the equation for Df in (15) and Definition 2, it follows that
||FG||2/||G||2 < γ.

Let us consider now the more general case for a certain filter G ∈ Ga,
satisfying therefore the condition

−1

2
ln det

mDfD
T
f

‖G‖22
≤ a . (21)

From the above condition and from the assumption (7) it follows that

det

(
1

q
− γ2

)
Ψ−1q < det

mDfD
T
f

‖G‖22
. (22)

Using the general property det(A) ≤ (Tr(A)/m)m, from the above inequal-
ity one obtains

Tr

(
DfΨ

1
2
q

)
>

(
1

q
− γ2

) 1
2

m
1
2 ‖G‖2 (23)

and thus

(
1
q − γ2

)
‖G‖22 − 2Tr

(
DfΨ

1
2
q

)
+m

<
(
1
q − γ2

)
‖G‖22 − 2

(
1
q − γ2

) 1
2 m

1
2 ‖G‖2 +m

=

((
1
q − γ2

) 1
2 ‖G‖2 −m

1
2

)2

(24)

From the above inequality it follows that if

(
1

q
− γ2

)
‖G‖22 = m (25)
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the left hand side of it is negative and therefore from (12) it follows that
‖FG‖2/‖G‖2 < γ. The condition (25) implies that

1

q
− γ2 =

m

‖G‖22
.

Substituting the above expression into (7) one obtains the condition

−1

2
ln det

mΨ−1q

‖G‖22
≥ a . (26)

Comparing (26) with the definition of the mean anisotropy one concludes

that if for a filter G ∈ Ga there exists another filter Ĝ with Ā
(
Ĝ
)
≥ a

such that ‖Ĝ‖2 = ‖G‖2 and having D̂f = Ψ
− 1

2
q for a certain q satisfying the

assumptions of Theorem 1, then ‖FG‖2/‖G‖2 < γ. A similar conclusion
is derived in the deterministic framework in [13]. Such a Ĝ always may be
found. Indeed since Ψ−1q → 0 for q → 0, it follows that the Riccati equation
(5) has a stabilising solution and the condition (26) is fulfilled for a small
enough q > 0. Then for any G ∈ Ga, based on Lemma 1 one can easily
determine Âfi , B̂fi , i = 0, ..., r and Ĉf such that ‖Ĝ‖2 = ‖G‖2.

Using the inequality (19), (13), (11), the equation for Df in (15) and
Definition 2, it follows that ||FG||2/||G||2 < γ. Let us finally notice that
according with the Lemma 2, it follows that a necessary condition for the
existence of a stabilizing solution of the Riccati equation (5) is 1/q ≥ ‖F‖2∞,
from which it follows that q ≤ ‖F‖−2∞ . Thus the proof is complete.
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