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A TOPOLOGICAL PROPERTY OF

THE SOLUTION SET OF A

SECOND-ORDER DIFFERENTIAL

INCLUSION∗

Aurelian Cernea†

Abstract

We consider a Cauchy problem for a Sturm-Liouville type differen-
tial inclusion involving a nonconvex set-valued map and we prove that
the set of selections corresponding to the solutions of the problem con-
sidered is a retract of the space of integrable functions on unbounded
interval.

MSC: 34A60

keywords: differential inclusion, decomposable set, retract.

1 Introduction

In this paper we study second-order differential inclusions of the form

(p(t)x′(t))′ ∈ F (t, x(t)) a.e. [0,∞), x(0) = x0, x′(0) = x1, (1.1)

where F : [0,∞) × Rn → P(Rn) is a set-valued map, x0, x1 ∈ Rn and
p(.) : [0,∞)→ (0,∞) is continuous.
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A second-order differential inclusion 107

Even if we deal with an initial value problem instead of a boundary value
problem, the differential inclusion (1.1)-(1.2) may be regarded as an exten-
sion to the set-valued framework of the classical Sturm-Liouville differential
equation. Several qualitative properties and existence results for problem
(1.1) may be found in [3-9] etc..

In [6] we proved that the solution set of problem (1.1) is arcwise connected
when the set-valued map is Lipschitz in the second variable and the problem
is defined on a bounded interval. The aim of this paper is to establish a more
general topological property of the solution set of problem (1.1). Namely,
we prove that the set of selections of the set-valued map F that correspond
to the solutions of problem (1.1) is a retract of L1

loc([0,∞),Rn). The result
is essentially based on Bressan and Colombo results ([1]) concerning the
existence of continuous selections of lower semicontinuous multifunctions
with decomposable values.

We note that in the classical case of differential inclusions several topo-
logical properties of solution set are obtained using various methods and
tools ([2, 10-14] etc.). The result in the present paper extends to Sturm-
Liouville differential inclusions the main result in [12] obtained in the case
of classical differential inclusions.

The paper is organized as follows: in Section 2 we present the notations,
definitions and the preliminary results to be used in the sequel and in Section
3 we prove our main result.

2 Preliminaries

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue
measurable subsets of I. Let X be a real separable Banach space with the
norm |.|. Denote by P(X) the family of all nonempty subsets of X and by
B(X) the family of all Borel subsets of X. If A ⊂ I then χA(.) : I → {0, 1}
denotes the characteristic function of A. For any subset A ⊂ X we denote
by cl(A) the closure of A.

The distance between a point x ∈ X and a subset A ⊂ X is defined as
usual by d(x,A) = inf{|x − a|; a ∈ A}. We recall that Pompeiu-Hausdorff
distance between the closed subsets A,B ⊂ X is defined by dH(A,B) =
max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}.

As usual, we denote by C(I,X) the Banach space of all continuous func-
tions x : I → X endowed with the norm |x|C = supt∈I |x(t)| and by L1(I,X)
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the Banach space of all (Bochner) integrable functions x : I → X endowed
with the norm |x|1 =

∫ T
0 |x(t)|dt.

We recall first several preliminary results we shall use in the sequel.
A subset D ⊂ L1(I,X) is said to be decomposable if for any u, v ∈ D and

any subset A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.
We denote by D(I,X) the family of all decomposable closed subsets of

L1(I,X).
Next (S, d) is a separable metric space; we recall that a multifunction

G : S → P(X) is said to be lower semicontinuous (l.s.c.) if for any closed
subset C ⊂ X, the subset {s ∈ S; G(s) ⊂ C} is closed.

Lemma 2.1. ([1]) Let F ∗ : I×S → P(X) be a closed-valued L(I)⊗B(S)-
measurable multifunction such that F ∗(t, .) is l.s.c. for any t ∈ I.

Then the multifunction G : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X); v(t) ∈ F ∗(t, s) a.e. (I)}

is l.s.c. with nonempty closed values if and only if there exists a continuous
mapping p : S → L1(I,X) such that

d(0, F ∗(t, s)) ≤ p(s)(t) a.e. (I), ∀s ∈ S.

Lemma 2.2. ([1]) Let G : S → D(I,X) be a l.s.c. multifunction with
closed decomposable values and let φ : S → L1(I,X), ψ : S → L1(I,R) be
continuous such that the multifunction H : S → D(I,X) defined by

H(s) = cl{v(.) ∈ G(s); |v(t)− φ(s)(t)| < ψ(s)(t) a.e. (I)}

has nonempty values.
Then H has a continuous selection, i.e. there exists a continuous map-

ping h : S → L1(I,X) such that h(s) ∈ H(s) ∀s ∈ S.

Consider a set-valued map F : [0,∞)×Rn → P(Rn), x0, x1 ∈ Rn and a
continuous mapping p(.) : [0,∞) → (0,∞) that define the Cauchy problem
(1.1).

A continuous mapping x(.) ∈ C([0,∞),Rn) is called a solution of prob-
lem (1.1) if there exists a integrable function f(.) ∈ L1

loc([0,∞),Rn) such
that

f(t) ∈ F (t, x(t)) a.e. [0,∞), (2.1)
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x(t) = x0 + p(0)x1

∫ t

0

1

p(s)
ds+

∫ t

0

1

p(s)

∫ s

0
f(u)duds ∀t ∈ [0,∞). (2.2)

Note that, if we put G(t, u) :=
∫ t
u

1
p(s) , t ∈ I, then (2.2) may be rewritten

as

x(t) = x0 + p(0)x1G(t, 0) +

∫ t

0
G(t, u)f(u)du ∀t ∈ [0,∞). (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if (2.1) and
(2.2) are satisfied.

We shall use the following notations for the solution sets and for the
selection sets of problem (1.1).

S(x0, x1) = {x(.) ∈ C([0,∞),Rn); x(.) is a solution of (1.1)}, (2.4)

T (x0, x1) = {f(.) ∈ L1
loc([0,∞),Rn); f(t) ∈ F (t, x0 + p(0)x1G(t, 0)+

+
∫ t
0 G(t, u)f(u)du) a.e. [0,∞)}.

(2.5)

3 The main result

In order to prove our topological property of the solution set of problem
(1.1) we need the following hypotheses.

Hypothesis 3.1. i) F (., .) : [0,∞) ×Rn → P(Rn) has nonempty com-
pact values and is L([0,∞))⊗ B(Rn) measurable.

ii) There exists L ∈ L1
loc([0,∞),R) such that, for almost all t ∈ [0,∞),

F (t, .) is L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀x, y ∈ Rn.

iii) There exists p ∈ L1
loc([0,∞),Rn) such that

dH({0}, F (t, 0)) ≤ p(t) a.e. [0,∞).

In what follows I = [0, T ] and let M := supt∈I
1

p(t) . Note that |G(t, u)| ≤
Mt ∀t, u ∈ I, u ≤ t. We use the notations

ũ(t) = x0 + p(0)x1G(t, 0) +

∫ t

0
G(t, s)u(s)ds, u ∈ L1(I,Rn) (3.1)
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and

p0(u)(t) = |u(t)|+ p(t) + L(t)|ũ(t)|, t ∈ I (3.2)

Let us note that

d(u(t), F (t, ũ(t)) ≤ p0(u)(t) a.e. (I) (3.3)

and, since for any u1, u2 ∈ L1(I,Rn)

|p0(u1)− p0(u2)|1 ≤ (1 +MT

∫ T

0
L(s)ds|)|u1 − u2|1

the mapping p0 : L1(I,Rn)→ L1(I,Rn) is continuous.

Also define

TI(x0, x1) = {f ∈ L1(I,Rn); f(t) ∈ F (t, x0 + p(0)x1G(t, 0)+

+
∫ t
0 G(t, s)f(s)ds) a.e. (I)}.

Proposition 3.2. Assume that Hypothesis 3.1 is satisfied and let φ :
L1(I,Rn) → L1(I,Rn) be a continuous map such that φ(u) = u for all
u ∈ TI(x0, x1). For u ∈ L1(I,Rn), we define

Ψ(u) = {u ∈ L1(I,Rn); u(t) ∈ F (t, φ̃(u)(t)) a.e. (I)},

Φ(u) =

{
{u} if u ∈ TI(x0, x1),
Ψ(u) otherwise.

Then the multifunction Φ : L1(I,Rn)→ P(L1(I,Rn)) is lower semicon-
tinuous with closed decomposable and nonempty values.

Proof. According to (3.3), Lemma 2.1 and the continuity of p0 we obtain
that Ψ has closed decomposable and nonempty values and the same holds
for the set-valued map Φ.

Let C ⊂ L1(I,Rn) be a closed subset, let {um}m∈N converges to some
u0 ∈ L1(I,Rn) and Φ(um) ⊂ C, for any m ∈ N. Let v0 ∈ Φ(u0) and for
every m ∈ N consider a measurable selection vm from the set-valued map
t→ F (t, ˜φ(um)(t)) such that vm = um if um ∈ TI(x0, x1) and

|vm(t)− v0(t)| = d(v0(t), F (t, ˜φ(um)(t)) a.e. (I)
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otherwise. One has
|vm(t)− v0(t)| ≤

≤ dH(F (t, ˜φ(um)(t)), F (t, ˜φ(u0)(t))) ≤ L(t)| ˜φ(um)(t)− ˜φ(u0)(t)|

hence

|vm − v0|1 ≤MT

∫ T

0
L(s)ds.| ˜φ(um)− ˜φ(u0)|1.

Since φ : L1(I,Rn)→ L1(I,Rn) is continuous, it follows that vm converges
to v0 in L1(I,Rn). On the other hand, vm ∈ Φ(um) ⊂ C ∀m ∈ N and
since C is closed we infer that v0 ∈ C. Hence Φ(u0) ⊂ C and Φ is lower
semicontinuous.

In what follows we shall use the following notations

Ik = [0, k], k ≥ 1, |u|1,k =

∫ k

0
|u(t)|dt, u ∈ L1(Ik,R

n).

We are able now to prove the main result of this paper.

Theorem 3.3. Assume that Hypothesis 3.1 is satisfied, there exists M :=
supt∈[0,∞)

1
p(t) and x0, x1 ∈ Rn.

Then there exists a continuous mapping G : L1
loc([0,∞),Rn)→

L1
loc([0,∞),Rn) such that

(i) G(u) ∈ T (x0, x1), ∀u ∈ L1
loc([0,∞),Rn),

(ii) G(u) = u, ∀u ∈ T (x0, x1).

Proof. We shall prove that for every k ≥ 1 there exists a continuous
mapping gk : L1(Ik,R

n)→ L1(Ik,R
n) with the following properties

(I) gk(u) = u, ∀u ∈ TIk(x0, x1)
(II) gk(u) ∈ TIk(x0, x1), ∀u ∈ L1(Ik,R

n)
(III) gk(u)(t) = gk−1(u|Ik−1

)(t), ∀t ∈ Ik−1
If the sequence {gk}k≥1 is constructed, we define G : L1

loc([0,∞),Rn)→
L1
loc([0,∞),Rn) by

G(u)(t) = gk(u|Ik)(t), ∀k ≥ 1

From (III) and the continuity of each gk(.) it follows that G(.) is well
defined and continuous. Moreover, for each u ∈ L1

loc([0,∞),Rn), according
to (II) we have

G(u)|Ik(t) = gk(u|Ik)(t) ∈ TIk(x0, x1), ∀k ≥ 1
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and thus G(u) ∈ T (x0, x1).
Fix ε > 0 and for m ≥ 0 set εm = m+1

m+2ε. For u ∈ L1(I1,R
n) and m ≥ 0

define m(t) =
∫ t
0 L(s)ds,

p10(u)(t) = |u(t)|+ p(t) + L(t)|ũ(t)|, t ∈ I1

and

p1m+1(u)(t) = Mm+1
∫ t

0
p10(u)(s)

(m(t)−m(s))m

m!
ds+Mm (m(t))m

m!
εm+1.

By the continuity of the map p10(.) = p0(.), already proved, we obtain that
p1m : L1(I1,R

n)→ L1(I1,R
n) is continuous.

We define g10(u) = u and we shall prove that for any m ≥ 1 there exists
a continuous map g1m : L1(I1,R

n)→ L1(I1,R
n) that satisfies

g1m(u) = u, ∀u ∈ TI1(x0, x1), (a1)

g1m(u)(t) ∈ F (t, ˜g1m−1(u)(t)) a.e. (I1), (b1)

|g11(u)(t)− g10(u)(t)| ≤ p10(u)(t) + ε0 a.e. (I1), (c1)

|g1m(u)(t)− g1m−1(t)| ≤ L(t)p1m−1(u)(t) a.e. (I1), m ≥ 2. (d1)

For u ∈ L1(I1,R
n), we define

Ψ1
1(u) = {v ∈ L1(I1,R

n); v(t) ∈ F (t, ũ(t)) a.e.(I1)},

Φ1
1(u) =

{
{u} if u ∈ TI1(x0, x1),
Ψ1

1(u) otherwise.

and by Proposition 3.2 (with φ(u) = u) we obtain that Φ1
1 : L1(I1,R

n) →
D(I1,R

n) is lower semicontinuous. Moreover, due to (3.3) the set

H1
1 (u) = cl{v ∈ Φ1

1(u); |v(t)− u(t)| < p10(u)(t) + ε0 a.e. (I1)}

is not empty for any u ∈ L1(I1,R
n). So applying Lemma 2.2, we find a

continuous selection g11 of H1
1 that satisfies (a1)-(c1).

Suppose we have already constructed g1i (.), i = 1, . . .m satisfying (a1)-
(d1). Then from (b1), (d1) and Hypothesis 3.1 we get

d(g1m(u)(t), F (t, ˜g1m(u)(t)) ≤ L(t)(| ˜g1m−1(u)(t)− ˜g1m(u)(t)| ≤
L(t)

∫ T
0 ML(s)p1m(u)(s)ds = L(t)(p1m+1(u)(t)− r1m(t)) < L(t)p1m+1(u)(t),

(3.4)
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where r1m(t) := Mm (m(t))m

m! (εm+1 − εm) > 0.
For u ∈ L1(I1,R

n), we define

Ψ1
m+1(u) = {v ∈ L1(I1,R

n); v(t) ∈ F (t, ˜g1m(u)(t)) a.e. (I1)},

Φ1
m+1(u) =

{
{u} if u ∈ TI1(x0, x1),
Ψ1

m+1(u) otherwise.

We apply Proposition 3.2 (with φ(u) = g1m(u)) and obtain that Φ1
m+1(.)

is lower semicontinuous with closed decomposable and nonempty values.
Moreover, by (3.4), the set

H1
m+1(u) = cl{v ∈ Φ1

m+1(u); |v(t)− g1m+1(u)(t)| < L(t)p1m+1(u)(t) a.e. (I1)}

is nonempty for any u ∈ L1(I1,R
n). With Lemma 2.2, we find a continuous

selection g1m+1 of H1
m+1, satisfying (a1)-(d1).

Therefore we obtain that

|g1m+1(u)− g1m(u)|1,1 ≤
(Mm(1))m

m!
(M |p10(u)|1,1 + ε)

and this implies that the sequence {g1m(u)}m∈N is a Cauchy sequence in the
Banach space L1(I1,R

n). Let g1(u) ∈ L1(I1,R
n) be its limit. The function

s → |p10(u)|1,1 is continuous, hence it is locally bounded and the Cauchy
condition is satisfied by {g1m(u)}m∈N locally uniformly with respect to u.
Hence the mapping g1(.) : L1(I1,R

n)→ L1(I1,R
n) is continuous.

From (a1) it follows that g1(u) = u, ∀u ∈ TI1(x0, x1) and from (b1) and
the fact that F has closed values we obtain that

g1(u)(t) ∈ F (t, ˜g1(u)(t)), a.e. (I1) ∀u ∈ L1(I1,R
n).

In the next step of the proof we suppose that we have already constructed
the mappings gi(.) : L1(Ii,R

n)→ L1(Ii,R
n), i = 2, ..., k − 1 with the prop-

erties (I)-(III) and we shall construct a continuous map gk(.) : L1(Ik,R
n)→

L1(Ik,R
n) satisfying (I)-(III).

Let gk0 : L1(Ik,R
n)→ L1(Ik,R

n) be defined by

gk0 (u)(t) = gk−1(u|Ik−1
)(t)χIk−1

+ u(t)χIk\Ik−1
(t) (3.5)

Let us note, first, that gk0 (.) is continuous. Indeed, if u0, u ∈ L1(Ik,R
n) one

has

|gk0 (u)−gk0 (u0)|1,k ≤ |gk−1(u|Ik−1
)−gk−1(u0|Ik−1

)|1,k−1+

∫ k

k−1
|u(t)−u0(t)|dt
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So, using the continuity of gk−1(.) we get the continuity of gk0 (.).
On the other hand, since gk−1(u) = u, ∀u ∈ TIk−1

(x0, x1) from (3.5) it
follows that

gk0 (u) = u, ∀u ∈ TIk(x0, x1).

For u ∈ L1(Ik,R
n), we define

Ψk
1(u) = {w ∈ L1(Ik,R

n); w(t) = gk−1(u|Ik−1
)(t)χIk−1

(t)+

v(t)χIk\Ik−1
(t), v(t) ∈ F (t, ˜gk0 (u)(t)) a.e. ([k − 1, k])},

Φk
1(u) =

{
{u} if u ∈ TIk(x0, x1),
Ψk

1(u) otherwise.

We apply Proposition 3.2 (with φ(u) = gk0 (u)) and we obtain that Φk
1(.) :

L1(Ik,R
n) → D(Ik,R

n) is lower semicontinuous. Moreover, for any u ∈
L1(Ik,R

n) one has

d(gk0 (t), F (t, ˜gk0 (u)(t)) = d(u(t), F (t, ˜gk0 (u)(t))χIk\Ik−1
≤ pk0(u)(t) a.e.(Ik),

(3.6)
where

pk0(u)(t) = |u(t)|+ p(t) + L(t)| ˜gk0 (u)(t)|.

Obviously, pk0 : L1(Ik,R
n)→ L1(Ik,R

n) is continuous. For m ≥ 0 set

pkm+1(u) = (Mk)m+1
∫ t

0
pk0(u)(s)

(m(t)−m(s))m

m!
ds+ (Mk)m

(m(t))m

m!
εm+1.

and by the continuity of pk0(.) we infer that pkm : L1(Ik,R
n)→ L1(Ik,R

n) is
continuous.

We shall prove, next, that for any m ≥ 1 there exists a continuous map
gkm : L1(Ik,R

n)→ L1(Ik,R
n) such that

gkm(u)(t) = gk−1(u|Ik−1
)(t) ∀t ∈ Ik−1, (ak)

gkm(u) = u ∀u ∈ TIk(x0, x1), (bk)

gkm(u)(t) ∈ F (t, ˜gkm−1(u)(t)) a.e. (Ik), (ck)

|gk1 (u)(t)− gk0 (u)(t)| ≤ pk0(u)(t) + ε0 a.e. (Ik), (dk)

|gkm(u)(t)− gkm−1(u)(t)| ≤ L(t)pkm−1(u)(t) a.e. (Ik), m ≥ 2. (ek)
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Define

Hk
1 (u) = cl{v ∈ Φk

1(u); |v(t)− gk0 (u)(t)| < pk0(u)(t) + ε0 a.e. (Ik)}.

From (3.6), Hk
1 (u) 6= ∅ ∀u ∈ L1(I1,R

n). Using the continuity of gk0 , p
k
0

and Lemma 2.2, we obtain a continuous selection gk1 of Hk
1 that satisfies

(ak)-(dk).
Assume we have constructed gki (.), i = 1, . . .m satisfying (ak)-(ek). Then

from (ek) we have

d(gkm(u)(t), F (t, ˜gkm(u)(t)) ≤ L(t)(| ˜gkm−1(u)(t)− ˜gkm(u)(t)| ≤ L(t)·∫ T
0 MkL(s)pkm(u)(s)ds = L(t)(pkm+1(u)(t)− rkm(t)) < L(t)pkm+1(u)(t),

(3.7)

where rkm(t) := (Mk)m (m(t))m

m! (εm+1 − εm) > 0.
For u ∈ L1(Ik,R

n), we define

Ψk
m+1(u) = {w ∈ L1(Ik,R

n); w(t) = gk−1(u|Ik−1
)(t)χIk−1

(t)+

v(t)χIk\Ik−1
(t), v(t) ∈ F (t, ˜gkm(u)(t)) a.e. ([k − 1, k])},

Φk
m+1(u) =

{
{u} if u ∈ TIk(x0, x1),
Ψk

m+1(u) otherwise.

With Proposition 3.2 we infer that Φk
m+1(.) : L1(Ik,R

n)→ P(L1(Ik,R
n)) is

lower semicontinuous with closed decomposable and nonempty values. By
(3.7) the set

Hk
m+1(u) = cl{v ∈ Φk

m+1(u); |v(t)− gkm+1(u)(t)| < L(t)pkm+1(u)(t) a.e. (Ik)}

is nonempty for any u ∈ L1(Ik,R
n). So, applying Lemma 2.2, we deduce a

continuous selection gkm+1 of Hk
m+1, satisfying (ak)-(ek).

By (ek) one has

|gkm+1(u)− gkm(u)|1,k ≤
(Mkm(k))m

m!
(Mk|pk0(u)|1,1 + ε].

Therefore, with a similar proof as in the case k = 1, we find that the sequence
{gkm(u)}m∈N converges to some gk(u) ∈ L1(Ik,R

n) and the mapping gk(.) :
L1(Ik,R

n)→ L1(Ik,R
n) is continuous.

By (ak) we have that

gk(u)(t) = gk−1(u|Ik−1
)(t) ∀t ∈ Ik−1,
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by (bk) gk(u) = u, ∀u ∈ TIk(x0, x1) and from (ck) and the fact that F has
closed values we obtain that

gk(u)(t) ∈ F (t, ˜gk(u)(t)), a.e. (Ik) ∀u ∈ L1(Ik,R
n).

Therefore gk(.) satisfies the properties (I), (II) and (III).

Remark 3.4. We recall that if Y is a Hausdorff topological space, a
subspace X of Y is called retract of Y if there is a continuous map h : Y → X
such that h(x) = x, ∀x ∈ X.

Therefore, by Theorem 3.3, for any x0, x1 ∈ Rn, the set T (x0, x1) of
selections that correspond to solutions of (1.1) is a retract of the Banach
space L1

loc([0,∞),Rn).
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Abstract

Using the stochastic approximations, in this paper it was studied
the convergence in distribution of the fractional parts of the sum of ran-
dom variables to the truncated exponential distribution with parameter
λ. This fact is feasible by means of the Fourier-Stieltjes sequence (FSS)
of the random variable.

MSC: 62E20, 60F05

keywords: limit theorems, asymptotic distribution, fractional part, trun-
cated exponential distribution

1 Introduction

The aim of this paper is to extend the results of Wilms [9] about convergence
of the fractional parts of the random variables.
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This theory was analysed by Wilms in [9], where the study of convergence
of the fractional parts of the sum of random variables it was directed towards
the uniform distribution on the interval [0, 1]. Moreover, he identifed the
necessary and sufficient conditions for the convergence of the product of the
random variables, not necessary independent and identically distributed,
towards the same uniform distribution on the interval [0, 1]. The Fourier-
Stieltjes sequence, (see Definition 1), play an important role in the study of
fractional parts of random variables. Also, Wilms obtain conditions under
which fractional parts of products of independent and identically distributed
random variables are uniform distribution on the interval [0, 1]. After a
survey of some results by Schatte in [6], Wilms extend the results of Schatte
on sums of independent and identically distributed lattice random variables.
Furthermore, Schatte in [6], gives rates for the convergence of distribution
function of the fractional parts of the sum of random variables to distribution
function of random variables with continouous uniform distribution on the
interval [0, 1].

The novelty of this paper consist in the identification of the conditions
(Theorems 4, 5, 6) when the distribution of the fractional parts of the sum
of random variables converge to the truncated exponential distribution.

2 Notations, definitions and auxiliary results

Let (Ω ,F ,P) be the probability space and a random variable X, X : Ω→ R
measurable function. The distribution of random variable X is the measure
of probability PX defined on B(R) Borel and PX(B) = P (X ∈ B). The
distribution function of the random variable X is FX(x) = P(X < x), x ∈ R,

or FX(x) =
x∫
−∞

fX(y)dy where fX represents the density of probability of

the random variable X.

Throughout the paper, for A ⊂ R, F(A) = {FX | P (X ∈ A) = 1}.
For the random variable X, the fractional part of X is defined as follows:

{X} = X − [X], where [X] represents the integer part of X.

The distribution function of the random variable {X} for any x ∈ [0, 1]
is

F{X}(x) =

∞∑
m=−∞

P(m ≤ X < m+ x) =

∞∑
m=−∞

(FX(m+ x)− FX(m)) .
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where FX is the distribution function of random variable X.
The random variable X has truncated exponential distribution of param-

eter λ (denoted by X ∼ Exp∗(λ)), if its distribution function FX ∈ F([0, 1))
and

FX(x) =


0 , x < 0

1−e−λx
1−e−λ , x ∈ [0, 1]

1 , x > 1

.

Moreover, if random variable X has the density fX , then:

F{X}(x) =
∞∑

j=−∞

j+x∫
j

fX(y)dy =
∞∑

j=−∞

x∫
0

fX(j + t)dt =

x∫
0

∞∑
j=−∞

fX(j + t)dt ,

that is h{X}(x) =
∞∑

j=−∞
fX(j + x), x ∈ [0, 1] is the density of probability of

the random variable {X}. For example, if X ∼ Exp∗(λ), then

F{X}(x) =
(

1− e−λx
)
/
(

1− e−λ
)
, x ∈ [0, 1].

So, the characteristic function of the random variable X, ϕX : R→ C is
defined by:

ϕX(t) := EeitX =

+∞∫
−∞

eitxdFX(x) , (t ∈ R) .

Definition 1. The Fourier-Stieltjes sequence (FSS) of the random variable
X is the function cX : Z→ C defined by

cX(k) := ϕX(2πk) , k ∈ Z .

Proposition 1. ([9]) For any random variable X the following relation oc-
curs:

cX(k) = c{X}(k) , ∀ k ∈ Z .

The properties that characterizes the Fourier-Stieltjes sequence, it was
presented a books [1], [3] and [5].

Theorem 1. (of continuity, [5]) Let (Fn) ∈ F([0, 1)) be a sequence of the
random variables, and let (cn) be FSS respectively.
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(i). Let F ∈ F([0, 1)) be with c FSS respectively. If Fn
n→∞→ F , then

limn→∞ cn(k) = c(k), pentru k ∈ Z.

(ii). If limn→∞ cn(k) = c(k) is for k ∈ Z, then is F ∈ F([0, 1)) so that
Fn

n→∞→ F . Then the sequence c is FSS of F .

We define the convolution F of distribution functions F1, F2 ∈ F([0, 1))
such that F ∈ F([0, 1)).

Denote by F1 ≡ F{X1}, F2 ≡ F{X2} and F ≡ F{X1+X2}.

To this end, let F1 ∗ F2 denote the convolution in the customary sense,
[2], i.e.

(F1 ∗ F2) (x) =

∞∫
−∞

F1(x− y)dF2(y) =

∞∫
−∞

F2(x− y)dF1(y),

with F1 ∗ F2 ∈ F([0, 2)) if F1, F2 ∈ F([0, 1)) and x ∈ [0, 1].

Definition 2. Let F, F1, F2 ∈ F([0, 1)). The function

(F1 ⊗ F2) (x) =
(F1 ∗ F2) (x)

(F1 ∗ F2) (1)− (F1 ∗ F2) (0)
, x ∈ [0, 1]

is said to be the truncated convolution.

In particular, if F1, F2 ∈ F([0, 1)) is the distribution functions of random
variables X1 and X2 independent and identically exponential distributed,
then the distribution function of the sum of random variables X1 and X2

in fractional part is F (x) = (F1∗F2)(x)
(F1∗F2)(1)−(F1∗F2)(0)

= 1−(1+λx)e−λx
1−(1+λ)e−λ , with F ∈

F([0, 1)), ∀ x ∈ [0, 1].

Theorem 2. (of convolution, [9]) Let F, F1, F2 ∈ F([0, 1)) be with FSS
c, c1, c2. Then

c = c1c2 ⇐⇒ F = F1 ⊗ F2 .

Corollary 1. ([9]) Let X and Y be two independent random variables with
FX , FY ∈ F([0, 1)). Then

c{X+Y } = cXcY .
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The next result characterizes FSS with the help of the repartition func-
tion FX .

Proposition 2. ([9]) Let FX ∈ F([0, 1)) be. Then

cF (k) = 1− 2πik

1∫
0

FX(x)e2πikxdx , k ∈ Z .

The next theorem characterizes the convergence in distribution (denoted

by ”
d→ ”) by means of FSS.

Theorem 3. ([9]) Let (Xm) be a sequence of independent random variables

and Sn :=
n∑

m=1
Xm, n ∈ N. Let S be the random variable with FS ∈ F([0, 1)).

Then {Sn}
d→ S if and only if

n∏
m=1

c{Xm}(k)→ cS(k) if n→∞ for any k ∈ Z.

There are a couple of intermediate results.

Proposition 3. ([7]) Let (an) be a sequence of real numbers, an > 0, for all

n ∈ N. Then
∞∏
n=0

an is convergent if and only if
∞∑
n=0

(1− an) is convergent.

Proposition 4. ([8]) Let Xn be a sequence of independent random variables.

We assume that
∞∑
m=1

V arXm is finite.

(i). Then
n∑

m=1
(Xm − EXm) converges almost certainly for n→∞ .

(ii). If
∞∑
m=1

EXm is convergent, then
n∑

m=1
Xm converges almost certainly if

n→∞ .

3 The convergence in the distribution of the frac-
tional part

In this section we shall give sufficient conditions for the fractional parts of
the independent and identically distributed random variables. In Theorem



Convergence of the fractional parts of the random variables 123

4, supposing that
n∑

m=1
V arXm is convergent, we show that the existence

of limit lim
n→∞

{
n∑

m=1
EXm

}
is necessary and sufficient for the convergence of

the distribution of

{
n∑

m=1
EXm

}
if n → ∞. Theorem 5 states necessary

and sufficient conditions, using FSS for the convergence

{
n∑

m=1
Xm

}
to the

distribution Exp∗(λ) if n → ∞. We also neet conditions of convergence in
Teorema 6.

The Fourier-Stieltjes sequence of the random variable X, X ∼ Exp∗(λ),
is presented in the following theoretical result:

Proposition 5. If X ∼ Exp∗(λ) and the distribution function FX ∈ F([0, 1)),
then

cExp∗(λ)(k) =
λ

2πik − λ

(
e2πikλ − 1

)
, ∀ k ∈ Z0.

Proof. According to the definition FSS,

cExp∗(λ)(k) =

1∫
0

e2πikxd
(

1− e−λx
)

= λ

1∫
0

e(2πik−λ)xdx

=
λ

2πik − λ

(
e2πik−λ − 1

)
.

Next, we shall present the original results that inform us under what cir-

cumstances the sum

{
n∑

m=1
Xm

}
converges in distribution towards truncated

exponential distribution.

Theorem 4. Let (Xm) be a sequence of independent and identically dis-

tributed random variables, so that
∞∑
m=1

V arXm is finite and X1 ∼ Exp∗(λ).

Then

{
n∑

m=1
Xm

}
converges in distribution if and only if limn→∞

{
n∑

m=1
EXm

}
exists.
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Proof. First, we shall proof sufficiency. Since X1 ∼ Exp∗(λ), it results that
EXm = 1

λ .

On the other hand,

{
n∑

m=1
Xm

}
=

{
n∑

m=1

(
Xm − 1

λ

)
+

{
n∑

m=1

1
λ

}}
. Ac-

cording to Proposition 4,
n∑

m=1

(
Xm − 1

λ

) a.s→ X, for n→∞. Then

{
n∑

m=1
Xm

}
d→{

X + 1
λ

}
.

As a necessity, let

{
n∑

m=1
Xm

}
be shall converge for n → ∞. Simi-

larly, we have

{
n∑

m=1

1
λ

}
=

{
n∑

m=1

(
1
λ −Xm

)
+

{
n∑

m=1
Xm

}}
. From Propo-

sition 4,
n∑

m=1

(
1
λ −Xm

)
converges almost certainly when n→∞. Therefore,{

n∑
m=1

1
λ

}
exists.

The following theorems provide the necessary and sufficient conditions
for the fractional parts of the sums of the independent random variables
identically towards the truncated exponential distribution of parameter λ.

Theorem 5. Let (Xm) be a sequence of independent and identically random

variables with (cm), the corresponding FSS , and also Sn =
n∑

m=1
Xm, n ∈ N.

(i). {Sn}
d→ Exp∗(λ)⇐⇒

n∏
m=1

cm(k)→ λ
2πik−λ

(
e2πik−λ − 1

)
, n→∞,

(ii). We suppose cm(k) 6= 0, ∀ k ∈ Z0, m ∈ N, {Sn} does not converge to
Exp∗(λ) is equivalent to

∞∑
m=1

(1− |cm(k)|) is divergent, ∀ k ∈ Z0 .

Proof. [i]. Based on the Theorem 3,

{Sn}
d→ Exp∗(λ)⇐⇒ c{Sn}(k)

n→∞→ cExp∗(λ)(k)
Proposition 5⇐⇒

⇐⇒
n∏

m=1

cm(k)→ λ

2πik − λ

(
e2πik−λ − 1

)
, n→∞ .
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[ii]. According to Proposition 3,
∞∑
m=1

(1− |cm(k)|) divergent ⇐⇒
∞∏
m=1

cm(k) is divergent, that is {Sn}
d→ F, with F 6= Exp∗(λ).

Corollary 2. If the sequence (cm), of the random variables sequence (Xm)

meets the condition of
∞∑
m=1

(1− |cm(k)|) to be convergent, ∀ k ∈ Z0, then

{Sn}
d→ Exp∗(λ), where Sn =

n∑
m=1

Xm, n ∈ N.

Theorem 6. Let (Xm) be a sequence of independent and identically dis-
tributed random variables with the characteristic function ϕ, X1 ∼ Exp∗(λ),
and 0 < V arX1 < ∞. Let (am) be a sequence of real numbers so that

limm→∞ am = 0. We define Vn :=
n∑

m=1
amXm, n ∈ N.

(i). If
∞∑
m=1

a2m is convergent, then {Vn}
d→ Exp∗(λ).

(ii). We suppose that there is k ∈ Z0, ϕ(2πkam) 6= 0. If
∞∑
m=1

a2m is diver-

gent, then {Vn} don’t converge to Exp∗(λ).

Proof. [i]. Let k ∈ Z0 be fixed. By Corollary 2, it is sufficient to show that
∞∑
m=1

(1− |ϕ(2πkam)|) is convergent.

It is known that if X ∼ Exp∗(λ), then ϕX(t) = λ/ (λ− it), from where

|ϕX(t)| = λ√
λ2 + t2

=

(
1 +

(
t

λ

)2
)− 1

2

.

If we consider the development in binomial series (1 + x)−
1
2 = 1 − x

2 +

3
8x

2 + ..., then we obtain
(

1 +
(
t
λ

)2)− 1
2

= 1− 1
2λ t

2 + o(t2), from where the

following 1
4λ t

2 < 1− |ϕX(t)| < 1
λ t

2.
Then

∞∑
m=1

(1− |ϕ(2πkam)|) <
∞∑
m=1

1

λ
4π2k2a2m =

4π2k2

λ

∞∑
m=1

a2m.
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As
∞∑
m=1

a2m is convergent, it means that
∞∑
m=1

(1− |ϕ(2πkam)|) is conver-

gent.

[ii]. Since 1−|ϕX(t)| > t2

4λ , we have
∞∑
m=1

(1− |ϕ(2πkam)|) > π2k2

λ

∞∑
m=1

a2m.

Results that
∞∑
m=1

(1− |ϕ(2πkam)|) is divergent because
∞∑
m=1

a2m is diver-

gent. Next Theorem 5(ii) is taken into account .

Example

Let (Xm) be a sequence of independent and identically distributed random

variables, X1 ∼ Exp∗(λ) and am = m−b, b > 0;
∞∑
m=1

a2m =
∞∑
m=1

1
m2b ={

=∞ , b ≤ 1
2

<∞ , b > 1
2

. We have the following situations for the sequence Vn =

n∑
m=1

1
mb
Xm:

(1) b ≤ 1
2 ,

∞∑
m=1

a2m =∞ Theorem 6
=⇒ {Vn} does not converge to Exp∗(λ).

(2) 1
2 < b ≤ 1 ,

∞∑
m=1

a2m <∞ Theorem 6
=⇒ {Vn}

d→ Exp∗(λ) or{
1

1b
X1 +

1

2b
X2 + ...+

1

nb
Xn

}
n→∞→ Exp∗(λ)

(3) b > 1, according to Theorem 4, limn→∞
n∑

m=1
EXm = limn→∞

n
λ = ∞,

that is {Vn}
d→ F , with F 6= Exp∗(λ).
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Abstract

We study the behavior of solutions to the problem ε
(
u′′ε (t) +A1uε(t)

)
+ u′ε(t) +A0uε(t) +B

(
uε(t)

)
= fε(t), t ∈ (0, T ),

uε(0) = u0ε, u′ε(0) = u1ε,

in the Hilbert space H as ε → 0, where A1, A0 are two linear self-
adjoint operators and B is a locally Lipschitz and monotone operator.
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1 Introduction

Let H be a real Hilbert space endowed with the scalar product (·, ·) and

the norm | · |. Let Ai : D(Ai) ⊂ H → H, i = 0, 1, be two linear self-

adjoint operators and B : D(B) ⊂ H → H a locally Lipschitz and monotone

operator. Consider the following Cauchy problem: ε
(
u′′ε(t) +A1uε(t)

)
+ u′ε(t) +A0uε(t) +B

(
uε(t)

)
= fε(t), t ∈ (0, T ),

uε(0) = u0ε, u′ε(0) = u1ε,

(Pε)

where ε > 0 is a small parameter(ε� 1), uε, fε : [0, T )→ H.

We investigate the behavior of solutions uε to the problems (Pε) when

u0ε → u0, fε → f as ε → 0. We establish a relationship between solu-

tions to the problems (Pε) and the corresponding solution to the following

unperturbed problem:{
v′(t) +A0v(t) +B

(
v(t)

)
= f(t), t ∈ (0, T ),

v(0) = u0.
(P0)

If in some topology, the solutions uε to the perturbed problems (Pε) tend

to the corresponding solution v to the unperturbed problem (P0) as ε → 0,

then the problem (P0) is called regularly perturbed. In the opposite case,

the problem (P0) is called singularly perturbed. In the last case, a subset of

[0,∞) in which solutions uε have a singular behavior relative to ε arises. This

subset is called the boundary layer. The function which defines the singular
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behavior of solution uε within the boundary layer is called the boundary layer

function.

The problem (Pε) is the abstract model of singularly perturbed problems

of hyperbolic-parabolic type. Such kind of problems arises in the mathemati-

cal modeling of elasto-plasticity phenomena. These abstract results are new

and can be applied to singularly perturbed problems of hyperbolic-parabolic

type with stationary part defined by strongly elliptic operators of high order.

A large class of works is dedicated to the study of singularly perturbed

Cauchy problems for differential equations of second order. Without pre-

tending to do a complete analysis of these works, we will mention some of

them, which contain a rich bibliography. In [15], [17], [28], asymptotic ex-

pansions of solutions and theirs derivatives for linear wave equations have

been obtained. In [3], [5], [8], [14], [22] the nonlinear problems of hyperbolic-

parabolic type have been studied. In [4], [7], [9], [16], [21], [23], [25] the

behavior of solutions uε to the abstract linear Cauchy problem (Pε) has been

established as ε → 0, in the case when A0 and A1 are positive operators

and B = 0. The nonlinear abstract problems of hyperbolic-parabolic type

have been studied in [10], [11], [12], [13], [18]. Under some assumptions,

closely related to those we use in this article, in [19] and [20] the author

analyzed the behavior of solutions to the Cauchy problem for the semi-linear

equation εu′′(t) + Au′(t) + Bu(t) + f(u) = 0 in a Hilbert space, as ε → 0.

The coefficients are supposed to be commuting self-adjoint operators and the

function f is locally Lipschitz or monotone. The difference of the solution

and its singular limit has been estimated. The convergence rate has been

established in terms of the small parameter ε. Also the difference of solutions

of nonhomogeneous equations with initial data u(0) = u′(0) = 0 has been

evaluated. All results from these papers were obtained by using the theory

of semigroups of linear operators.

Different to other methods, our approach is based on two key points. The
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first one is the relationship between solutions to the problems (Pε) and (P0)

in the linear case. The second key point are a priori estimates of solutions

to the unperturbed problem, which are uniform with respect to the small

parameter ε. Moreover, the problem (Pε) is studied for a larger class of

functions fε, i. e. fε ∈ W 1,p(0, T ;H). We also obtain the convergence rate,

as ε→ 0, which depends on p.

Similar results have been established in the work [24], under the same

assumptions on the operators A0 and A1 and by assuming that the operator

B is Lipschitz.

The organization of this paper is as follows. In the next section the

theorems of existence and uniqueness of solutions to the problems (Pε) and

(P0) are presented. In Section 3 we present some a priori estimates of these

solutions. In Section 4 we present a relationship between solutions to the

problem (Pε) and the corresponding solution to the problem (P0). The main

result of this paper is established in the Section 5. More precisely, we prove

the convergence estimates of the difference of solutions and theirs derivatives

to the problems (Pε) and (P0). At last, an example is given to show the

applications of our main result.

In what follows we will need some notations. Let k ∈ N∗, 1 ≤ p ≤ +∞,

(a, b) ⊂ (−∞,+∞) and X be a Banach space. By W k,p(a, b;X) denote the

Banach space of vectorial distributions u ∈ D′(a, b;X), u(j) ∈ Lp(a, b;X),

j = 0, 1, . . . , k, endowed with the norm

‖u‖Wk,p(a,b;X) =

 k∑
j=0

‖u(j)‖pLp(a,b;X)

 1
p

for p ∈ [1,∞),

‖u‖Wk,∞(a,b;X) = max
0≤j≤k

‖u(j)‖L∞(a,b;X) for p =∞.

In the particular case p = 2 we put W k,2(a, b;X) = Hk(a, b;X). If X is a
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Hilbert space, thenHk(a, b;X) is also a Hilbert space with the scalar product

(u, v)Hk(a,b;X) =
k∑
j=0

b∫
a

(
u(j)(t), v(j)(t)

)
X
dt.

For s ∈ R, k ∈ N and p ∈ [1,∞] define the Banach spaces

W k,p
s (a, b;H) = {f : (a, b)→ H; f (l)(·)e−st ∈ Lp(a, b;X), l = 0, . . . , k},

with the norms

‖f‖
Wk,p
s (a,b;X)

= ||fe−st||Wk,p(a,b;X).

The framework of our study will be determined by the following condi-

tions:

(H1) The operator A0 : D(A0) ⊆ H → H is linear, self-adjoint and

positive definite, i. e. there exists ω0 > 0 such that

(A0u, u) ≥ ω0 |u|2, ∀u ∈ D(A0);

(H2) The operator A1 : D(A1) ⊆ H → H is linear, self-adjoint,

D(A0) ⊆ D(A1) and there exists ω1 > 0 such that

|(A1u, u)| ≤ ω1 (A0u, u) , ∀u ∈ D(A0).

(HB1) The operator B : D(B) ⊆ H → H is A1/2
0 locally Lipschitz, i.e.

D(A
1/2
0 ) ⊂ D(B) and for every R > 0 there exists L(R) ≥ 0 such that

|B(u1)−B(u2)| ≤ L(R)|A1/2
0 (u1−u2)|, ∀ui ∈ D(A

1/2
0 ), |A1/2

0 ui| ≤ R, i = 1, 2;

(HB2) The operator B is the Fréchet derivative of some convex and

positive functional B with D(A
1/2
0 ) ⊂ D(B).

The hypothesis (HB2) implies, in particular, that the operator B is

monotone and verifies the condition

d

dt
B(u(t)) =

(
B(u(t)), u′(t)

)
, ∀t ∈ [a, b] ⊂ R
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in the case when u ∈ C([a, b], D(A
1/2
0 ))∩C1([a, b], H) (see, for example [26],

p. 29).

(HB3) The operator B possesses the Fréchet derivative B′ in D(A
1/2
0 )

and there exists L1(R) ≥ 0 such that∣∣(B ′(u1)−B ′(u2)
)
v
∣∣ ≤ L1(R)

∣∣A1/2
0 (u1−u2)

∣∣ |A1/2
0 v|, ∀u1, u2, v ∈ D(A

1/2
0 ),

|A1/2
0 ui| ≤ R, i = 1, 2.

In what follows, we present an inequality of Gronwall-Bellman type, which

will be used to prove the main results of this work.

Lemma 1.1. Suppose that v, z, h : [a, b] ⊂ R → R, v ∈ C([a, b]), z ∈
L2(a, b), h ∈ L1(a, b), v(t) ≥ 0 for t ∈ [a, b] and z(t) ≥ 0, h(t) ≥ 0, a. e.

t ∈ (a, b). If

v(t) +
(∫ t

t0

z2(s) ds
)1/2

≤ c0

(
v(t0) +

∫ t

t0

h(s) ds
)

+ c1

∫ t

t0

z(s) ds, ∀t0, t ∈ [a, b], t > t0 (1.1)

with c0 > 0, c1 > 0, then

v(t) +
(∫ t

a
z2(s) ds

)1/2

≤ max
{

(2c0)4 c21 (t−a)+1, (2c0)−4 c21 (t−a)+1
}(
v(a)+

∫ t

a
h(s) ds

)
, ∀t ∈ [a, b].

(1.2)

Proof. The inequality (1.1) implies(∫ t

t0

z2(s) ds
)1/2

≤ c0v(t0)+c0

∫ t

t0

h(s) ds+c1 (t−t0)1/2
(∫ t

t0

z2(s) ds
)1/2

, t, t0 ∈ [a, b], t > t0.
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If 0 ≤ t− t0 ≤ (2 c1)−2, t, t0 ∈ [a, b], then from this inequality, it follows that(∫ t

t0

z2(s) dτ
)1/2

≤ 2c0 v(t0) + 2c0

∫ t

t0

h(s) ds.

From the last inequality and (1.1), it follows that

v(t) +
(∫ t

t0

z2(s) ds
)1/2

≤ 2c0 v(t0) + 2c0

∫ t

t0

h(s) ds, ∀t, t0 ∈ [a, b], 0 ≤ t− t0 ≤ (2 c1)−2. (1.3)

Let

tk = a+
k

(2 c1)2
, k = 0, 1 . . . , n, tk ∈ [a, b].

Denote by

y(t) = v(t) +
(∫ t

a
z2(s) ds

)1/2
, g(t, tk) =

∫ t

tk

h(s) ds.

Then, from (1.3), we get

v(t) +
(∫ t

tk

z2(s) ds
)1/2

≤ 2c0

(
v(tk) + g(t, tk)

)
, t ∈ [tk, tk+1] ⊂ [a, b].

(1.4)

In particular, from (1.4), it follows that

v(tk) +
(∫ tk

tk−1

z2(s) ds
)1/2

≤ 2c0

(
v(tk−1) + g(tk, tk−1)

)
, [tk−1, tk] ⊂ [a, b].

(1.5)

Using (1.5), we deduce the inequalities

y(tk) ≤ c0y(tk−1) + c0v(tk−1) + 2c0 g(tk, tk−1) ≤ · · ·

≤ ck0v(a) +

k−1∑
j=0

ck−j0 v(tj) + 2

k−1∑
j=0

ck−j0 g(tj+1, tj), tk ∈ [a, b], (1.6)

v(tk) ≤ 2 c0

(
v(tk−1) + g(tk, tk−1)

)
≤ · · ·
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≤ (2c0)k v(a) +
k−1∑
j=0

(2c0)k−j g(tj+1, tj), tk ∈ [a, b]. (1.7)

Inequalities (1.6) and (1.7) imply

v(tk) +
(∫ tk

a
z2(s) ds

)1/2
≤ (2c0)k v(a) +

k−1∑
j=0

(2c0)k−j g(tj+1, tj)

≤ (2c0)k
(
v(a) +

k−1∑
j=0

∫ tj+1

tj

(2c0)−j h(s) ds
)

≤ (max{2c0, (2c0)−1)k
(
v(a) +

∫ tk

a
h(s) ds

)
. (1.8)

For each t ∈ [a, b] there exists tk ∈ (a, b] such that t ∈ [tk, tk+1] or t ∈ (tk+1, b]

and b− tk+1 < 1/4c2
1. Therefore, using (1.3) and (1.8), we obtain

v(t) +
(∫ t

a
z2(s) ds

)1/2
≤ v(t) +

(∫ tk

a
z2(s) ds

)1/2
+
(∫ t

tk

z2(s) ds
)1/2

≤ (2c0)v(tk) + (2c0)

∫ t

tk

h(s) ds+
(∫ tk

a
z2(s) ds

)1/2

≤ max
{

(2c0)k+1, (2c0)−k+1
}(
v(a) +

∫ t

a
h(s) ds

)
, t ∈ [tk, tk+1].

As k ≤ 4 c2
1 (t− a) for t ∈ [tk, tk+1], from the last inequality, we get (1.2). �

2 Existence of solutions to problems (Pε) and (P0)

In this section we will present the results about the solvability of problems

(Pε) and (P0) and also on the regularity of their solutions. They are not new

(see, for example, [1], p. 127) but we formulate and prove them in terms

of conditions (HB1) - (HB3) to specify the properties of smoothness of

solutions.



136 Andrei Perjan, Galina Rusu

Definition 2.1. Let T > 0 and f ∈ L2(0, T ;H), A : D(A) ⊆ H → H,

B : D(B) ⊆ H → H. The function u ∈ L2(0, T ;D(A) ∩ D(B)) with u′ ∈
L2(0, T ;H) and u′′ ∈ L2(0, T ;H) is called strong solution to the Cauchy

problem

u′′(t) + u′(t) +Au(t) +B
(
u(t)

)
= f(t), ∀t ∈ (0, T ), (2.1)

u(0) = u0, u′(0) = u1, (2.2)

if u satisfies the equality (2.1) in the sense of distributions a. e. t ∈ (0, T )

and the initial conditions (2.2) .

Definition 2.2. Let T > 0 and f ∈ L2(0, T ;H), A : D(A) ⊆ H → H,

B : D(B) ⊆ H → H. The function v ∈ L2(0, T ;D(A) ∩ D(B)) with v′ ∈
L2(0, T ;H) is called strong solution to the Cauchy problem

v′(t) +Av(t) +B
(
v(t)

)
= f(t), ∀t ∈ (0, T ), (2.3)

v(0) = u0. (2.4)

if v verifies the equality (2.3) in the sense of distributions a. e. t ∈ (0, T )

and the initial condition (2.4).

Theorem 2.1. Let T > 0. Let us assume that the operator A : D(A) ⊂ H →
H is linear, self-adjoint and positive definite, i. e. there exists ω > 0 such

that

(Au, u) ≥ ω|u|2, ∀u ∈ D(A), (2.5)

and the operator B : D(B) ⊂ H → H satisfies (HB1) and (HB2).

If u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈W 1,1(0, T ;H), then there exists a

unique strong solution u to problem (2.1), (2.2), such that u ∈ C 2([0, T ];H),

A1/2u ∈ C1([0, T ];H), Au ∈ C([0, T ];H).

If, in addition, u1 ∈ D(A), f(0) − B(u0) − Au0 − u1 ∈ D(A1/2),

f ∈ W 2,1(0, T ;H) and (HB3) is fulfilled, then A1/2u ∈ W 2,∞(0, T ;H) and

u ∈W 3,∞(0, T ;H).
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Proof. Let H = D(A1/2) × H be the real Hilbert space endowed with the

scalar product

(U1, U2)H =
(
A1/2u1, A

1/2u2

)
+ (v1, v2), Ui = (ui; vi), i = 1, 2. (2.6)

Let L : V = D(A)×D(A1/2)→ H be the operator which is defined by

LU = (−v; Au+ v), U = (u; v) ∈ V. (2.7)

Let F : D(F) = R×H,

F(t, U) = (0; −B(u) + f̃(t)), t ∈ R, U = (u; v) ∈ H,

where f̃ : R → H is the extension of function f such that f̃ ∈ W 1,1(R;H)

and

||f̃ ||W 1,1(R;H) ≤ C(T ) ||f ||W 1,1(0,+∞;H). We examine the following Cauchy

problem in H {
U ′(t) + LU(t) = F(t, U), t ∈ R,
U(0) = U0,

(2.8)

where U(t) = (u(t); v(t)), U0 = (u0;u1). Since

(LU,U)H = |v|2 ≥ 0, ∀U = (u; v) ∈ V, (2.9)

it follows that the operator L is monotone. We will show that R(I+L) ⊇ H,
from which it will follow that L is even maximal monotone. Let G = (g;h) ∈
H be arbitrary. The equation

U + LU = G

is equivalent to the system{
v = u− g,
Au+ 2u = 2 g + h.

(2.10)
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If g ∈ D(A1/2) and h ∈ H, then the second equation from (2.10) has a unique

solution u ∈ D(A) ⊂ D(A1/2). From the first equation of the system (2.10),

it follows that v ∈ D(A1/2). Hence R(I + L) ⊇ H. Therefore, the operator

L is maximal monotone in H (see, for example, [1], p. 34). According to

Lumer - Phillips’s Theorem ([27], p. 58), the operator −L is an infinitesimal

generator of a C0- semigroup {S(t) ; t ≥ 0} of contractions on H.
From (HB1), it follows that

||F(t, U1)−F(t, U2)||H = |B(u1)−B(u2)| ≤ L(R) ||U1 − U2||H

for Ui = (ui; vi), ||Ui||H ≤ C(R), i = 1, 2. Hence, the mapping F is locally

Lipschitz in H with respect to the second variable. Then, there exists a > 0

such that the problem (2.8) has a unique C0-solution U ∈ C([0, a);H) (see,

for example, [27], p. 183). As U0 ∈ D(L) and f̃ ∈ W 1,1(R;H), it follows

that this solution is also a classical solution in [0, a). Indeed, let us examine

the function

v(t) =

∫ t

0
S(t− s)F(s, U(s)) ds.

For t ∈ (0, a) and h > 0, t+ h ∈ (0, a), we have

v(t+ h)− v(t) =

∫ 0

−h
S(t− s)F(s+ h, U(s+ h)) ds

+

∫ t

0
S(t− s)

(
F(s+ h, U(s+ h))−F(s, U(s))

)
ds. (2.11)

We observe that the function F is continuous in R×H and it maps the

bounded sets in R×H into bounded sets in H, because

||F(t, U)||H = |−B(u)+ f̃(t)| ≤ |B(0)|+L(R) |A1/2u|+ |f(0)|+ ||f̃ ||W 1,1(R;H)

≤ C
(
R, ||f̃ ||W 1,1(R;H)

)
, U ∈ D(F), ||U ||H ≤ R, t ∈ [0, a).

Therefore, from (2.11), it follows that

||v(t+ h)− v(t)||H ≤
∫ t

0

(
|f̃(s+ h)− f̃(s)|+ |B(u(s+ h))−B(u(s))|

)
ds
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+Mh ≤ h
(
M +

∫ t+h

0
|f̃ ′(s)|ds

)
+L(R)

∫ t

0
||U(s+h)−U(s)||H ds, (2.12)

where M = max
t∈[0,a],||U(t)||H≤R

|F(t, U)|. Since U(t) = S(t)U0 + v(t) and

||S(t+ h)U0 − S(t)U0||H ≤ ||S(h)U0 − U0||H ≤ ||LU0||H h,

from (2.12), we obtain

||U(t+ h)− U(t)||H ≤ h
(
M +

∫ ∞
0
|f̃ ′(s)|ds+ ||LU0||H

)
+L(R)

∫ t

0
||U(s+ h)− U(s)||H ds.

From the last inequality, using Gronwall’s Lemma (see, for example, [2], p.

156), we deduce that

||U(t+h)−U(t)||H ≤ eL(R) t
(
M+

∫ ∞
0
|f̃ ′(s)|ds+||LU0||H

)
h, t, t+h ∈ [0, a).

From here, it follows that the function t ∈ [0, a) → U(t) ∈ H is Lipschitz.

As f̃ ∈ W 1,1(0,+∞;H), then it follows that F ∈ W 1,1(0, a;H). Because

U0 ∈ D(L), from the equality

U(t) = S(t)U0 +

∫ t

0
S(t− s)F(s, U(s)) ds,

it follows that U is a classical solution to the problem (2.8) in [0, a).

In addition, if for some a > 0 U is the classical solution to problem (2.6)

in [0, a), then, due to (HB2), U is bounded on [0, a). Indeed, from the

equality

||U(t)||2H + 2

∫ t

0

(
L(U(s)), U(s)

)
H
ds+ 2B(u(t))

= ||U0||2H + 2B(u0) + 2

∫ t

0

(
f̃(s), v(s)

)
ds, t ∈ [0, a),

it follows that

||U(t)||2H ≤ ||U0||2H + 2B(u0) + 2

∫ t

0

(
f̃(s), v(s)

)
ds t ∈ [0, a).
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Using Lemma of Brézis, we obtain

||U(t)||H ≤
(
||U0||H + 2

(
B(u0)

)1/2
+ ||f̃ ||L1(R;H), t ∈ [0, a),

i. e. solution U is bounded on [0, a). This solution is also a C 0-solution in

[0, a). Moreover, the function U is a global classical solution to the problem

(2.8) (see, for example, [27], p. 183).

Now, we will show that U possesses the right derivative at t = 0. Let

h > 0. Then we have that

d

dh
||U(h)− U0||2H

= −2
(
L(U(h))−L(U0), U(h)−U0

)
H+ 2

(
F(h, U(h))−L(U0), U(h)−U0

)
H.

From the last equality, using (2.9), we obtain the the inequality

||U(h)− U0||2H ≤ 2

∫ h

0
||F(s, U(s))− L(U0)||H ||U(s)− U0||H ds,

from which, using Lemma of Brézis, it follows that

||U(h)− U0||H ≤
∫ h

0
||F(s, U(s))− L(U0)||H ds. (2.13)

Since F(s, U(s)) → F(0, U0) as s → 0 ı̂n H, we divide (2.13) on both sides

by h and pass to the limit as h→ 0. We obtain

lim sup
h↓0

1

h
||U(h)− U0||H ≤ ||F(0, U0)− L(U0)||H. (2.14)

As U is the strong solution to the problem (2.8) and the operator L is mono-

tone, then, for every z ∈ D(L), we have

1

2
||U(t)−z||2H ≤

1

2
||U(s)−z||2H+

∫ t

s

(
F(τ, U(τ))−Lz, U(τ)−z

)
H dτ, 0 ≤ s ≤ t,

from which it follows that(
U(h)− U0, U0 − z

)
H ≤

1

2
||U(h)− z||2H
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−1

2
||U0 − z||2H ≤

∫ h

0

(
F(τ, U(τ))− Lz, U(τ)− z

)
H dτ, h > 0. (2.15)

In virtue of (2.14), there exists a subsequence hk ↓ 0 such that

h−1
k

(
U(hk)− U0)

)
→ q, weakly in H.

Put h = hk in (2.15), then divide by hk and, in the obtained inequality, pass

to the limit as hk ↓ 0 to get the following inequality(
q −F(0, U0) + Lz, z − U0

)
H ≥ 0, ∀z ∈ D(L).

Since the operator L is maximal monotone in H, then, from the last inequal-

ity, it follows that q = F(0, U0)− LU0 and q does not depend on the subse-

quence hk. Since all subsequences h−1
k

(
U(hk) − U0)

)
converge in the weak

sense to q and these subsequences, due to inequality (2.14), are bounded, it

follows that q is a weak limit of the sequence h−1
(
U(h) − U0)

)
. It means

that

h−1
(
U(h)− U0)

)
→ F(0, U0)− LU0, weakly in H, h ↓ 0.

From the last relationship and (2.14), it follows that

d+

dt
U(0) = lim

h↓0

1

h

(
U(h)− U0

)
= F(0, U0)− L(U0).

Consequently, we have that U ∈ C1([0,∞); H). It follows that u is the

unique strong solution to the problem (2.1), satisfying: u ∈ C 2([0,∞);H),

A1/2u ∈ C1([0,∞);H) and u(t) ∈ D(A) for each t ∈ [0,+∞). Since∣∣B(u(t+ h)
)
−B

(
u(t)

)∣∣ ≤ L(R)
∣∣A1/2

(
u(t+ h)− u(t)

)∣∣→ 0, h→ 0,

where R = max
τ∈[t,t+1]

∣∣A1/2u(τ)
∣∣ and for each t ∈ [0,+∞)

||u(t+ h)− u(t)|| ≤ ω−1/2
∣∣A1/2

(
u(t+ h)− u(t)

)∣∣→ 0, h→ 0,
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then it follows that B(u) ∈ C([0,+∞;H). Therefore, from the equation (2.1)

it follows that Au ∈ C([0,∞) ;H). Consequently, we conclude that

u ∈ C 2([0, T ];H), A1/2u ∈ C1([0, T ];H), Au ∈ C([0, T ];H).

Let, now, u1 ∈ D(A), f(0)−B(u0)−Au0−u1 ∈ D(A1/2), f ∈W 2,1(0, T ;H)

and the condition (HB3) be fulfilled. Then F(0) − LU0 ∈ D(L), F ∈
W 1,1(0, T ;H) and

U ′(t) = S(t)
(
F(0)− LU0

)
+

∫ t

0
S(t− s)F ′(s) ds, t ≥ 0.

Therefore, for the function U ′h(t) = U ′(t+ h)− U ′(t) the equality

U ′h(t) = S(h)(S(t)− I)
(
F(0)−LU0

)
+

∫ t

0
S(t− s)F ′h(s) ds, t ≥ 0 (2.16)

is valid and the estimate

||S(t)(S(h)− I)
(
F(0)− LU0

)
||H ≤ ||L

(
F(0)− LU0

)
||H h, (2.17)∣∣∣∣∣∣ ∫ t

0
S(t− s)F ′h(s) ds

∣∣∣∣∣∣
H
≤ I1(h) + I2(t, h), (2.18)

holds, where

I1(h) =

∫ 0

−h

∣∣f̃ ′(s+ h)−B′
(
u(s+ t)

)
u′u(s+ h)

∣∣ ds,
and

I2(t, h) =

∫ t

0

(∣∣f̃ ′h∣∣+
∣∣(B(u(s)

)′
h

∣∣) ds.
Due to (HB3), for I1(h), we have that

I1(h) ≤ C1(h)h, (2.19)

where

C1(h) = |f ′(0)|+||f̃ ′′||L1(0,h:H)+
(
L1(R)R+||B′(0)||ω−1/2

)
max
s∈[0,h]

∣∣A1/2u′(s)
∣∣
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and R = max
s∈[0,h]

∣∣A1/2u(s)
∣∣. For I2(t, h), we have that

I2(t, h) ≤ ||f̃ ′′||L1(0,t+h;H) h+ C2(T, h)

∫ t

0

∣∣A1/2u′h(s)
∣∣ ds

≤ ||f̃ ′′||L1(0,t+h;H) h+ C2(T, h)

∫ t

0

∣∣∣∣U ′h(s)
∣∣∣∣
H ds, (2.20)

where

C2(T, h) =
(
L1(R1)R1 + ||B′(0)||ω−1/2

)
, R1 =

∣∣∣∣A1/2u
∣∣∣∣
C1([0,T+h];H)

.

From (2.16), using the estimates (2.17), (2.18), (2.19) and (2.20), we deduce

that ∣∣∣∣U ′h(t)
∣∣∣∣
H ≤

(
||L
(
F(0)− LU0

)
||H + C1(h)

+||f̃ ′′||L1(0,t+h;H)

)
h+ C2(T, h)

∫ t

0

∣∣∣∣U ′h(s)
∣∣∣∣
H ds, t ∈ [0, T ].

Applying Lemma of Brézis to the last inequality, we get∣∣∣∣U ′h(t)
∣∣∣∣
H ≤

(
||L
(
F(0)− LU0

)
||H + C1(h) + ||f̃ ′′||L1(0,t+h;H)

)
h eC2(T,h) t,

t ∈ [0, T ].

It follows that the function U ′ : [0, T ] → H is Lipschitz. Therefore,

U ′ ∈ W 1,∞(0, T ;H). It follows that A1/2u ∈ W 2,∞(0, T ;H) and u ∈
W 3,∞(0, T ;H). �

Theorem 2.2. Let T > 0. Let us assume that the operator A : D(A) ⊂ H →
H is linear, self-adjoint, positive definite, satisfies condition (2.5) and the

operator B verifies (HB1) and (HB2). If u0 ∈ D(A) and f ∈W 1,1(0, T ;H),

then there exists a unique strong solution to the problem (2.3), (2.4), such

that v ∈ C1([0, T ];H), Av ∈ C([0, T ];H). For this solution the following

estimates∣∣∣∣v∣∣∣∣
C([0, t];H)

+ ||A1/2v||L2(0, t;H) ≤ CM0(t), ∀t ∈ [0, T ], (2.21)
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∣∣∣∣A1/2v
∣∣∣∣
C([0, t];H)

+ ||v ′||C([0, t];H) +
∣∣∣∣A1/2v ′

∣∣∣∣
L2(0, t;H)

≤ C(ω)M1(t), ∀t ∈ [0, T ], (2.22)

are valid, where

M0(t) =
∣∣u0

∣∣+

∫ t

0

(
|f(s)|+ |B(0)|

)
ds,

M1(t) =
∣∣Au0

∣∣+ ||f ||W 1, 1(0, t;H) + |B(0)|+ |f(0)|.

Proof. First of all we will show that every classical solution to the problem

(2.3), (2.4) verifies the estimates (2.21), (2.22). To this end we multiply in H

the equation (2.3) by v(t) and then integrate the obtained equality. Taking

into account that the operator B is monotone, we obtain

|v(t)|2 + 2

∫ t

0

(
Av(s), v(s)

)
ds ≤ |u0|2 + 2

∫ t

0

(
f(s)−B(0), v(s)

)
ds, t ≥ 0.

From the last inequality, using Lemma of Brézis, we obtain the estimate

(2.21).

To prove the estimate (2.22) denote vh(t) = v(t+h)− v(t), h > 0. Then,

as the operator B is monotone, for vh, we obtain

|vh(t)|2+2

∫ t

0

(
Avh(s), vh(s)

)
ds ≤ |vh(0)|2+2

∫ t

0

(
fh(s), vh(s)

)
ds, t ≥ 0,

from which, using Lemma of Brézis, it follows the inequality

|vh(t)|+
∫ t

0

(
Avh(s), vh(s)

)
ds ≤ |vh(0)|+

∫ t

0
|fh(s)| ds, t ≥ 0.

Divide the last inequality by h and pass to the limit as h→ 0 in the obtained

inequality, in addition, using Fatou’s Lemma, we obtain

||v ′||C([0, t];H) +
∣∣∣∣A1/2v ′

∣∣∣∣
L2(0, t;H)

≤M1(t), t ∈ [0, T ]. (2.23)
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Multiplying scalar in H the equation (2.3) by v, using (2.23) and the fact

that the operator B is monotone, we get∣∣A1/2v(t)
∣∣2 ≤ (f(t), v(t)

)
−
(
v′(t), v(t)

)
−
(
B(0), v(t)

)
≤ |v(t)|

(
|f(t)|+ |B(0)|+ |v′(t)|

)
≤ C ω−1/2

∣∣A1/2v(t)
∣∣M1(t), t ∈ [0, T ].

From the last estimate and (2.23) the estimate (2.22) follows.

Let us prove the solvability of the problem (2.3), (2.4). Let {S(t); t ≥ 0}
be the C0-semigroup of linear operators with the infinitesimal generator −A.
Let f̃ be the extension of function f on R, which is defined in Theorem 2.1,

and F(t, v(t)) = f̃(t)−B
(
v(t)

)
. Similarly, as in Theorem 2.1 it is proved that

F is a locally Lipschitz function in H with respect to the second variable, F
is continuous on R×H and maps the bounded sets in R×H into bounded

sets in H. Therefore, the proof of Theorem 2.2 follows the very same way as

the proof of Theorem 2.1. �

3 A priori estimates for solutions to the problem

(Pε)

In what follows, we will give some a priori estimates of solutions to the

problem

ε u′′ε(t) + u′ε(t) +Auε(t) +B
(
uε(t)

)
= f(t), t ∈ (0, T ), (3.1)

uε(0) = u0, u′ε(0) = u1, (3.2)

in the case when the operatorB is monotone. These estimates will be uniform

with respect to the small ε and will be used to study the behavior of solutions

to the problem (Pε) when ε→ 0.

Lemma 3.1. Let us assume that the operator A : D(A) ⊂ H → H is

linear, self-adjoint, positive definite, satisfies (2.5) and the operator B verifies
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(HB1) and (HB2). If u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ W 1,1(0,∞;H),

then there exists C = C(ω) > 0 such that for every strong solution uε to the

problem (3.1), (3.2), the estimates

||A1/2uε ||C([0, t];H) + ||u′ε||L2(0, t;H) +
(
B
(
uε(t)

))1/2
≤m, ∀ε ∈ (0, 1], ∀t ≥ 0,

(3.3)

ε||u′′ε ||C([0, t];H) + ||u′ε||C([0, t];H) +
∣∣∣∣A1/2u′ε

∣∣∣∣
L2(0, t;H)

≤ C e12L2(m) tm1, ∀ε ∈ (0, 1], ∀t ≥ 0, (3.4)

||Auε(t)||C([0,t];H) ≤ Cm2 e

(
6L2(m)+1

)
t, ∀ε ∈ (0, 1/2], ∀t ≥ 0, (3.5)

are valid, where

m = |A1/2u0|+ |u1|+ |B(u0)|1/2 + ||f ||L2(0,∞;H),

m1 = |Au0|+ |A1/2u1|+ |B(u0)|+ |B(u0)|1/2 + ||f ||W 1,1(0,∞;H),

m2 =
(
L(m) + 1

)
m1.

If B = 0, then, in (3.3), (3.4) and (3.5), L(m) = 0, m2 = m1,

m = |A1/2u0|+|u1|+||f ||L2(0,∞;H)

)
, m1 = |Au0|+|A1/2u1|+||f ||W 1,1(0,∞;H).

Proof. Proof of the estimate (3.3). Denote by

E0(u, t) = ε|u′(t)|2 +
(
Au(t), u(t)

)
+ 2

∫ t

0
|u′(τ)|2dτ + 2B(u(t)).

Using Theorem 2.1, by direct computations, we obtain that, for every strong

solution uε to the problem (3.2), the equality

d

dt
E0(uε, t) = 2

(
f(t), u′ε(t)

)
, ∀t ≥ 0

holds. Integrating this equality, we get

E0(t, uε) ≤ E0(uε, 0) +

∫ t

0
|f(s)| |u′ε(s)| ds, ∀t ≥ 0. (3.6)
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If f ∈W 1,1(0,∞;H), then f ∈ Lp(0,∞;H), p ∈ [1,∞] and

||f ||Lp(0,∞;H) ≤ C(p) ||f ||W 1,1(0,∞;H). (3.7)

Therefore, from (3.7), via to Hölder’s inequality, it follows the estimate

∣∣∣∣A1/2uε
∣∣∣∣
C([0 ,t;H)

+ ||uε||L2(0 ,t;H) +
(
B
(
uε(t)

))1/2

≤ E1/2
0 (uε, 0) + ||f ||L2(0 ,t;H) + |B(u0)|1/2, ∀ε ∈ (0, 1], ∀t ≥ 0,

from which we get the estimate (3.3).

Proof of the estimate (3.4). Denote by uεh(t) = uε(t+ h)− uε(t), ∀h >
0, ∀t ≥ 0 and

E(u, t) = ε2|u′(t)|2 +
1

2
|u(t)|2 + ε

(
Au(t), u(t)

)
+ ε

∫ t

0
|u′(τ)|2dτ

+ε
(
u(t), u′(t)

)
+

∫ t

0

(
Au(τ), u(τ)

)
dτ. (3.8)

For every strong solution uε to (3.2), the equality

d

dt
E(uεh, t) =

(
2εu′εh(t) + uεh(t), fh(t)− (B(uε(t)))h

)
, ∀t > 0 (3.9)

holds. According to (HB1) and (3.3), we have that∣∣(B(uε(t)))h
∣∣ =

∣∣B(uε(t+ h))−B(uε(t))
∣∣ ≤ L(m)

∣∣A1/2uεh(t)
∣∣

and

|2εu′εh + uεh(t)| ≤ 2(E(uεh, t))
1/2.

Integrating the equality (3.9) on (t0, t), we obtain

E(uεh, t)

≤ E(uεh, t0)+2

∫ t

t0

(
|fh(τ)|+L(m)

∣∣A1/2uεh(τ)
∣∣)E1/2(uεh, τ) dτ, t > t0 ≥ 0.
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From the last inequality, using Lemma of Brézis and Lemma 1.1, we get

|uεh(t)|+
(∫ t

0

∣∣A1/2uεh(τ)
∣∣2dτ)1/2

≤ C e4L2(m) t
(
E1/2(uεh, 0) +

∫ t

0
|fh(τ)| dτ

)
, ∀t ≥ 0. (3.10)

To obtain the estimate (3.4), divide (3.10) by h, then pass to the limit as

h ↓ 0.

Proof of the estimate (3.5). Let Aλ be the Yosida approximation of

operator A. Let us define

E1(u, t) = ε
(
Aλu

′(t), u′(t)
)

+
(
Aλu(t), u(t)

)
+
(
Aλu(t), Au(t)

)
+ 2ε

(
Aλu(t), u′(t)

)
+2(1− ε)

∫ t

0

(
Aλu

′(τ), u′(τ)
)
dτ + 2

∫ t

0

(
Aλu(τ), Au(τ)

)
dτ. (3.11)

Due to Theorem 2.1, by direct computations, for every strong solution uε to

the problem (3.2), we get

d

dt
E1(uε, t) = 2

(
f(t)−B

(
uε(t)

)
, Aλuε(t) +Aλu

′
ε(t)
)
, ∀t > 0.

Integrating this equality, we obtain

E1(uε, t)

= E1(uε, 0) + 2

∫ t

0

(
f(τ)−B

(
uε(τ)

)
, Aλuε(τ) +Aλu

′
ε(τ)

)
dτ, ∀t ≥ 0.

(3.12)

Due to (HB2) and (3.4), for every t > 0, we have that B(uε) ∈W 1,2(0, t;H)

and ∫ t

0

∣∣∣(B(uε(τ)
))′∣∣∣2 dτ ≤ L2(m)

∫ t

0

∣∣A1/2u′ε(τ)
∣∣2 dτ

≤ C L2(m) e4L2(m) tm1
2, ∀ε ∈ (0, 1], ∀t ≥ 0. (3.13)
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Hence, B(uε) ∈ W 1,1(0, t;H) for every t > 0 and the function t ∈ [0,∞) →
B
(
uε(t)

)
∈ H is absolutely continuous. Then∫ t

0

(
B
(
uε(τ)

)
, Aλu

′
ε(τ)

)
dτ =

(
B
(
uε(t)

)
, Aλuε(t)

)
−
(
B
(
u0), Aλu0

)
−
∫ t

0

((
B
(
uε(τ)

))′
, Aλuε(τ)

)
dτ

and the equality (3.12) will take the form

E1(uε, t) = E1(uε, 0) + I1(t, ε) + I2(t, ε) + I3(t, ε), ∀t ≥ 0, (3.14)

where

I1(t, ε) = 2
(
f(t)−B

(
uε(t)

)
, Aλuε(t)

)
− 2
(
f(0)−B(u0), Aλu0

)
,

I2(t, ε) = 2

∫ t

0

(
f(τ)− f ′(τ)−B

(
uε(τ)

)
, Aλuε(τ)

)
dτ,

I3(t, ε) = 2

∫ t

0

((
B
(
uε(τ)

))′
, Aλuε(τ)

)
dτ.

Using (HB1), (3.3) and proprieties of the Yosida approximation ([1], p. 99),

for I1(t, ε), we obtain∣∣I1(t, ε)
∣∣ ≤ 1

2

∣∣Aλuε(t)∣∣2 + L2(m)
(∣∣A1/2uε(t)

∣∣2 +
∣∣A1/2u0

∣∣)
+C

(
|Au0|2 + |B(u0)|2 + ||f ||2W 1, 1(0,∞;H)

)
≤ 1

2

(
Aλuε(t), Auε(t)

)
+ Cm2

2, ∀ε ∈ (0, 1/2], ∀t ≥ 0. (3.15)

Due to (HB2), (3.3) and the properties of Yosida approximation, we have

that ∣∣∣B(uε(τ)
)∣∣ ≤ ∣∣B(u0)

∣∣+ L(m)
(∣∣A1/2uε(τ)

∣∣+
∣∣A1/2u0

∣∣), ∀τ ≥ 0,

and

E1(uε, t) ≥ 0,
∣∣Aλuε(t)∣∣ ≤ E1/2

1 (uε, t), ∀ε ∈ (0, 1], ∀t ≥ 0.
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Therefore, for I2(t, ε), we obtain∣∣I2(t, ε)
∣∣ ≤ ∫ t

0
k(τ)E

1/2
1 (uε, τ) dτ, ∀ε ∈ (0, 1], ∀t ≥ 0, (3.16)

where

k(τ) = |f(τ)|+ |f ′(τ)|+ L(m)
(∣∣A1/2uε(τ)

∣∣+
∣∣A1/2u0

∣∣)+
∣∣B(u0)

∣∣.
Using the estimate (3.3), for k(τ), we get∫ t

0
k(τ) dτ ≤ C

(
1 + t L(m)

)
m1, ∀ε ∈ (0, 1/2], ∀t ≥ 0. (3.17)

Using the estimate (3.13) and the properties of Yosida approximation, for

I3(t, ε), we obtain ∣∣I3(t, ε)
∣∣ ≤ ∫ t

0

(
Aλuε(τ), Auε(τ)

)
dτ

+C L2(m) e4L2(m) tm1
2, ∀ε ∈ (0, 1], ∀t ≥ 0. (3.18)

Using the properties of Yosida approximation, for E1(uε, 0), we get

E1(uε, 0) ≤ C
(∣∣A1/2u1

∣∣2 +
∣∣Au0

∣∣2), ∀ε ∈ (0, 1]. (3.19)

Hence, from (3.14), using the estimates (3.15), (3.16) and (3.18), we get

E1(uε, t) ≤ C
(
m2

2 e4L2(m) t+

∫ t

0
k(τ)E

1/2
1 (uε, τ)dτ

)
, ∀ε ∈ (0, 1/2], ∀t ≥ 0.

From this inequality, using Lemma of Brézis and the estimate (3.17), we

obtain the inequality

E
1/2
1 (uε, t) ≤m2 e

(
2L2(m)+1

)
t, ∀ε ∈ (0, 1/2], ∀t ≥ 0,

from which it follows that(
Aλuε(t), Auε(t)

)
≤ Cm2

2 e2
(

2L2(m)+1
)
t, ∀ε ∈ (0, 1/2], ∀t ≥ 0.

Finally, passing to the limit in the last inequality as λ → 0 and using the

properties of Yosida approximation, we obtain the estimate (3.5). �
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Let uε be the strong solution to the problem (3.1), (3.2) and let us denote

by

zε(t) = u′ε(t) + he−t/ε, h = f(0)− u1 −Au0 −B(u0). (3.20)

Lemma 3.2. Let us assume that the operator A : D(A) ⊂ H → H is

linear, self-adjoint, positive definite, verifies (2.5) and the operator B verifies

(HB1), (HB2) and (HB3). If u0, u1, h ∈ D(A) and f ∈ W 2, 1(0,∞;H),

then for zε, defined by (3.20), the estimates

||A1/2zε||C([0, t];H) + ||z′ε||C([0, t];H) +
∣∣∣∣A1/2z′ε

∣∣∣∣
L2(0, t;H)

≤ Cm3 e
γ t, ∀ε ∈ (0, 1], ∀t ≥ 0, (3.21)

are valid, where γ = γ(m) = 12
(
L2(m) +

[
mL1(m) + ||B′(0)||ω−1/2

]2),
C = C(ω, ||B′(0)||) and

m3 = ||f ||W 2,1(0,∞;H) + |Ah|+ L1(m)m1

(
1 +

∣∣A1/2h
∣∣+
∣∣A1/2u0

∣∣).
If B = 0, then h = f(0)−Au0 − u1 and

||A1/2zε||C([0, t];H) + ||z′ε||C([0, t];H) +
∣∣∣∣A1/2z′ε

∣∣∣∣
L2(0, t;H)

≤ C
(∣∣A(h+ u1)

∣∣+ ||f ||W 2,1(0,t;H)

)
, ∀ε ∈ (0, 1], ∀t ≥ 0.

Proof. Under the conditions of this lemma
(
B(uε)

)′ ∈W 1,1(0, T ;H) for ε ∈
(0, 1], where uε is solution to the problem (3.2). Indeed, by Theorem 2.1,

uε ∈ W 3,∞(0, T ;H) and A1/2uε ∈ W 2,∞(0, T ;H). Therefore, using (HB3)

and Lemma 3.1, we deduce∣∣(B(uε(t))
)′∣∣ =

∣∣B ′(uε(t))u′ε(t)∣∣
≤
(
L(m)m + ω−1/2 ||B′(0)||

)∣∣A1/2u′ε(t)
∣∣, ∀t ∈ [0, T ]. (3.22)

For h > 0 and t, t+ h ∈ [0, T ], we have that∣∣∣h−1
((
B(uε(t))

)′)
h

∣∣∣



152 Andrei Perjan, Galina Rusu

≤
∣∣∣h−1

(
B′
(
uε(t+ h)

)
−B′

(
uε(t)

))
u′ε(t+ h)

∣∣∣+
∣∣∣h−1B′

(
uε(t)

)
u′εh(t)

∣∣∣
≤ L1(m)

∣∣h−1A1/2uεh(t)
∣∣ ∣∣A1/2u′ε(t+ h)

∣∣
+
(
L1(m)m + ω−1/2 ||B′(0)||

) ∣∣h−1A1/2u′εh
∣∣, ∀t ∈ [0, T − h], (3.23)

where

uεh(t) = uε(t+ h)− uε(t), ∀h > 0, ∀t ∈ [0, T − h).

Then we can state that
(
B(uε

)′ ∈W 1,2(0, T ;H) (see, for example [1], p. 34).

So
(
B(uε

)′ ∈ W 1,1(0, T ;H) for every T > 0. Consequently, the functional

F(t, ε) = f ′(t) −
(
B
(
uε(t)

))′
+ e−t/εAα belongs to W 1,1(0, T ;H) for each

T > 0. Thus, according to Theorem 2.1, the function zε, defined by (3.20),

is a strong solution to the problem{
εz′′ε (t) + z′ε(t) +Azε(t) = F(t, ε), a. e. t ∈ (0, T ),

zε(0) = v1 + α, z′ε(0) = 0,
(3.24)

where

F(t, ε) = f ′(t)−
(
B
(
uε(t)

))′
+ e−t/εAα (3.25)

and possesses the following regularity properties

zε ∈ C2([0,∞);H), A1/2zε ∈ C1([0,∞);H), Azε ∈ C([0,∞);H).

Let h > 0, zεh(t) = zε(t + h) − zε(t) and let the functional E(u, t) be

defined by (3.8). By the direct computations, we obtain

d

dt
E(zεh, t) =

(
Fh(t, ε), zεh(t) + 2εz′εh(t)

)
, a. e. t ∈ (0, T − h). (3.26)

Using (HB1), (HB3) and (3.3), we get∣∣∣(((B(uε(t)))′)
h

∣∣∣ ≤ γ0

∣∣A1/2zεh(t)
∣∣+ k(t, h, ε),

where γ0 = mL1(m) + ||B′(0)||ω−1/2 and

k(t, h, ε) = L1(m)
∣∣A1/2uεh(t)

∣∣ ∣∣A1/2u′ε(t+ h)
∣∣
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+
(
mL1(m)

∣∣A1/2α
∣∣+ ||B′(0)|| |α|

)(
e−t/ε

)
h
.

As

|zεh(t) + 2εz′εh(t)| ≤ 2v(t),

where

v2(t) = ε2 |z′εh(t)|2 +
1

2
|zεh(t)|2 + ε

(
Azεh(t), zεh(t)

)
+ ε

(
zεh(t), z′εh(t)

)
,

integrating the equality (3.26) on (t0, t), we obtain

v2(t) +

∫ t

t0

(
Azεh(s), zεh(s)

)
ds

≤ v2(t0) + 2

∫ t

t0

(
k1(s, h, ε) + γ0

∣∣A1/2zεh(s)
∣∣) v(s) ds, t > t0 ≥ 0, (3.27)

where

k1(t, h, ε) = k(t, h, ε) + |f ′h(t)|+
(
e−t/ε

)
h
|Aα|.

Applying Lemma of Brézis to the inequality (3.27), we get

v(t) +
(∫ t

t0

(
Azεh(s), zεh(s)

)
ds
)1/2

≤ v(t0) +

∫ t

t0

k1(s, h, ε) ds+ γ0

∫ t

t0

∣∣A1/2zεh(s)
∣∣ ds, t > t0 ≥ 0. (3.28)

Applying Lemma 1.1 to the inequality (3.28), we deduce that

v(t) +
(∫ t

0

∣∣A1/2zεh(s)
∣∣2 ds)1/2

≤ 2 e4 γ20 t
(
v(0) +

∫ t

0
k1(s, h, ε) ds

)
, ∀t ≥ 0. (3.29)

Due to (3.4), we get∫ t

0
h−1 k1(s, h, ε) ds ≤ C e4L2(m) tm3, ∀ε ∈ (0, 1], ∀t ≥ 0.
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Then, from (3.29), it follows that

h−1 |zεh|+ h−1
(∫ t

0

∣∣A1/2zεh(τ)
∣∣2 dτ)1/2

≤ C eγ t
(
h−1E1/2(zεh, 0) + m3

)
, ∀ε ∈ (0, 1], ∀t ≥ 0. (3.30)

Next we calculate the limits

lim
h↓0

h−2E(zεh, 0) = |f ′(0)−B′(u0)u1 −A(α+ u1)|2,

lim
h↓0

h−2

∫ t

0

∣∣A1/2zεh(τ)
∣∣2 dτ =

∫ t

0

∣∣A1/2z′ε(τ)
∣∣2 dτ.

Passing to the limit in (3.28) as h ↓ 0 and using the last two relationships,

we get

||z′ε||C([0,t];H) + ||A1/2z′ε||L2(0,t;H) ≤ C eγ tm3, ∀ε ∈ (0, 1], ∀t ≥ 0. (3.31)

In what follows, we denote by

E(u, t) = ε|u′(t)|2 + |u(t)|2 +
(
Au(t), u(t)

)
+ 2(1− ε)

∫ t

0
|u′(τ)|2dτ

+2ε
(
u(t), u′(t)

)
+ 2

∫ t

0

(
Au(τ), u(τ)

)
dτ. (3.32)

Then we have

d

dt
E(zε, t) = 2

(
F(t, ε), zε(t) + z′ε(t)

)
, a. e. t ≥ 0.

Integrating the last equality, we obtain

E(zε, t) = E(zε, 0) + 2

∫ t

0

(
F(s, ε), zε(s) + z′ε(s)

)
ds, ∀t ≥ 0. (3.33)

Taking into account (3.20), (HB3) and (3.3), (3.4), (3.31), we get∫ t

0

∣∣∣(F(s, ε), zε(s) + z′ε(s)
)∣∣∣ ds
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≤
∫ t

0

(
mL1(m)

∣∣A1/2u′ε(s)
∣∣+ |f ′(s)|+ |Aα| e−s/ε

)
×

×
(
|u′ε(s)|+ |α| e−s/ε + |z′ε(s)|

)
ds ≤ C e2 γ tm3

2,∀ε ∈ (0, 1], ∀t ≥ 0. (3.34)

For E(zε, 0) we have the estimate

E(zε, 0) ≤ |α+ u1|2 +
∣∣A1/2(α+ u1)

∣∣2 ≤ C ∣∣A1/2(α+ u1)
∣∣2. (3.35)

From (3.30), using the estimates (3.34) and (3.35), we deduce that∣∣A1/2zε
∣∣
C([0,t];H)

≤ C eγ tm3, ∀ε ∈ (0, 1], ∀t ≥ 0. (3.36)

From estimates (3.31), (3.36), the estimate (3.21) follows. �

4 The relationship between the solutions to the

problems (Pε) and (P0) in the linear case

Now we are going to present the relationship between the solutions to

the problem (Pε) and the corresponding solutions to the problem (P0) in

the linear case, i. e. B = 0. This relationship was established in the work

[21]. To this end we define the kernel of transformation which realizes this

relationship.

For ε > 0, let us denote by

K(t, τ, ε) =
1

2
√
πε

(
K1(t, τ, ε) + 3K2(t, τ, ε)− 2K3(t, τ, ε)

)
,

where

K1(t, τ, ε) = exp
{3t− 2τ

4ε

}
λ
(2t− τ

2
√
εt

)
,

K2(t, τ, ε) = exp
{3t+ 6τ

4ε

}
λ
(2t+ τ

2
√
εt

)
,

K3(t, τ, ε) = exp
{τ
ε

}
λ
( t+ τ

2
√
εt

)
, λ(s) =

∫ ∞
s

e−η
2
dη.

The properties of the kernel K(t, τ, ε) are collected in the following lemma.
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Lemma 4.1. The function K(t, τ, ε) possesses the following properties:

(i) K ∈ C([0,∞)× [0,∞)) ∩ C2((0,∞)× (0,∞));

(ii) Kt(t, τ, ε) = εKττ (t, τ, ε)−Kτ (t, τ, ε), ∀t > 0, ∀τ > 0;

(iii) εKτ (t, 0, ε)−K(t, 0, ε) = 0, ∀t ≥ 0;

(iv) K(0, τ, ε) =
1

2ε
exp

{
− τ

2ε

}
, ∀τ ≥ 0;

(v) For every fixed t > 0 and every q, s ∈ N, there exist constants

C1(q, s, t, ε) > 0 and C2(q, s, t) > 0 such that∣∣∂st ∂qτK(t, τ, ε)
∣∣ ≤ C1(q, s, t, ε) exp{−C2(q, s, t)τ/ε}, ∀τ > 0;

Moreover, for γ ∈ R there exist C1, C2 and ε0, all of them positive and

depending on γ, such that the following estimates are fulfilled:∫ ∞
0

eγ τ
∣∣Kt(t, τ, ε)

∣∣ dτ ≤ C1 ε
−1 eC2t, ∀ε ∈ (0, ε0], ∀t ≥ 0,∫ ∞

0
eγ τ

∣∣Kτ (t, τ, ε)
∣∣ dτ ≤ C1 ε

−1 eC2t, ∀ε ∈ (0, ε0], ∀t ≥ 0,∫ ∞
0

eγ τ
∣∣Kτ τ (t, τ, ε)

∣∣ dτ ≤ C1 ε
−2 eC2t, ∀ε ∈ (0, ε0], ∀t ≥ 0,

(vi) K(t, τ, ε) > 0, ∀t ≥ 0, ∀τ ≥ 0;

(vii) For every continuous function ϕ : [0,∞)→ H with |ϕ(t)| ≤M exp{γ t}
the following equality is true:

lim
t→0

∣∣∣ ∫ ∞
0

K(t, τ, ε)ϕ(τ)dτ −
∫ ∞

0
e−τϕ(2ετ)dτ

∣∣∣ = 0,

for every ε ∈
(
0, (2 γ)−1

)
;

(viii) ∫ ∞
0

K(t, τ, ε)dτ = 1, ∀t ≥ 0,
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(ix) Let γ > 0 and q ∈ [0, 1]. There exist C1, C2 and ε0 all of them positive

and depending on γ and q, such that the following estimates are fulfilled:∫ ∞
0

K(t, τ, ε) eγτ |t− τ |q dτ ≤ C1 e
C2t εq/2, ∀ε ∈ (0, ε0], ∀t > 0.

If γ ≤ 0 and q ∈ [0, 1], then∫ ∞
0

K(t, τ, ε) eγτ |t− τ |q dτ ≤ C εq/2
(
1 +
√
t
)q
, ∀ε ∈ (0, 1], ∀t ≥ 0;

(x) Let p ∈ (1,∞] and f : [0, ∞) → H, f(t) ∈ W 1,p
γ (0,∞;H). If γ > 0,

then there exist C1, C2 and ε0 all of them positive and depending on γ

and p, such that ∣∣∣f(t)−
∫ ∞

0
K(t, τ, ε)f(τ)dτ

∣∣∣
≤ C1 e

C2t ||f ′||Lpγ(0,∞;H) ε
(p−1)/2p, ∀ε ∈ (0, ε0], ∀t ≥ 0.

If γ ≤ 0, then ∣∣∣f(t)−
∫ ∞

0
K(t, τ, ε)f(τ)dτ

∣∣∣
≤ C(γ, p) ‖f ′‖Lpγ(0,∞;H)

(
1 +
√
t
) p−1

p ε(p−1)/2p, ∀ε ∈ (0, 1], ∀t ≥ 0.

(xi) For every q > 0 and α ≥ 0 there exists a constant C(q, α) > 0 such

that∫ t

0

∫ ∞
0

K(τ, θ, ε) e−q θ/ε |τ − θ|α dθ dτ ≤ C(q, α) ε1+α, ∀ε > 0, ∀t ≥ 0;

(xii) Let f ∈ W 1,∞
γ (0,∞;H) with γ ≥ 0. There exist positive constants

C1, C2 and ε0, depending on γ, such that∣∣∣ ∫ ∞
0

Kt(t, τ, ε)f(τ)dτ
∣∣∣ ≤ C1 e

C2t‖f ′‖L∞γ (0,∞;H), ∀ε ∈ (0, ε0], ∀t ≥ 0.
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Theorem 4.1. Let B = 0. Let us assume that A : D(A) ⊂ H → H is a posi-

tive definite operator and f ∈ L∞γ (0,∞;H) for some γ ≥ 0. If uε is the strong

solution to the problem (3.1), (3.2), with uε ∈W 2,∞
γ (0,∞;H)∩L∞γ (0,∞;H),

Auε ∈ L∞γ (0,∞;H), then for every 0 < ε < (4γ)−1 the function wε, defined

by

wε(t) =

∫ ∞
0

K(t, τ, ε)uε(τ) dτ,

is the strong solution in H to the problem{
w′ε(t) +Awε(t) = F0(t, ε), a. e. t > 0,

wε(0) = ϕε,

where

F0(t, ε) =
1√
π

[
2 exp

{ 3t

4ε

}
λ
(√ t

ε

)
− λ
(1

2

√
t

ε

)]
u1 +

∫ ∞
0

K(t, τ, ε) f(τ) dτ,

ϕε =

∫ ∞
0

e−τ uε(2ετ) dτ.

5 Limits of solutions to the problem (Pε) as

ε→ 0

In this section we will prove the convergence estimates for the difference of

solutions to the problems (Pε) and (P0). These estimates will be uniform

relative to small values of the parameter ε.

Theorem 5.1. Let T > 0 and p ∈ (1,∞]. Let us assume that the operators

A0, A1 satisfy (H1), (H2) and the operator B verifies (HB1) and (HB2).

If u0, u0ε ∈ D(A0), u1ε ∈ D(A
1/2
0 ) and f, fε ∈ W 1,p(0, T ;H), then there

exist C = C(T, p, ω0, ω1, L(µ)) > 0, ε0 = ε0(ω0, ω1, L(µ)), ε0 ∈ (0, 1), such

that

||uε − v||C([0,T ];H)
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≤ C
(
M2(T, u0ε, u1ε, fε) ε

β + |u0ε − u0|+ ||fε − f ||Lp(0,T ;H)

)
,∀ε ∈ (0, ε0],

(5.1)

||A1/2
0 uε −A1/2

0 v||L2(0,T ;H)

≤ C
(
M2(T, u0ε, u1ε, fε) ε

β + |u0ε − u0|+ ||fε − f ||Lp(0,T ;H)

)
,∀ε ∈ (0, ε0],

(5.2)

where uε and v are strong solutions to problems (Pε) and (P0) respectively,

β = min{1/4, (p− 1)/2p},

µ(T, u0ε, u1ε, fε) = C
(∣∣A1/2

0 u0ε

∣∣+
∣∣B(u0ε)

∣∣1/2 + |u1ε|+ ||fε||W 1, p(0,T ;H)

)
,

M2(T, u0ε, u1ε, fε)

=
∣∣A0u0ε

∣∣+
∣∣A1u0ε

∣∣+
∣∣A1/2

0 u1ε

∣∣+
∣∣B(u0ε)

∣∣+
∣∣B(u0ε)

∣∣1/2 + ||fε||W 1, p(0, T ;H).

If B = 0, then in (5.1) and (5.2), C = C(T, p, ω0, ω1), ε0 = ε0(ω0, ω1) and

M2(T, u0ε, u1ε, fε) =
∣∣A0u0ε

∣∣+
∣∣A1/2

0 u1ε

∣∣+
∣∣A1u0ε

∣∣+ ||fε||W 1, p(0, T ;H).

In this case β = (p− 1)/2p in (5.1) and β = min{1/4, (p− 1)/2p} in (5.2).

Proof. During the proof, we will agree to denote all constants

C(T, p, ω0, ω1, L(µ)),M1(T, u0ε, u1ε, fε), ε0(ω0, ω1, L), γ(ω0, ω1, L(µ)) by C,

M1, ε0 and γ, respectively.

First of all, let us observe that, from (H1) and (H2), we obtain(
(A1 +ω1A0)u, u

)
=
(
A1u, u

)
+ω1

(
A0u, u

)
≥ −ω1

(
A0u, u

)
+ω1

(
A0u, u

)
= 0.

Thus A1 + ω1A0 is positive, which implies∣∣∣(A1u, v
)∣∣∣ ≤ ∣∣∣((A1 + ω1A0)u, v

)∣∣∣+ ω1 |A1/2
0 u| |A1/2

0 v|

=
(

(A1 + ω1A0)1/2u, (A1 + ω1A0)1/2 v
)

+ ω1 |A1/2
0 u| |A1/2

0 v|

≤
(

(A1 + ω1A0)u, u
)1/2 (

(A1 + ω1A0)v, v
)1/2

+ ω1 |A1/2
0 u| |A1/2

0 v|
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≤
(

2ω1 (A0u, u)
)1/2 (

2ω1 (A0v, v)
)1/2

+ω1

∣∣∣A1/2
0 u

∣∣∣ ∣∣∣A1/2
0 v

∣∣∣ ≤ 3ω1

∣∣∣A1/2
0 u

∣∣∣ ∣∣∣A1/2
0 v

∣∣∣ , ∀u, v ∈ D(A0). (5.3)

If f, fε ∈W k,p(0, T ;H) with k ∈ N and p ∈ (1,∞], then f, fε ∈ C([0, T ];H).

Moreover, there exist extensions f̃ , f̃ε ∈W k,p(0,∞;H) such that{
||f̃ ||C([0,∞);H) + ||f̃ ||Wk,p(0,∞;H) ≤ C(T, p) ||f ||Wk,p(0,T ;H),

||f̃ε||C([0,∞);H) + ||f̃ε||Wk,p(0,∞;H) ≤ C(T, p) ||fε||Wk,p(0,T ;H).
(5.4)

Let us denote by ũε the unique strong solution to the problem (Pε),

defined on (0,∞) instead of (0, T ) and f̃ε instead of fε.

From Lemma 3.1, it follows that ũε ∈W 2,∞
γ (0,∞;H)∩W 1,2

γ (0,∞;D(A0)),

A
1/2
0 ũε ∈ L∞γ (0,∞;H), A0ũε ∈ L∞γ (0,∞;H) with γ = γ(ω0, ω1, L(µ)).More-

over, due to this lemma and (5.4), the following estimates

||A1/2
0 ũε||C([0, t];H) + ||ũ′ε||L2(0, t;H) ≤ C µ, ∀ε ∈ (0, 1], ∀t ≥ 0, (5.5)

||ũ′ε||C([0, t];H) + ||A1/2
0 ũ′ε||L2(0, t;H) ≤ C e12L2(µ) tM2, ∀ε ∈ (0, 1], ∀t ≥ 0,

(5.6)∣∣∣∣A0ũε
∣∣∣∣
C([0, t];H)

≤ CM2 e
(6L2(µ)+1) t, ∀ε ∈ (0, 1/2], ∀t ≥ 0,

are valid. By Theorem 4.1, the function wε, defined by

wε(t) =

∫ ∞
0

K(t, τ, ε) ũε(τ) dτ,

is the strong solution in H to the problem{
w′ε(t) +

(
A0 + εA1

)
wε(t) = F (t, ε), t > 0,

wε(0) = w0,
(5.7)

for every ε ∈ (0, ε0], where

F (t, ε) = f0(t, ε)u1ε +

∫ ∞
0

K(t, τ, ε) f̃ε(τ) dτ −
∫ ∞

0
K(t, τ, ε)B

(
ũε(τ)

)
dτ,
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f0(t, ε) =
1√
π

[
2 exp

{ 3t

4ε

}
λ
(√ t

ε

)
− λ
(1

2

√
t

ε

)]
, w0 =

∫ ∞
0

e−τ ũε(2ετ)dτ.

Since A0 is closed, then from the estimates (5.5), we deduce that

||A1/2
0 wε||C([0, t;H) ≤ C µ, ∀ε ∈ (0, 1], ∀t ≥ 0. (5.8)

Proof of the estimate (5.1). Using properties (vi), (viii), (x), from

Lemma 4.1, and (5.5), we obtain that

||ũε − wε||C([0, t];H) ≤ C µε1/4, ∀ε ∈ (0, ε0], ∀t ≥ 0. (5.9)

In what follows, let us observe that∣∣∣A1/2
0

(
ũε(t)− wε(t)

)∣∣∣ ≤ ∫ ∞
0

K(t, τ, ε)
∣∣∣A1/2

0

(
ũε(t)− ũε(τ)

)∣∣∣ dτ
≤
∫ ∞

0
K(t, τ, ε)

∣∣∣∣∫ t

τ

∣∣∣A1/2
0 ũ′ε(s)

∣∣∣ ds∣∣∣∣ dτ
≤
∫ ∞

0
K(t, τ, ε) |t− τ |1/2

∣∣∣∣∫ t

τ

∣∣∣A1/2
0 ũ′ε(s)

∣∣∣2 ds∣∣∣∣1/2 dτ
≤ C eγ tM2 ε

1/4, ∀ε ∈ (0, ε0], ∀t ≥ 0. (5.10)

Denote by R(t, ε) = ṽ(t) − wε(t), where ṽ is the strong solution to the

problem (P0) with f̃ instead of f, T = ∞ and wε is the strong solution of

(5.7). Then, due to Theorem 2.2, R(·, ε) ∈ W 1 ,∞
γ (0,∞; H) and R is the

strong solution in H to the problem{
R′(t, ε) +A0R(t, ε) = εA1ωε(t) +B(wε(t))−B(ṽ(t)) + F(t, ε), a.e. t > 0,

R(0, ε) = R0,

where R0 = u0 − w0 and

F(t, ε) = f̃(t)−
∫ ∞

0
K(t, τ, ε)f̃ε(τ) dτ

−f0(t, ε)u1ε −B
(
wε(t)

)
+

∫ ∞
0

K(t, τ, ε)B
(
ũε(τ)

)
dτ. (5.11)
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Taking the inner product in H by R and then integrating, from (H1) and

(HB1), we obtain

|R(t, ε)|2+2

∫ t

t0

∣∣∣A1/2
0 R(s, ε)

∣∣∣2 ds ≤ |R(t0, ε)|2+2 ε

∫ t

t0

(
A1wε(s), R(s, ε)

)
ds

+2

∫ t

t0

∣∣F(s, ε) +B
(
wε(s)

)
−B

(
ṽ(s)

)∣∣ |R(s, ε)| ds, ∀t ≥ t0 ≥ 0.

Using (5.3), from the last equality, we deduce

|R(t, ε)|2 +

∫ t

t0

∣∣∣A1/2
0 R(s, ε)

∣∣∣2 ds
≤ |R(t0, ε)|2 + 2

∫ t

t0

∣∣F(s, ε) +B
(
wε(s)

)
−B

(
ṽ(s)

)∣∣ |R(s, ε)| ds

+9ω2
1 ε

2

∫ t

t0

∣∣∣A1/2
0 wε(s)

∣∣∣2 ds, ∀t ≥ t0 ≥ 0. (5.12)

Applying Lemma of Brézis to (5.12), we get

|R(t, ε)|+
(∫ t

t0

∣∣∣A1/2
0 R(s, ε)

∣∣∣2 ds)1/2

≤
√

2 |R(t0, ε)|+
√

2

∫ t

t0

|F(s, ε) +B(wε(s))−B(ṽ(s))| ds

+3
√

2ω1ε
(∫ t

t0

∣∣∣A1/2
0 wε(s)

∣∣∣2 ds)1/2)
, ∀t ≥ t0 ≥ 0. (5.13)

Using (HB1), we get the estimate∣∣B(wε(t))−B(ṽ(t)
)∣∣ ≤ L(µ)

∣∣A1/2
0 (wε(t)− ṽ(t))

∣∣ = L(µ)
∣∣A1/2

0 R(t, ε)
∣∣,

which, together with (5.8) and (5.13), gives

|R(t, ε)|+
(∫ t

t0

∣∣∣A1/2
0 R(s, ε)

∣∣∣2 ds)1/2

≤
√

2
(
|R(t0, ε)|
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+

∫ t

t0

(
|F(s, ε)|+ C ε

)
ds+ L(µ)

∫ t

t0

∣∣∣A1/2
0 R(s, ε)

∣∣∣ ds), ∀t ≥ t0 ≥ 0.

(5.14)

Applying Lemma 1.1 to the inequality (5.14), we get

|R(t, ε)|+
(∫ t

0

∣∣∣A1/2
0 R(s, ε)

∣∣∣2 ds)1/2

≤ 2e12L2(µ)t
(
|R0|

+

∫ t

0

(
|F(s, ε)|+ C ε

)
ds
)
, ∀t ≥ 0. (5.15)

From (5.6), it follows that∣∣R0

∣∣ ≤ |u0ε − u0|+
∫ ∞

0
e−τ
∣∣ũε(2ετ)− u0ε

∣∣ dτ ≤ |u0ε − u0|+∫ ∞
0

e−τ
∫ 2ετ

0

∣∣ũ′ε(s)∣∣ ds dτ ≤ |u0ε − u0|+

C εM2

∫ ∞
0

τ e−τ+γ ε τ dτ ≤ |u0ε − u0|+ CM2 ε, ∀ε ∈ (0, ε0]. (5.16)

In what follows, we will estimate
∣∣F(t, ε)

∣∣. Using the property (x) from

Lemma 4.1 and (5.4), we have∣∣∣f̃(t)−
∫ ∞

0
K(t, τ, ε) f̃ε(τ) dτ

∣∣∣ ≤ |f̃(t)−f̃ε(t)|+
∣∣∣f̃ε(t)−∫ ∞

0
K(t, τ, ε) f̃ε(τ) dτ

∣∣∣
≤ |f̃(t)− f̃ε(t)|+ C(T, p)‖f ′ε‖Lp(0,T ;H) ε

(p−1)/2 p, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ].

(5.17)

Since

eτλ(
√
τ) ≤ C, ∀τ ≥ 0,

the estimates∫ t

0
exp

{3τ

4ε

}
λ
(√τ

ε

)
dτ ≤ C ε

∫ ∞
0

e−τ/4 dτ ≤ Cε, ∀t ≥ 0,

∫ t

0
λ
(1

2

√
τ

ε

)
dτ ≤ ε

∫ ∞
0

λ
(1

2

√
τ
)
dτ ≤ C ε, ∀t ≥ 0,
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hold. Then ∣∣∣ ∫ t

0
f0(τ, ε) dτ

∣∣∣ ≤ C ε, ∀ε ∈ (0, ε0], ∀t ≥ 0. (5.18)

In what follows we will estimate the difference

I(t, ε) =

∫ ∞
0

K(t, τ, ε)B
(
ũε(τ)

)
dτ −B

(
wε(t)

)
= I1(t, ε) + I2(t, ε), (5.19)

where, due to the property (viii) from Lemma 4.1, we have

I1(t, ε) =

∫ ∞
0

K(t, τ, ε)
(
B
(
ũε(τ)

)
−B

(
wε(τ)

))
dτ,

I2(t, ε) =

∫ ∞
0

K(t, τ, ε)
(
B
(
wε(τ)

)
−B

(
wε(t)

))
dτ.

Using (HB1) and (5.5), (5.8), (5.10), we deduce the estimates

|I1(t, ε)| ≤ L(µ)

∫ ∞
0

K(t, τ, ε)
∣∣A1/2

0 ũε(τ)−A1/2
0 wε(τ)

∣∣ dτ
≤ CM2 e

γ t ε1/4, ∀ε ∈ (0, ε0], ∀t ≥ 0, (5.20)∣∣B(wε(t))−B(wε(τ)
)∣∣ ≤ L(µ)

∣∣A1/2
0 wε(t)−A1/2

0 ũε(t)
∣∣

+L(µ)
∣∣A1/2

0 wε(τ)−A1/2
0 ũε(τ)

∣∣+ L(µ)
∣∣A1/2

0 ũε(t)−A1/2
0 ũε(τ)

∣∣
≤ CM2 ε

1/4
(
eγ t+eγ τ

)
+L(µ)

∣∣∣∫ t

τ
|A1/2

0 ũ′ε(s)| ds
∣∣∣, ∀ε ∈ (0, ε0], ∀t ≥ 0, ∀τ ≥ 0.

Using the last estimate, (5.6) and properties (viii), (ix) from Lemma 4.1, for

I2(t, ε) we get the estimate

|I2(t, ε)| ≤ CM2 e
γ tε1/4

+L(µ)

∫ ∞
0

K(t, τ, ε) |t− τ |1/2
∣∣∣ ∫ t

τ
|A1/2

0 ũ′ε(s)|2 ds
∣∣∣1/2 dτ

≤ CM2 e
γ t ε1/4, ∀ε ∈ (0, ε0], ∀t ≥ 0. (5.21)
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From (5.19), using (5.20) and (5.21), for I(t, ε), we get the estimate

|I(t, ε)| ≤ CM2 e
γ t ε1/4, ∀ε ∈ (0, ε0], ∀t ≥ 0. (5.22)

Using (5.4), (5.17), (5.18) and (5.22), from (5.11), we obtain∫ t

0

∣∣F(τ, ε)
∣∣ dτ ≤ C (M2 ε

β + ||fε − f ||Lp(0,T ;H)

)
, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ].

(5.23)

From (5.15), using (5.16) and (5.23), we get the estimate

||R||C([0, t];H) + ||A1/2
0 R||L2(0,t;H)

≤ C
(
M2 ε

β + |u0ε − u0|+ ||fε − f ||Lp(0,T ;H)

)
, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ].

(5.24)

Consequently, from (5.9) and (5.24), we deduce

||ũε − ṽ||C([0,t];H) ≤ ||ũε − wε||C([0,t];H) + ||R||C([0,t];H)

≤ C
(
M2 ε

β + |u0ε − u0|+ ||fε − f ||Lp(0,T ;H)

)
, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ].

(5.25)

Since uε(t) = ũε(t) and v(t) = ṽ(t), for all t ∈ [0, T ], then the estimate (5.1)

follows from (5.25).

Proof of the estimate (5.2). From (5.10), it follows that

∣∣∣∣A1/2
0 uε −A1/2

0 wε
∣∣∣∣
C([0,T ];H)

≤ CM2 ε
1/4, ∀ε ∈ (0, ε0]. (5.26)

Since uε(t) = ũε(t) and v(t) = ṽ(t), for all t ∈ [0, T ], the estimate (5.2) is a

simple consequence of (5.26) and (5.24). �

Remark 5.1. If in conditions of Theorem 5.1 f, fε ∈ W 1,∞(0, T ;H), then

in (5.1), (5.2), β = 1/4 .
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Theorem 5.2. Let T > 0 and p ∈ (1,∞]. Let us assume that A0, A1 satisfy

(H1), (H2), and B verifies (HB1), (HB2) and (HB3). If u0, u0ε, A0u0,

A0u0ε, A1u0ε, Bu0ε, u1ε, f(0), fε(0) ∈ D(A0) and f, fε ∈ W 2,p(0, T ;H), then

there exist C = C(T, p, ω0, ω1, L(µ), L1(µ1), ||B′(0)||) > 0, ε0 ∈ (0, 1), ε0 =

ε0(ω0, ω1, L(µ)), such that

||u′ε − v′ + hεe
−t/ε||C([0, T ] ;H) +

∣∣∣∣A1/2
0

(
u′ε − v′ + hεe

−t/ε)∣∣∣∣
L2(0,T ;H)

≤ C
(
M3

3(T, u0ε, u1ε, fε) ε
β + DεM4

)
, ∀ε ∈ (0, ε0], (5.27)

where uε and v are strong solutions to (Pε) and (P0) respectively,

hε = fε(0)− (A0 + εA1)u0ε −B(u0ε)− u1ε, β = min{1/4, (p− 1)/2p},

µ1 = C
(
µ+ |(A0 + εA1)u0ε|

)
,

M3(T, u0ε, u1ε, fε) = |A0u0ε|+ |A1u0ε|+ |(A0 + εA1)u1ε|+

+|B(u0ε)|1/2 + |(A0 + εA1)hε|+ ||fε||W 2, p(0, T ;H) + 1.

M4(T, u0, f) = |A0u0|+ |B(u0)|+ ||f ||W 1, p(0, T ;H).

Dε = ||fε − f ||W 1, p(0, T ;H) + |A0(u0ε − u0)|+ |B(u0ε)−B(u0)|.

If B = 0, then

||u′ε−v′+hεe−t/ε||C([0, T ] ;H) ≤ C
(
M3(T, u0ε, u1ε, fε) ε

(p−1)/2p+Dε

)
, ∀ε∈(0, ε0],

∣∣∣∣A1/2
(
u′ε−v′+hεe−t/ε

)∣∣∣∣
L2(0,T ;H)

≤ C
(
M3(T, u0ε, u1ε, fε) ε

β+Dε

)
, ∀ε∈(0, ε0]

with C = C(T, ω0, ω1, p), ε0 = ε0(ω0, ω1), hε = fε(0)− (A0 + εA1)u0ε − u1ε,

M3(T, u0ε, u1ε, fε) = |A0u0ε|+ |A1u0ε|+ |(A0 + εA1)u1ε|

+|(A0 + εA1)hε|+ ||fε||W 2, p(0, T ;H) + 1.

Dε = ||fε − f ||W 1, p(0, T ;H) + |A0(u0ε − u0)|.
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Proof. In the proof of this theorem, we will agree to denote all constants

C(T, p, ω0, ω1, L(µ), L1(µ1), ||B′(0)||), γ(ω0, ω1, L(µ), L1(µ)), ε0(ω0, ω1, L(µ)),

M3(T, u0ε, u1ε, fε) by C, γ, ε0 and M3 respectively. Also we preserve for

ṽ(t), ũε(t), f̃(t) and f̃ε(t) the same notations as in Theorem 5.1.

By Lemma 3.2, we have that the function

z̃ε(t) = ũ′ε(t) + hεe
−t/ε, with hε = fε(0)− u1ε − (A0 + εA1)u0ε −B(u0ε),

is the strong solution in H to the problem{
εz̃′′ε (t) + z̃′ε(t) + (A0 + εA1)z̃ε(t) = F̃(t, ε), t > 0,

z̃ε(0) = fε(0)− (A0 + εA1)u0 ε −B(u0ε), z̃′ε(0) = 0,

where

F̃(t, ε) = f̃ ′ε(t)−
(
B(ũε(t))

)′
+ e−t/ε (A0 + εA1)hε

and z̃ε possesses the properties

z̃ε ∈W 1,∞
γ (0,∞;H) ∩W 1,2

γ (0,∞;H), A1/2z̃ε ∈W 1, 2
γ (0,∞;H).

Moreover, by this lemma and the second inequality from (5.4), the following

estimate

||A1/2
0 z̃ε||C([0, t];H) + ||z̃′ε||C([0, t];H) +

∣∣∣∣A1/2
0 z̃′ε

∣∣∣∣
L2(0, t;H)

≤ CM2
3 e

γ(µ) t, ∀ε ∈ (0, 1], ∀t ≥ 0, (5.28)

holds.

Since z̃′ε(0) = 0, from Theorem 4.1, the function w1ε(t), defined by

w1ε(t) =

∫ ∞
0

K(t, τ, ε) z̃ε(τ) dτ, (5.29)

verifies in H the following conditions{
w′1ε(t) + (A0 + εA1)w1ε(t) = F1(t, ε), a. e. t > 0,

w1ε(0) = ϕ1ε,
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for every 0 < ε ≤ ε0, where

F1(t, ε) =

∫ ∞
0

K(t, τ, ε)f̃ ′(τ) dτ −
∫ ∞

0
K(t, τ, ε)

(
B(ũε)

)′
(τ) dτ

−
∫ ∞

0
K(t, τ, ε) e−τ/ε dτ (A0 + εA1)h, ϕ1ε =

∫ ∞
0

e−τ z̃ε(2ετ) dτ.

Moreover, since A0 is closed, we have∣∣∣A1/2
0 w1 ε(t)

∣∣∣ ≤ ∫ ∞
0

K(t, τ, ε)
∣∣∣A1/2

0 z̃ε(τ)
∣∣∣ dτ

≤ CM2
3 e

γ(µ) t, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ]. (5.30)

Using (5.29), the property (viii) and (ix) from Lemma 4.1 and (5.28), we

get the estimate∣∣z̃ε(t)− w1ε(t)
∣∣ ≤ ∫ ∞

0
K(t, τ, ε)

∣∣z̃ε(t)− z̃ε(τ)
∣∣ dτ

≤
∫ ∞

0
K(t, τ, ε)

∣∣∣ ∫ t

τ

∣∣z̃′ε(s)∣∣ ds∣∣∣ dτ ≤ CM2
3

∫ ∞
0

K(t, τ, ε)
∣∣eγ t − eγ τ ∣∣ dτ

≤ CM2
3

∫ ∞
0

K(t, τ, ε) |t− τ |
(
eγ τ + eγ t

)
dτ

≤M2
3 e

γ(µ) t ε1/2, ∀ε ∈ (0, ε0], ∀t ≥ 0,

which implies∣∣∣∣z̃ε − w1ε

∣∣∣∣
C([0,t];H)

≤ CM2
3 e

γ t ε1/2, ∀ε ∈ (0, ε0], ∀t ≥ 0. (5.31)

Similar to the proof of (5.10), using (5.28), we get∣∣∣∣A1/2
0

(
z̃ε − w1ε

)∣∣∣∣
C([0,t];H)

≤ CM2
3 e

γ t ε1/4, ∀ε ∈ (0, ε0], ∀t ≥ 0. (5.32)

Let v1(t) = ṽ′(t), where ṽ is the strong solution to the problem (P0) with f̃

instead of f and T = ∞. Let us denote by R1(t, ε) = v1(t) − w1ε(t). The

function R1(t, ε) verifies in H the following equalities{
R′1(t, ε) +A0R1(t, ε) = F1(t, ε)− I(t, ε) + εA1ω1ε(t), t > 0,

R1(0, ε) = R10,
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where

R10 = f(0)−A0u0 −B(u0)− ϕ1ε,

F1(t, ε) = f̃ ′(t)−
∫ ∞

0
K(t, τ, ε) f̃ ′(τ) dτ+

∫ ∞
0

K(t, τ, ε) e−τ/ε dτ (A0+εA1)hε,

I(t, ε) =
(
B(v)

)′
(t)−

∫ ∞
0

K(t, τ, ε)
(
B(ũε)

)′
(τ)dτ. (5.33)

Due to estimate (5.28), it follows thatR10 ∈ H. In addition, F1 ∈ L1(0, T ;H)

for each T > 0. According to Theorem 2.2, A1/2
0 ṽ ∈ W 1, 2(0, T ;H). There-

fore, due to condition (HB3) and the estimates (2.21), (2.22), we have that(
B(ṽ)

)′ ∈ L1(0, T ;H) for each T > 0, because∣∣∣(B(ṽ(t)
))′∣∣∣ ≤ ||B ′(0)|| |ṽ′(t)|+ L1(µ)

∣∣A1/2
0 ṽ(t)

∣∣ ∣∣A1/2
0 ṽ′(t)

∣∣, a. e. t > 0.

Similarly, due to (HB3) and the estimates (3.3), (3.4), we deduce that(
B(ũε)

)′ ∈ L2
γ(0,∞;H). Using the property (ix) from Lemma 4.1, we con-

clude that I ∈ L1(0, T ;H) for each T > 0.

Accordingly, using (5.30), similarly to (5.13) we obtain

|R1(t, ε)|+ ||A1/2
0 R1||L2(t0,t;H) ≤

√
2|R1(t0, ε)|

+
√

2

∫ t

t0

|F1(τ, ε)− I(τ, ε)| ds

+3
√

2ω1 ε

∫ t

t0

|A1/2
0 ω1ε(s)|2ds

)1/2
, ∀t ≥ t0 ≥ 0. (5.34)

Using the properties (viii), (ix) from Lemma 4.1 and the inequalities (5.4),

we get ∣∣∣f̃ ′(t)− ∫ ∞
0

K(t, τ, ε) f̃ ′ε(τ) dτ
∣∣∣

≤ |f̃ ′(t)− f̃ ′ε(t)|+
∫ ∞

0
K(t, τ, ε)

∣∣f̃ ′ε(τ)− f̃ ′ε(t)
∣∣ dτ

≤ |f̃ ′(t)−f̃ ′ε(t)|+||f̃ ′′ε ||Lp(0 ,∞; H)

∫ ∞
0

K(t, τ, ε) |t−τ |(p−1)/p dτ ≤ |f̃ ′(t)−f̃ ′ε(t)|
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+C(T, p) ||f ′′ε ||Lp(0, T ;H) ε
(p−1)/2p, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ], (5.35)

In what follows, we will evaluate the difference

I(t, ε) =
(
B
(
ṽ(t)

))′ − ∫ ∞
0

K(t, τ, ε)
(
B(ũε)

)′
(τ)dτ = I1(t, ε) + I2(t, ε),

(5.36)

where

I1(t, ε) =
(
B(ṽ(t))

)′ − (B(ũε(t))
)′
,

I2(t, ε) =
(
B
(
ũε(t)

))′ − ∫ ∞
0

K(t, τ, ε)
(
B
(
ũε(τ)

))′
dτ.

Using (HB3) and (5.5), (2.22), (5.2), we obtain the inequality∣∣I1(t, ε)
∣∣ =

∣∣B ′(ṽ(t)) ṽ′(t)−B ′(ũε(t)) ũ′ε(t)
∣∣

≤
∣∣B ′(ũε(t))(ṽ′(t)− ũ′ε(t))∣∣+

∣∣∣(B ′(ũε(t))−B ′(ṽ(t))
)
ṽ′(t)

∣∣∣
≤ µ2(T )

∣∣A1/2
0

(
ṽ′(t)− ũ′ε(t)

)∣∣
+L1(µ1)

∣∣∣A1/2
0

(
ũε(t)− ṽ(t

) ∣∣∣ ∣∣A1/2
0 ṽ′(t)

∣∣, ∀ε ∈ (0, ε0], a. e. t ∈ (0, T ),

where µ2(T ) = L1(µ)µ+ ||B′(0)||. Since

v′(t)− ũ′ε(t) = R1(t, ε) + w1ε − z̃ε(t) + hε e
−t/ε,

due to (2.22), (5.2) and (5.32), we get∫ t

t0

∣∣I1(s, ε)
∣∣ ds ≤ C (εβM2

3 +Dε

)
M4 +µ2(T )

∫ t

t0

∣∣A1/2R1(s, ε)
∣∣ ds, (5.37)

for every ε ∈ (0, ε0], 0 ≤ t0 ≤ t ≤ T.
Now we are going to evaluate I2(t, ε). As∣∣∣(B(ũε)

)′
(t)−

(
B(ũε)

)′
(τ)
∣∣∣ ≤ I21(t, τ, ε) + I22(t, τ, ε), (5.38)

where

I21(t, τ, ε) =
∣∣B ′(ũε(τ)

) (
ũ′ε(t)− ũ′ε(τ)

)∣∣,
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I22(t, τ, ε) =
∣∣∣(B ′(ũε(t))−B ′(ũε(τ)

))
ũ′ε(t)

∣∣∣,
At the beginning, let us estimate I21(t, τ, ε). Using (HB3) and (5.5), (5.28),

we obtain

I21(t, τ, ε) ≤ L1(µ)
∣∣A1/2

0 ũε(t)
∣∣ ∣∣A1/2

0

(
ũ′ε(t)− ũ′ε(τ)

)∣∣
+
∣∣∣∣B ′(0)

∣∣∣∣ |ũ′ε(t)− ũ′ε(τ)| ≤ C µ2(T )
∣∣A1/2

0

(
ũ′ε(t)− ũ′ε(τ)

)∣∣
≤ C µ2(T )

(∣∣A1/2
0

(
z̃ε(t)− z̃ε(τ)

)∣∣+
∣∣A1/2

0 hε
∣∣ (e−t/ε + e−τ/ε

))
≤ C µ2(T )

( ∣∣∣ ∫ t

τ

∣∣A1/2
0 z̃′ε(s)

∣∣ ds∣∣∣+
∣∣A1/2

0 hε
∣∣ (e−t/ε + e−τ/ε

))
≤ C µ2(T )

((
|t− τ |1/2

∣∣∣ ∫ t

τ

∣∣A1/2
0 z̃′ε(s)|2 ds

∣∣∣1/2 +
∣∣A1/2

0 hε
∣∣ (e−t/ε + e−τ/ε

))
≤ C µ2(T )M2

3

((
eγ(L(µ)) t + eγ(L(µ)) τ

)
|t− τ |1/2

+e−t/ε + e−τ/ε
)
, ∀ε ∈ (0, ε0], ∀τ ≥ 0, ∀t ≥ 0.

From the last estimate, due to properties (viii) and (ix) from Lemma 4.1,

we get ∫ ∞
0

K(t, τ, ε) I21(t, τ, ε) dτ ≤ C µ2(T )M2
3

(
ε1/4e−t/ε+

+

∫ ∞
0

K(t, τ, ε) e−τ/ε dτ
)
, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ]. (5.39)

Now, let us estimate I22(t, τ, ε). Due to (HB3) and (5.6), (5.28), we obtain

I22(t, τ, ε) ≤ L1(µ)
∣∣A1/2

0

(
ũε(t)− ũε(τ)

)∣∣ ∣∣A1/2
0 ũ′ε(t)

∣∣
≤ L1(µ)

∣∣∣ ∫ t

τ
|A1/2

0 ũ′ε(s)| ds
∣∣∣ (∣∣A1/2

0 z̃ε(t)
∣∣+ ∣∣A1/2

0 hε
∣∣e−t/ε) ≤ CM3

3

(
eγ(L(µ)) t

+eγ(L(µ)) τ
)
×
(
eγ(L(µ)) τ + e−t/ε

)
|t− τ |1/2, ∀ε ∈ (0, 1], ∀τ ≥ 0, ∀t ≥ 0.
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From this estimate, due to property (ix) from Lemma 4.1, we deduce that∫ ∞
0

K(t, τ, ε) I22(t, τ, ε) dτ ≤ CM3
3 ε

1/4, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ].

(5.40)

From (5.38), using (5.39), (5.40) and property (xi), from Lemma 4.1, we get∫ t

t0

|I2(τ, ε)| dτ ≤ CM3
3 ε

1/4, ∀ε ∈ (0, ε0], ∀t0 ∈ [0, T ], ∀t ∈ [0, T ], ∀t > t0.

(5.41)

From (5.36), (5.37) and (5.41), it follows that∫ t

t0

∣∣I(s, ε)
∣∣ ds ≤ C (M3

3 ε
β + DεM4

)
+µ2(T )

∫ t

t0

∣∣A1/2
0 R1(s, ε)

∣∣ ds, ∀ε ∈ (0, ε0], ∀t0 ∈ [0, T ], ∀t ∈ [0, T ], t > t0.

Applying Lemma 5.2 to (5.34) and using (5.30) and the last estimate, we get

|R1(t, ε)|+ ||A1/2
0 R1||L2(0,t;H)

≤ C
(
|R1(0, ε)|+

∫ t

0
|F1(τ, ε)| ds+M3

3 ε
β +DεM4

)
, ∀t ≥ t0 ≥ 0. (5.42)

For R10, due to (5.28), we have

|R10| ≤ |f(0)− fε(0)|+ |A0(u0 − u0ε)|+ ε|A1u0ε|+ |B(u0ε)−B(u0)|

+

∫ ∞
0

e−τ |z̃ε(2ετ)− z̃ε(0)| dτ ≤ |f(0)− fε(0)|+ |A0(u0 − u0ε)|+ ε|A1u0ε|

+|B(u0ε)−B(u0)|+
∫ ∞

0
e−τ

∫ 2ετ

0
|z̃′ε(s)| ds dτ ≤ |f(0)−fε(0)|+|A0(u0−u0ε)|

+ε|A1u0ε|+ |B(u0ε)−B(u0)|+ CM2
3 ε

∫ ∞
0

τ e−τ+2 γ ε τ dτ

≤ CDε + CM2
3 ε, ∀ε ∈ (0, ε0]. (5.43)

From (5.33), using (5.35) and property (xi) from Lemma 4.1, we get∫ t

t0

|F1(s, ε)| ds ≤ CM3
3 ε

β + DεM4,
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∀ε ∈ (0, ε0], ∀t0 ∈ [0, T ], ∀t ∈ [0, T ], t > t0.

Using the last estimate and (5.43), from (5.42), we obtain

||R1(t, ε)||C([0, t];H) +
(∫ t

0

∣∣A1/2
0 R1(s, ε)

∣∣2 ds)1/2

≤ C
(
M3

3 ε
β + DεM4

)
, ∀ε ∈ (0, ε0], ∀t ∈ [0, T ],

which together with (5.31), (5.32) imply (5.27). �

6 Example

Let Ω ⊂ Rn be an open bounded set with Cm boundary ∂Ω. In the real

Hilbert space L2(Ω), with the usual inner product

(u, v) =

∫
Ω
u(x) v(x) dx,

we consider the following Cauchy problem
ε∂2
t uε + ∂tuε +

(
A0 + εA1

)
uε +B

(
uε
)

= f(x, t), x ∈ Ω, t > 0,

uε(x, 0) = u0ε(x), ∂t uε(x, 0) = u1ε(x), x ∈ Ω,

∂juε
∂νj

∣∣∣
∂Ω

= 0, j = 0, 1, . . . ,m− 1, t ≥ 0,

(6.1)

where ∂x = (∂x1 , ∂x2 , . . . , ∂xn) and A0(x, ∂x), A1(x, ∂x) are differential op-

erators of orders m and q, respectively, of the following type: D(A0) =

H2m(Ω) ∩Hm
0 (Ω),

A0(x, ∂x)u(x) =
∑
|α|≤m

(−1)|α| ∂α
(
aα(x)∂αu(x)

)
, u ∈ D(A0), aα ∈ Cm(Ω)

(6.2)

and D(A1) = H2r(Ω) ∩Hr
0(Ω),

A1(x, ∂x)u(x) =
∑
|α|≤r

(−1)|α| ∂α
(
cα(x)∂αu(x)

)
, u ∈ D(A1), cα ∈ Cr(Ω),

(6.3)
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where

α = (α1, . . . , αn), αi ∈ N, |α| = α1 + · · ·+ αn, ∂
α =

( ∂

∂x1

)α1

. . .
( ∂

∂xn

)αn
.

We will suppose that operators Ai, i = 0, 1 are self-adjoint, i. e.∫
Ω

(
Ai(x, ∂x)u(x)

)
v(x) dx =

∫
Ω
u(x)

(
Ai(x, ∂x)v(x)

)
dx, ∀u, v ∈ D(Ai).

(6.4)

Moreover, we will suppose that∑
|α|≤m

(
aα(x) ξα, ξα

)
Rn
≥ a0 ||ξ||2m, ∀x ∈ Ω̄, ∀ξ = (ξi)

n
1 ∈ Rn, a0 > 0 (6.5)

Conditions (6.4) and (6.5) assure the strong ellipticity of the operator A0.

For r ≤ m, conditions (6.2)-(6.5) imply (H1) and (H2).

Define the operator B by:

D(B) = L2(Ω) ∩ L2(q+1)(Ω), Bu = b |u|qu.

If b > 0, then B is a Fréchet derivative of convex and positive functional B,
which is defined as follows

D(B) = Lq+2(Ω) ∩ L2(Ω), Bu =
b

q + 2

∫
Ω
|u(x)|q+2 dx,

and the Fréchet’s derivative of operator B is defined by the relationships

D
(
B′(u)

)
= {v ∈ L2(Ω) : uq v ∈ L2(Ω)}, B′(u)v = b (q + 1)|u|q v.

First of all, let us observe that∣∣∣|t|q t− |τ |q τ ∣∣∣ =
∣∣∣ ∫ t

τ

d

ds

(
|s|qs

)
ds
∣∣∣ = (q + 1)

∣∣∣ ∫ t

τ
|s|qds

∣∣∣
≤ (q + 1)|t− τ |1/2

∣∣∣ ∫ t

τ
|s|2qds

∣∣∣1/2 =
q + 1√
2q + 1

|t− τ |1/2
∣∣∣|t|2q+1 − |τ |2q+1

∣∣∣1/2
≤ (q + 1)|t− τ |

(
|t|2q + |τ |2q

)1/2
.
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Then, if n > 2m and q ∈ [0, 2m/(n−2m)], using Hölder’s inequality, Sobolev-

Rellich-Kondrachov embedding theorem and condition (6.5), we obtain

||Bu1 −Bu2||2L2(Ω) = b2
∫

Ω

∣∣∣ |u1(x)|qu1(x)− |u2(x)|qu2(x)
∣∣∣2 dx

≤ C(q, b)

∫
Ω

∣∣u1(x)− u2(x)
∣∣2 (∣∣u1(x)

∣∣2q +
∣∣u2(x)

∣∣2q) dx
≤ C(q, n, b)||u1 − u2||2L2n/(n−2m)(Ω)

(
||u1||2qLqn/m(Ω)

+ ||u2||2qLqn/m(Ω)

)
≤ C(q, b, n,Ω)||u1 − u2||2Hm

0 (Ω)

(
||u1||2qHm

0 (Ω) + ||u2||2qHm
0 (Ω)

)
≤ C(q, n, b,Ω)

∣∣∣A1/2
0 (u1−u2)

∣∣∣2 (|A1/2
0 u1|2q + |A1/2

0 u2|2q
)
, ∀u1, u2 ∈ D(A

1/2
0 ).

(6.6)

In the same way, if n = 2m, m > 1 and q ∈ [(m− 1)/2m,∞), we obtain

||Bu1 −Bu2||2L2(Ω) ≤ C(q, b)

∫
Ω

∣∣u1(x)− u2(x)
∣∣2 (∣∣u1(x)

∣∣2q +
∣∣u2(x)

∣∣2q) dx
≤ C(q, n, b)||u1 − u2||2L2m(Ω)

(
||u1||2qL2mq/(m−1)(Ω)

+ ||u2||2qL2mq/(m−1)(Ω)

)
≤ C(q, b, n,Ω)||u1 − u2||2Hm

0 (Ω)

(
||u1||2qHm

0 (Ω) + ||u2||2qHm
0 (Ω)

)
≤ C(q, n, b,Ω)

∣∣∣A1/2
0 (u1−u2)

∣∣∣2 (|A1/2
0 u1|2q + |A1/2

0 u2|2q
)
, ∀u1, u2 ∈ D(A

1/2
0 ).

(6.7)

Similarly, we prove the inequality (6.6) in the case when n < 2m and q ≥ 0.

Due to inequalities (6.6) and (6.7), if Ω is bounded with Cm boundary ∂Ω,

the condition (6.5) is fulfilled and q verifies
q ∈ [0, 2m/(n− 2m)], if n > 2m,

q ∈ [(m− 1)/2m),∞), if n = 2m, m > 1,

q ∈ [0,∞), if n = 2, m = 1,

q ∈ [0,∞), if n < 2m,

(6.8)

then the operator B verifies (HB1).
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If n > 2m and q ∈ (1, 2m/(n − 2m)], then, in the same way as the

inequality (6.6) was proved, we deduce that

||
(
B′(u1)−B′(u2)

)
v||2L2(Ω) = b2(q + 1)2

∫
Ω

∣∣∣ |u1(x)|q − |u2(x)|q
∣∣∣2 |v(x)|2 dx

≤ C(q, b)

∫
Ω
|u1(x)− u2(x)|2

(
|u1(x)|2(q−1) + |u2(x)|2(q−1)

)
|v(x)|2 dx

≤ C(q, b) ||v||2
L2n/(n−2m)(Ω)

||u1 − u2||2L2n/(n−(n−2m)q)(Ω)

×
(
||u1||2(q−1)

L2n/(n−2m)(Ω)
+ ||u2||2(q−1)

L2n/(n−2m)(Ω)

)
≤

≤ C(n, q, b,Ω) ||u1 − u2||2Hm
0 (Ω) ||v||

2
Hm

0 (Ω)

(
||u1||2(q−1)

Hm
0 (Ω) + ||u2||2(q−1)

Hm
0 (Ω)

)
≤ C(n, q, b,Ω)

∣∣∣A1/2
0 (u1 − u2)

∣∣∣2 |A1/2
0 v|2(

|A1/2
0 u1|2(q−1) + |A1/2

0 u2|2(q−1)
)
, ∀u1, u2, v ∈ D(A

1/2
0 ). (6.9)

Similarly, if n = 2m and q ∈ (1,m), then, we deduce that

||
(
B′(u1)−B′(u2)

)
v||2L2(Ω)

≤ C(q, b)

∫
Ω
|u1(x)− u2(x)|2

(
|u1(x)|2(q−1) + |u2(x)|2(q−1)

)
|v(x)|2 dx

≤ C(q, b) ||v||2
L2m/(m−q)(Ω)

||u1 − u2||2L2m(Ω) ×
(
||u1||2(q−1)

L2m(Ω)
+ ||u2||2(q−1)

L2m(Ω)

)
≤ C(n, q, b,Ω) ||u1 − u2||2Hm

0 (Ω) ||v||
2
Hm

0 (Ω)

(
||u1||2(q−1)

Hm
0 (Ω) + ||u2||2(q−1)

Hm
0 (Ω)

)
≤ C(n, q, b,Ω)

∣∣∣A1/2
0 (u1 − u2)

∣∣∣2 |A1/2
0 v|2

(
|A1/2

0 u1|2(q−1) + |A1/2
0 u2|2(q−1)

)
,

(6.10)

for every u1, u2, v ∈ D(A
1/2
0 ).

Also, if n = 2m, m > 2 and q ≥ (3m− 2)/2m, then

||
(
B′(u1)−B′(u2)

)
v||2L2(Ω)

≤ C(q, b)

∫
Ω
|u1(x)− u2(x)|2

(
|u1(x)|2(q−1) + |u2(x)|2(q−1)

)
|v(x)|2 dx
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≤ C(q, b) ||v||2L2m(Ω) ||u1 − u2||2L2m(Ω)

×
(
||u1||2(q−1)

L2m(q−1)/(m−2)(Ω)
+ ||u2||2(q−1)

L2m(q−1)/(m−2)(Ω)

)
≤ C(n, q, b,Ω) ||u1 − u2||2Hm

0 (Ω) ||v||
2
Hm

0 (Ω)

(
||u1||2(q−1)

Hm
0 (Ω) + ||u2||2(q−1)

Hm
0 (Ω)

)
≤ C(n, q, b,Ω)

∣∣∣A1/2
0 (u1 − u2)

∣∣∣2 |A1/2
0 v|2

(
|A1/2

0 u1|2(q−1) + |A1/2
0 u2|2(q−1)

)
,

(6.11)

for every u1, u2, v ∈ D(A
1/2
0 ).

Similarly, we prove the inequality (6.9), in the case when n < 2m and

q ≥ 1. Therefore, if Ω is bounded with Cm boundary ∂Ω, (6.5) is fulfilled

and q verifies {
q ∈ [1, 2m/(n− 2m)], if n > 2m,

q ∈ [1,∞), if n ≤ 2m,
(6.12)

then, due to (6.9), (6.10), (6.11), the operator B verifies (HB3).

The unperturbed Cauchy problem associated to (6.1) is
∂tuε(x, t) +A0(x, ∂x)uε(x, t) +B(uε(x, t)) = f(x, t), x ∈ Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

∂juε
∂νj

∣∣∣
∂Ω

= 0, j = 0, 1, . . . ,m− 1, t ≥ 0,

(6.13)

According to Theorem 5.1, we have

Theorem 6.1. Let Ω ⊂ Rn be an open bounded set with Cm boundary ∂Ω.

Let us assume that T > 0, p ∈ (1,∞], r ≤ m, b > 0, q verifies (6.8) and

(6.4)-(6.5) are fulfilled. If u0, u0ε ∈ H2m(Ω) ∩ Hm
0 (Ω), u1ε ∈ Hm

0 (Ω) and

f, fε ∈W 1,p(0, T ;L2(Ω)) then there exist C = C(T, p, a0, b, n,m, q,Ω, µ) > 0

and ε0 = ε0(a0, n,m,Ω, µ), ε0 ∈ (0, 1), such that

||uε − v||C([0,T ];L2(Ω)) + ||uε − v||L2(0,T ;Hm
0 (Ω))

≤ C
(
M2(T, u0ε, u1ε, fε) ε

β + ||fε − f ||Lp(0,T ;L2(Ω)) + ||u0ε − u0||L2(Ω)

)
,
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∀ε ∈ [0, ε0],

where uε and v are the strong solutions to the problems (6.1) and (6.13),

respectively,

M2(T, u0ε, u1ε, fε)

= ||A1/2
0 u1ε||L2(Ω) + ||A0u0ε||L2(Ω) + ||A1u0ε||L2(Ω) + ||fε||W 1,p(0, T ;L2(Ω)),

µ(T, u0ε, u1ε, fε) = C
(
||u1ε||L2(Ω) + ||A1/2

0 u0ε||L2(Ω) + ||fε||W 1,p(0, T ;L2(Ω))

)
,

β = min{1/4, (p− 1)/2p}.

Using Theorem 5.2, we can prove

Theorem 6.2. Let Ω ⊂ Rn be an open bounded set with Cm boundary ∂Ω.

Let us assume that T > 0, p ∈ (1,∞], r ≤ m, b > 0, q verifies (6.12) and

(6.4)-(6.5) are fulfilled. If uε, u0ε, A0u0, hε ∈ H2m(Ω)∩Hm
0 (Ω), u1ε ∈ Hm

0 (Ω)

and f, fε ∈W 2,p(0, T ;L2(Ω)) then there exist

C = C(T, p, a0, b, n,m, q,Ω, µ, µ1) > 0 and ε0 = ε0(a0, n,m,Ω, µ),

ε0 ∈ (0, 1), such that

||u′ε − v′ + hεe
−t/ε||C([0,T ];L2(Ω)) + ||u′ε − v′ + hεe

−t/ε||L2(0,T ;Hm
0 (Ω))

≤ C
(
M2(T, u0ε, u1ε, fε) ε

β + DεM4

)
, ∀ε ∈ [0, ε0],

where uε and v are the strong solutions to the problems (6.1) and (6.13), re-

spectively,

hε = fε(0)−(A0+εA1)u0ε−B(u0ε)−u1ε, µ1 = C(µ+||(A0+εA1)u0ε||L2(Ω)),

M2(T, u0ε, u1ε, fε)

= ||A1/2
0 u1ε||L2(Ω) + ||A0u0ε||L2(Ω) + ||A1u0ε||L2(Ω) + ||fε||W 1,p(0, T ;L2(Ω)),

µ(T, u0ε, u1ε, fε) = C
(
||u1ε||L2(Ω) + ||A1/2

0 u0ε||L2(Ω) + ||fε||W 1,p(0, T ;L2(Ω))

)
,

β = min{1/4, (p− 1)/2p}.

Dε = ||fε − f ||W 1,p(0,T ;L2(Ω)) + ||u0ε − u0||L2(Ω) + ||B(u0ε)−B(u0)||L2(Ω).
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Remark 6.1. If Ω = Rn with n > 2m, q ∈ [1, 2m/(n−2m)] and there exists

c0 > 0 such that∣∣∣ ∑
|α|≤r

(
cα(x) ξα, ξα

)
Rn

∣∣∣ ≤ c0

∑
|α|≤m

(
aα(x) ξa, ξα

)
Rn
, ∀x ∈ Ω̄, ∀ξ = (ξi)

n
1 ∈ Rn

the statements of Theorems 6.1 and 6.2 remain also valid.
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In this paper we discuss optimization problems for cylindrical tubes
which are loaded by an applied force. This is a problem of optimal con-
trol in linear elasticity theory (shape optimization). We are looking for
an optimal thickness minimizing the deflection (deformation) of the
tube under the influence of an external force. From basic equations of
mechanics, we derive the equation of deformation. We apply the dis-
placement approach from shell theory and make use of the hypotheses
of Mindlin and Reissner. A corresponding optimal control problem is
formulated and first order necessary conditions for the optimal solution
(optimal thickness) are derived. We present numerical examples which
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1 Introduction

In this paper, we discuss a particular class of optimal shape design for cylin-
drical shells. As a problem of shape optimization, it belongs to a very active
field of research with extensive literature. We refer only to the books by
Sokolowski and Zolesio [1], Pironneau [2], Haslinger and Mäkinen [3] and
Neittaanmäki et al. [4], Delfour and Zolesio [5], or Masmoudi et al. [6] and
to the references therein. Our problem is, in some sense, easier to handle,
because it can be transformed to an optimal control problem of coefficients in
a 4th order elliptic equation. We have been inspired by the papers [7,8,9,10]
on this subject. First investigations and modelings of these problems can be
found in the books of Ciarlet [11] and Timoshenko [12]. Lepik and Lepikult.
[7], Lepikult et al. [7,8], and Lellep [9,10] contributed to this topic. Lepikult
et al. [8] discuss related problems and solve them with the software Gesop.
We should also mention Olenev [14], who examined the plastic deformation
of cylindrical shells due to an external force. Lellep [10] developed optimiza-
tion procedures for cylindrical shells with piecewise linear geometry. The
work by Neittaanmäki et al. [4] and Sprekels and Tiba [15] is most close to
ours. They deal with a similar problem in elliptic equations of fourth order.

The present paper considers the effect of an external force on a cylin-
drical shell (specific rotationally symmetric force). As a result of this force
the cylinder tube is deformed. Our objective is to determine the thickness
of the tube, which minimizes the deformation. The underlying physical pro-
cess is described by a 4th order ordinary differential equation with boundary
conditions, which results from the balance of power. As an additional con-
dition, we require that the volume of the tube remains constant. To obtain
practical solutions we also require the thickness to vary only within specified
limits. We seek to find an optimal thickness numerically and we derive first
order necessary conditions for the optimal solution. The particular way of
numerical treatment is one of our main issues. First-order conditions for
optimality are tested numerically to evaluate the precision of the computed
optimal shape. This is another novelty of this work. In this paper, we treat
the stationary case, which is formulated in the next section. In a forthcom-
ing paper we will deal with the transient case, which results from the law of
conservation of momentum.
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2 Modeling of the Problem

Many practical problems deal with deformations of bodies caused by the
influence of forces. Examples are the deflection of floors, vibration char-
acteristics of bridges, deformations during processing of metals, and crash
tests in car industry. These practical problems are analyzed in elasticity
theory. By using the basic equations of mechanics (balance of power, stress
reaction of the material) and taking into account the geometric properties
of the body the aforementioned problems can be modeled fairly simple. As
a result we obtain equations for the solution (deformation) of the problem.

Let Ω3D ⊂ R3 be the reference configuration for a body in the stress free
state. The state is expressed by a map φ : Ω3D → R3. This map includes
the identity mapping and small displacements y. The deviation from the
identity mapping is expressed by the strain. The strain-tensor ε has the
following components:

εij =
1

2

(
∂yi
∂xj

+
∂yj
∂xi

)
i, j = 1, 2, 3.

The displacements depend on material parameters by Hooke’s law

σ(y) = 2µ ε(y) + λ(trace (ε(y))) · I,

with the Lamé-constants λ, µ (material parameters), the identical tensor I,
and the stress tensor σ. In linear elasticity theory, the goal is to minimize
the energy functional

Π(y) :=

∫
Ω3D

[
1

2
σ(y) : ε(y)− f · y

]
dx−

∫
∂Ω3D

g · y dS

for all admissible y. The term σ : ε denotes the second order tensor product
of σ and ε. The function f represents the force exerted on the body and g
formulates possible boundary conditions derived from the specific problem.
For modeling the cylindrical shell we use the hypotheses of Mindlin and
Reissner [16,17]. This allows to reduce our 3-dimensional problem to a 1-
dimensional. The deformation of the body under the force f is modeled by
the balance of power

−div σ(y) = f . (1)
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Let us introduce the cylindrical shell to be optimized. A cylindrical shell is
most conveniently described in cylindrical coordinates. The surface of the
cylinder ΩC

2D := [0, 1]× [0, 2π] with radius R is given by

z(x, ϕ) =

 x
R cosϕ
R sinϕ

 , x ∈ Ω := [0, 1], ϕ ∈ [0, 2π].

The cylindrical shell S with center plane z(x, ϕ) and thickness u is given as

S =

z(x, ϕ) + h

 0
cosϕ
sinϕ

 | h ∈ [−u
2
,
u

2

]
, (x, ϕ) ∈ ΩC

2D

 ,
in the natural coordinate system ei, (i = 1, 2, 3), specified by the cylindrical
shell,

e1 =
∂S
∂x

e2 =
∂S
∂ϕ

e3 =
∂S
∂h

.

We mention that Ω3D = S, to close the gap the setting above.

0
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Figure 1: cylindrical shell

The Mindlin and Reissner hypotheses lead to the displacement law

y = y1(x, ϕ)e1 + y2(x, ϕ)e2 + y3(x, ϕ)e3 − h[θ1(x, ϕ)e1 + θ2(x, ϕ)e2]

with displacements yi : S → R with respect to all basis-directions and
torsions θi : S → R. We assume a rotationally symmetric force. Let the



Optimal Thickness of a Cylindrical Shell 187

tube be fixed at its ends and let the Kirchhoff-Love hypothesis for a thin
shell be fulfilled. We use soft clamped boundary conditions (yi = 0, ∇θi = 0
on the considered boundary) which are often considered in practice. Under
these conditions, we have y1 = y2 = θ2 = 0 and ∂xy1 = θ1. We insert the
displacement law into the balance of power (1). With w := y3, fz := f · e3,
there follows the equation of the stationary problem in the weak formulation:
Find a solution w ∈ V := H2(Ω) ∩H1

0 (Ω) such that∫
Ω

{
(2µ+ λ)

[
Ru3

12
d2
xwd

2
xw̃ +

(
u3

12R3
+
u

R

)
ww̃

]}
dx = R

∫
Ω
fzw̃ dx (2)

for each w̃ ∈ V . We recall that Ω = (0, 1). Here and what follows, d2
xw

stands for d2w
dx2

. The space Hk(Ω) denotes the standard well know Sobolev
space of order k. The existence of a solution of equation (2) can be shown
by the Lemma of Lax and Milgram. This variational formulation has the
advantage that we look for the solution in the weak sense (weak solution)
w ∈ V . Later we need the higher regularity w ∈ V ∩ Hk(Ω) with k > 2.
To achieve this higher regularity, we require that the force fz belongs to
Hk−1(Ω) and that the coefficients of the differential equation are sufficiently
smooth, for more information see [18].

Under sufficient smoothness, w is a classical solution of the equation (2).
We allow the function fz to be only square integrable, i.e. fz ∈ L2(Ω). This
generalization fits better to the practical situation.

To cover the non-linearities with respect to the control u, we define Ne-
mytskij operators Φ,Ψ : L∞(Ω)→ L∞(Ω):

Φ(u) := (2µ+ λ)
Ru3

12
Ψ(u) := (2µ+ λ)

(
u3

12R3
+
u

R

)
.

These operators are continuously differentiable. We need them for the deriva-
tives of optimality criteria for the optimal control problem. These derivatives
can be expressed for a direction h ∈ L∞(Ω) by

Φ′(u)h = (2µ+ λESZ)
Ru2

4
h Ψ′(u)h = (2µ+ λESZ)

(
u2

4R3
+

1

R

)
h.

3 The Optimal Control Problem

For the formulation of the problem and its solvability, we assume the exis-
tence of an optimal control u. The goal is to determine a thickness u, which
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minimizes the deformation of the cylinder tube. Additionally, we require the
cylindrical shell to have a constant volume:

min
u∈Uad

J(w) := min
u∈Uad

∫
Ω
fz(x)w(x) dx

subject to

d2
x

(
Φ(u)d2

xw
)

+ Ψ(u)w = Rfz

w(0) = w(1) = d2
xw(0) = d2

xw(1) = 0

where

Uad =

{
u ∈ L∞(Ω), ua ≤ u(x) ≤ ub a.e.,

∫
Ω
u(x) dx = C

}
,

and 0 < ua < ub are given. Additionally, the objective function is weighted
by the applied force fz. In regular situations, we can assume that the re-
sulting deformation w has the same direction as the applied force. Then the
objective function is positive. The thickness u = u(x) is the control func-
tion that influences the displacement (deflection) w = w(x) for a given force
fz = fz(x). The constant C := VZ

2πR considers the constant volume of the
shell VZ . In this formulation of the optimal control problem we have used the
strong formulation to highlight the type of equation and the soft clamped
boundary conditions. In the following and in the numerical calculations we
use only the weak formulation (2).

Let us assume for convenience that a (globally) optimal control exists
that we denote in the following by u. In general, this problem of existence is
fairly delicate in the theory of shape optimization. We refer to the preface
in Sokolowski and Zolesio [1], who underline the intrinsic difficulties of this
issue. The existence of optimal controls can be proved in certain classes of
functions that are compact in some sense. We refer also to recent discussions
on bounded perimeter sets in shape optimization discussed in [5,6,18,19]. In
the case of optimal shaping of some thin elastic structures such as arches
or curved rods, another method was presented by Sprekels and Tiba [15],
cf. also Neittaanmäki et al. [4]. In our case, this method is not applicable,
because we have a volume constraint that cannot be handled this way. We
also might work in a set Uad that is compact in L∞. This is not useful for
our application. However, in the numerical discretization, the existence of an
optimal control follows by standard compactness arguments. Moreover, as
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in classical calculus of variations, we might assume the existence of a locally
optimal control. The whole theory of our paper remains true without any
change for any locally optimal control u.

Next, we transform this problem to a nonlinear optimization problem in
a Banach space. For this, we define the control-to-state operator G : u 7→
w, G : L∞(Ω) → V where w ∈ V is the solution of the state equation.
This allows us to eliminate the state w in the objective functional and to
formulate the so-called reduced optimal control problem:

min
u∈Uad

J(G(u)) = min
u∈Uad

∫
Ω

[fz G(u)](x) dx. (3)

Let us define the reduced functional f by

f(u) :=

∫
Ω

[fz G(u)](x) dx.

Next, we formulate the first order necessary conditions of this problem. No-
tice that f is continuously Fréchet-differentiability.

Lemma 1 Let u ∈ Uad be a solution of the problem (3). Then the variational
inequality

f ′(u)(u− u) ≥ 0 ∀ u ∈ Uad

is fulfilled.

We refer, for instance, to [19] for the proof of this standard result. By the
chain rule, we find for any h ∈ L∞(Ω)

f ′(u)h =

∫
Ω

[fz G
′(u)h](x) dx

as the derivative of the objective functional. The derivative of the control-
to-state operator G is given by the following theorem as a solution of a
boundary value problem.

Theorem 1 Let Ω be a bounded Lipschitz domain and Φ,Ψ be differentiable
Nemytskij operators in L∞(Ω). Then the control-to-state operator G is con-
tinuously Fréchet-differentiable. The derivative at u in direction h given by

G′(u)h = y
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with y being the weak solution of the boundary value problem

d2
x

(
Φ(u)d2

xy
)

+ Ψ(u)y = −d2
x

(
Φ′(u)hd2

xw
)
−Ψ′(u)hw

with boundary conditions y(0) = d2
xy(0) = y(1) = d2

xy(1) = 0. Here, u
and w ∈ V denote the optimal control and the associated optimal state,
respectively.

Proof. Let w = G(u) be the weak solution of the boundary value problem

d2
x(Φ(u)d2

xw) + Ψ(u)w = Rfz

w(0) = w(1) = d2
xw(0) = d2

xw(1) = 0

and let wu = G(u + h), h ∈ L∞(Ω), be the weak solution of the boundary
value problem

d2
x(Φ(u+ h)d2

xwu) + Ψ(u+ h)wu = Rfz

wu(0) = wu(1) = d2
xwu(0) = d2

xwu(1) = 0.

We consider the differenceG(u+h)−G(u) and use the Fréchet-differentiability
of the Nemytskij operators:

d2
x([Φ′(u)h+ rΦ(u, h)]d2

xw + Φ(u+ h)d2
x(wu − w))

+[Ψ′(u)h+ rΨ(u, h)]w + Ψ(u+ h)(wu − w) = 0.

For the boundary conditions, it follows

wu(0)− w(0) = 0 d2
x(wu(0)− w(0)) = 0

wu(1)− w(1) = 0 d2
x(wu(1)− w(1)) = 0.

We define wu−w = y+yr with y ∈ V being the weak solution of the equation

d2
x(Φ(u)d2

xy) + Ψ(u)y = −d2
x(Φ′(u)hd2

xw)−Ψ′(u)hw

with boundary conditions y(0) = d2
xy(0) = y(1) = d2

xy(1) = 0. Now we
consider the difference in order to derive an equation for the function yr ∈ V :

d2
x(Φ(u+ h)d2

xyr) + Ψ(u+ h)yr + d2
x([Φ′(u)h+ rΦ(u, h)]d2

xy)

+[Ψ′(u)h+ rΨ(u, h)]y + d2
x(rΦ(u, h)d2

xw) + rΨ(u, h)w = 0.
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For the boundary conditions it follows

yr(0) = d2
xyr(0) = yr(1) = d2

xyr(1) = 0.

In order to prove the existence of a solution by the Lemma of Lax and
Milgram, we consider the variational formulation. To this aim, we define the
bilinear forms

ay(y, v) :=

∫
Ω
{Φ(u)d2

xyd
2
xv + Ψ(u)yv} dx

ayr(yr, v) :=

∫
Ω
{Φ(u+ h)d2

xyrd
2
xv + Ψ(u+ h)yrv} dx

for each v ∈ V . Moreover, we introduce linear functionals fy : V → R and
fyr : V → R by

fy(v) :=

∫
Ω
{−Φ′(u)hd2

xwd
2
xv −Ψ′(u)hwv} dx

fyr(v) :=

∫
Ω

{
−rΦ(u, h)d2

xwd
2
xv − rΨ(u, h)wv

−[Φ′(u)h+ rΦ(u, h)]d2
xyd

2
xv − [Ψ′(u)h+ rΨ(u, h)]yv

}
dx

for fixed h ∈ L∞(Ω) sufficiently small. Notice that d2
xw ∈ L2(Ω) is satisfied,

hence the expressions on the right-hand side are well-posed. This leads to
the following problems: Find functions y and yr that satisfy the equations

ay(y, v) = fy(v) and ayr(yr, v) = fyr(v)

for all v ∈ V . Obviously, the bilinear forms satisfy the conditions of the
Lemma of Lax and Milgram. In order to estimate the linear form fy(v), we
define Θ1(u)(x) := max{|Φ′(u)(x)|, |Ψ′(u)(x)|}, x ∈ Ω, and it holds

|fy(v)| ≤
∫

Ω
|Θ1(u)h||d2

xwd
2
xv + wv| dx ≤ ‖Θ1‖L∞‖h‖L∞‖w‖H2‖v‖H2 .

For the norm of the functional it follows

‖fy‖V ∗ = sup
v∈V

|fy(v)|
‖v‖V

≤ ‖Θ1‖L∞‖h‖L∞‖w‖H2 .

The Lemma of Lax and Milgram yields

‖y‖H2 ≤
‖Θ1‖L∞‖h‖L∞

β0
‖w‖H2
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with a constant β0 > 0. The solution y depends linearly on h. In order to
estimate the linear form fyr(v) we define

ryr(u, h)(x) := max{|rΦ(u, h)(x)|, |rΨ(u, h)(x)|}, x ∈ Ω.

We have

|fyr(v)| ≤
∫

Ω
|ryr(u, h)||d2

x(w + y)d2
xv + (w + y)v|+ |Θ1||h||d2

xyd
2
xv + yv| dx

≤ ‖ryr(u, h)‖L∞‖w + y‖H2‖v‖H2 + ‖Θ1‖L∞‖h‖L∞‖y‖H2‖v‖H2 ,

hence

‖fyr‖V ∗ ≤ ‖ryr(u, h)‖L∞‖w + y‖H2 + ‖Θ1‖L∞‖h‖L∞‖y‖H2 .

Therefore it holds
‖yr‖H2 ≤ cα‖fyr‖V ∗

with a constant cα > 0. It remains to show that the remainder term yr
satisfies the required property. We divide by ‖h‖L∞ > 0,

‖yr‖H2

‖h‖L∞
≤ cα

‖fyr‖V ∗
‖h‖L∞

,

and consider the limit ‖h‖L∞ → 0. In the following we analyze each term
separately. First, we invoke the remainder property of Nemytskij operators.
For the second term, we use our estimate of the solution y,

‖ryr(u, h)‖L∞‖y‖H2

‖h‖L∞
≤ ‖ryr(u, h)‖L∞‖Θ1‖L∞‖h‖L∞‖w‖H2

β0‖h‖L∞

=
‖ryr(u, h)‖L∞‖Θ1‖L∞‖w‖H2

β0
→ 0,

as ‖h‖L∞ → 0. The last term is handled by

‖Θ1‖L∞‖h‖L∞‖y‖H2

‖h‖L∞
≤ ‖Θ1‖2L∞‖h‖2L∞‖w‖H2

β0‖h‖L∞

=
‖Θ1‖2L∞‖h‖L∞‖w‖H2

β0
→ 0

for ‖h‖L∞ → 0. In view of the remainder property, we conclude

‖yr‖H2

‖h‖L∞
≤ cα

‖fyr‖V ∗
‖h‖L∞

≤ o(‖h‖L∞).
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Thus we showed the Fréchet-differentiability of the operator G:

G(u+ h)−G(u) = G′(u)h+ rG(u, h)

with G′(u)h = y and rG(u, h) = yr.
2

By an adjoint state, we are able to formulate this derivative more useful.

Definition 1 The adjoint state p ∈ V associated with u is the weak solution
of the boundary value problem

d2
x

(
Φ(u)d2

xp
)

+ Ψ(u)p = fz

with boundary conditions p(0) = d2
xp(0) = p(1) = d2

xp(1) = 0.

We use the function p in order to express the first order necessary condition
more conveniently. The function p can be interpreted as Lagrange multiplier
associated with the state equation.

Lemma 2 Let functions u, h ∈ L∞(Ω) be given. Furthermore, let y and p
be the weak solutions of

d2
x(Φ(u)d2

xy) + Ψ(u)y = −d2
x(Φ′(u)hd2

xw −Ψ′(u)hw

y(0) = y(1) = d2
xy(0) = d2

xy(1) = 0

and

d2
xΦ(u)d2

xp) + Ψ(u)p = fz

p(0) = p(1) = d2
xp(0) = d2

xp(1) = 0.

Then it holds∫
Ω
fzy dx =

∫
Ω

[−Φ′(u)d2
xwd

2
xp−Ψ′(u)wp]h dx.

Using this lemma, it follows for h = u− u that

f ′(u)(u− u) =

∫
Ω

[fz G
′(u)h](x) dx =

∫
Ω
fzy(x) dx

=

∫
Ω

[−Φ′(u)d2
xwd

2
xp−Ψ′(u)wp](u− u) dx. (4)
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Corollary 1 (Necessary condition) Any optimal control u and the cor-
responding optimal state w = G(u) must fulfill the optimality system∫

Ω
{Φ(u)d2

xpd
2
xv + Ψ(u)pv} dx =

∫
Ω
fzv dx, ∀ v ∈ V∫

Ω
{−Φ′(u)d2

xwd
2
xp−Ψ′(u)wp}(u− u) dx ≥ 0, ∀ u ∈ Uad,

where the Lagrange multiplier p ∈ V is the weak solution of the adjoint
equation.

This formulation implicitly contains the constraints in terms of the control-
to-state operator G.

4 Numerical Implementation and Solution of the
Problem

Our equality is a fourth order ordinary differential equation. We solve this
equation by the finite element method. For the resulting optimal control
problem we use the optimization solver fmincon that is part of the software-
package Matlab. Subsequently, we give some details to the finite element
method (FEM) [16,20] that is used to determine approximate solutions of
the state equations and the associated adjoint equation. The starting point
of this method is the variational formulation (2).

In order to approximate the solution space V , we use Hermite interpola-
tion of the functions w and p with step size parameter h:

wh =
n∑
j=0

w0
jpj + w1

j qj

with basis functions pj , qj ∈ P3(Ω) for j = 0, 1, . . . , n (cubic polynomials),
where n is the number of grid points, and the w0

j , w
1
j are certain real node

parameters. For the node parameters, we have in mind w0
j ≈ wh(xj) and

w1
j ≈ dxwh(xj). First, we define the discrete solution space

Vh =

wh(·) : wh(·) =
n∑
j=0

w0
jpj(·) + w1

j qj(·)

 ⊂ V.
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In this definition of the solution space, we use conformal finite elements.
Furthermore, we define a discrete bilinear form and a linear form

ah(wh, vh) :=

∫
Ω

Φ(uh)d2
xwhd

2
xvh + Ψ(uh)whvh dx

Fh(vh) := R

∫
Ω
fzvh dx.

For the weak formulation of our state equation or adjoint equation (with
small modifications in the linear form), we define the following discrete prob-
lem: Find wh ∈ Vh solving the equation

ah(wh, vh) = Fh(vh) ∀ vh ∈ Vh.

For this discrete problem and our approach, we can use the standard tech-
niques of linear algebra to calculate an approximate solution for the state
wh and the associated adjoint state ph. For the control function u, we use a
piecewise linear interpolation,

uh =
n∑
j=0

ujlj

with linear continuous basis functions lj ; then it holds uh ∈ C(Ω). With the
linear interpolation of the control u it follows for the Nemytskij-operators
Φ(u) and Ψ(u) on each interval E(i) := [xi−1 , xi]:

Φ(uh)|E(i) :=
(2µ+ λESZ)R

12

 i∑
k=i−1

uklk(x)

3

(5)

Ψ(uh)|E(i) :=
(2µ+ λESZ)

12R3

12R2

 i∑
k=i−1

uklk(x)

+

 i∑
k=i−1

uklk(x)

3
 .

The coefficients ui−1 and ui are equal to uh(xi−1) and uh(xi) within the
considered element E(i). Therefore, we have established an isomorphism

uh ⇐⇒ ~uh = [u0, . . . , un] ∈ Rn+1

and the objective functional fh(uh) =
∫
Ω f

h
z wh dx can be expressed by a

mapping ϕ : Rn+1 → R:

ϕh : ~uh 7→ uh 7→ fh(uh).
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This function will be used in the numerical implementation. The optimal
control problem is finally approximated by

min
~u∈Uh

ad

ϕh(~uh),

where the set Uhad will be defined later.

4.1 Implementation of the Derivative of the Objective Func-
tional

In order to express the derivative of the objective functional f , we invoke
the adjoint state p. We get from (4)

f ′(u)z =

∫
Ω

[−Φ′(u)d2
xwd

2
xp−Ψ′(u)wp]z dx ∀ z ∈ L∞(Ω).

The optimization solver fmincon calculates the discrete derivative ∇ϕh(~uh)
by finite differences. This means that, in principle, our adjoint calculus is not
needed by fmincon. However, proceeding in this way, the computing times
will be very long. The tool fmincon can be accelerated by providing infor-
mation on the derivative. During the analytical treatment of the optimal
control problem, we determined the derivative f ′(u) by (4). Numerically, we
implement this derivative by the finite element approximation to compute
∇ϕh(~uh). During the numerical optimization process, this gradient is passed
to the solver fmincon. This reduces the running time of the optimization
algorithm considerably. On the other hand, this approach might be prob-
lematic, because we approximate ∇ϕh by means of a discretized continuous
adjoint equation. This is not necessarily equal to the exact discrete gradient
∇ϕh. The solver fmincon is testing the quality of the transmitted gradi-
ent ∇ϕh by finite differences. During our numerical experiments, it turned
out that the difference between our gradient ∇ϕh (computed via the adjoint
equation) and the ”exact” discrete gradient was marginal of the order 10−6

for sufficiently small discretization parameters h.

We should mention that the computation of the gradient via the adjoint
equation was numerically more stable than the use of the one generated by
fmincon. Of course, the solution of the optimization problem with finite
element gradients is identical with the one obtained from finite difference
gradients. We used a discretized version of this gradient, where we consider
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arbitrary directions zh ∈ C(Ω) (the analog approach to u), and it holds

∇fh(uh)zh =

∫
Ω

[−Φ′(uh)d2
xwhd

2
xph −Ψ′(uh)whph]zh dx

=
n∑
i=1

∫
E(i)

[−Φ′(uh)d2
xwhd

2
xph −Ψ′(uh)whph]zh dx

for each zh. The derivatives of the Nemytskij operators Φ′(uh), Ψ′(uh) are
discretized analogously to (5). For any direction zh, we can choose the nodal
basis functions lj successively for j = 0, . . . , n. It follows for the numerical
implementation of the discrete gradient vector that

[∇ϕh]j =
n∑
i=1

∫
E(i)

[−Φ′(uh)d2
xwhd

2
xph −Ψ′(uh)whph]lj dx j = 0, . . . , n.

The same implementation is used for checking the first order necessary op-
timality conditions, see Corollary 1.

4.2 Numerical Solution of the Optimization Problem

The reduced problem (3) is our starting point for the direct solution of the
optimal control problem. It is a finite dimensional optimization problem:

min
~uh∈Uad

h

ϕh(~uh) (6)

subject to

Ah~uh = C, (7)

where
Uadh = {~uh ∈ Rn+1 | ~ua ≤ ~uh ≤ ~ub}

and
Ah =

[
h
2 h . . . h h

2

]
∈ Rn+1.

The volume condition (7) is formulated as an additional constraint. It was
derived by the trapezoidal rule. The constant C (volume) depends on the
particular problem. The restrictions on ~uh are defined componentwise.

We use the Optimization Toolbox of Matlab, in particular the tool fmin-
con, for obtaining numerical solutions. It is designed for solving optimization
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problems with linear (or nonlinear) objective functions and linear (or non-
linear) constraints, both in form of equations as well as inequalities. The
routine fmincon requires the following inputs: the values of the discrete ob-
jective functional ϕh(~uh), the volume condition (7) by input of Ah and C,
the vectors ~ua, ~ub, and the discrete gradient vector ∇ϕh that leads to a re-
duction of running time. The program stops, if changes of the objective
functional are smaller than a prescribed threshold, the violations of the con-
straint be located within the tolerances, and the necessary conditions for the
optimality of the solution are fulfilled. The output is the optimal solution
vector ~uh, the discrete Lagrange multiplier qh for the volume condition, and
the Lagrange multipliers ~µa, ~µb for the control restrictions, where they are
active. Whether the solution uh of the discrete optimal control problem re-
ally be a candidate for the optimal solution is verified by checking the first
order necessary condition. Let us call this ”optimality test”.

The variational inequality∫
Ω

[−Φ′(u)d2
xwd

2
xp−Ψ′(u)wp](z − u) dx ≥ 0, ∀ z ∈ Uad, (8)

is the starting point for evaluating the optimality of the numerically com-
puted optimal solution uh. Pointwise evaluation of the first order necessary
condition, as done in [10] for optimal control problems with box constraints,
is not applicable in our case due to the non-constant ansatz for the control
function u and the additional volume condition. Let us define the linear
form

b(z) :=

∫
Ω

[Φ′(u)d2
xwd

2
xp+ Ψ′(u)wp]z dx.

The inequality (8) is equivalent to

max
z∈Uad

b(z) = b(u),

hence, to be optimal, u must solve a linear continuous optimization problem.
As done for the control u we linearly interpolate the function z. We have
also an isomorphism

ψh : ~zh 7→ zh 7→ bh(zh),

with

bh(zh) =

∫
Ω

[Φ′(uh)d2
xwhd

2
xph + Ψ′(uh)whph]zh dx.
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Hence we obtain the discrete problem:

max
~zh∈Uad

h

ψh(~zh) (9)

subject to

Ah~zh = C.

A first test is performed as follows: After computing uh, we compute the
state wh and the adjoint state ph. Then we solve the optimal problem (9).
The solution is zh. If uh is optimal for the discretized problem, the equation
uh = zh should hold. In general, there is an error and the difference ‖uh−zh‖
indicates the precision of uh. This procedure shows, how good uh solves the
discretized optimization problem. Another test is used to estimate, how well
uh solves the reduced problem.

Now, we give some implementation details. The problem (9) is also
solved by the optimization solver fmincon. The gradient ∇ψh is calculated
by finite elements and is passed to fmincon. We used ~z0 = uh+ε·1 as starting
approximation for our examples below. The parameter ε ∈ R generates a
perturbation in all components of optimal solution uh of (6). The output is
the optimal solution zh of (8).

5 Examples

Let us discuss some simple test examples for our optimal control problem.
They are used to evaluate the quality of the necessary optimality conditions
and the advantage of using finite elements gradients. In the examples, we
use the material parameters

E = 2.1 · 102, ν = 0.3, R = 1,

that is the elastic modulus E, the Poisson number ν and the radius R. The
first two parameters depend on the material and the last parameter depends
on the particular geometry. To discretize the stationary problem, we choose
an equidistant grid. For this grid, we compute the discrete optimal solution
uh and the corresponding optimal state wh.
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Figure 2: Starting configuration

Figure 2 shows a longitudinal cut through the cylindrical shell, where we
only plot the upper part due to symmetry. The dash-dotted-line represents
the central plane of the cylindrical shell. This is the starting configuration
for all examples. We define the vector 1 ∈ Rn+1 containing the integer
number in all entries. As restrictions to the control we set the constants
ua = 0.05 ·1 and ub = 0.2 ·1. The fixed volume is prescribed by C = 0.6283,
and u0 = 0.1 · 1 is the initial value on the control. The figures below show
the optimal solution uh, the solution zh of the variational inequality and the
corresponding shape of the cylindrical shell for different choices of fz.
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Example 1. We take as force fz = sin(2πx).

First, we justify the use of the finite element gradient via the adjoint
equation.
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with fmincon−Gradient (50 nodes)

Figure 3: Optimal thickness uh on
using the finite difference method
of fmincon for gradients (fdm-
gradient)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

x−region
o
p
ti
m

a
l 
c
o
n
tr

o
l

 

 

with fem−Gradient (50 nodes)

Figure 4: Optimal thickness uh by
using the finite element method and
the adjoint equation for the gradi-
ents (fem-gradient)

As can be easily seen, the use of the finite element gradient is of great ad-
vantage. The second major advantage is the acceleration of the optimization
solver fmincon:

grid-points fmincon with fdm-gradient fmincon with fem-gradient

50 246.433 2.49704
100 1166.62 5.58509

The values of the 2nd and 3nd column are given in seconds. These values
were calculated for Example 1.

The next pictures show the numerically calculated optimal control uh
and the associated configuration of the cylindrical shell. Again, we only
display its upper half.
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Figure 5: Optimal thickness uh
Figure 6: Configuration of the cylin-
drical shell

The following table shows how the error developed with consideration
of the step size. For u, we take the solution uh on a very fine grid with
h = 1.25 · 10−3.

step-size h ‖u− uh‖∞ ‖u− uh‖2
4.00 · 10−2 5.215633 · 10−3 1.322039 · 10−3

2.00 · 10−2 3.393303 · 10−3 5.254619 · 10−4

1.00 · 10−2 1.465212 · 10−3 2.395697 · 10−4

5.00 · 10−3 8.900138 · 10−4 7.009283 · 10−5

2.50 · 10−3 6.143035 · 10−4 5.524533 · 10−5

The next table displays the discretization error of (9) in different norms.

step-size h ‖u− zh‖∞ ‖u− zh‖2
2.00 · 10−2 1.398209 · 10−1 3.264695 · 10−2

1.00 · 10−2 1.476560 · 10−1 1.978807 · 10−2

5.00 · 10−3 1.105508 · 10−4 9.371137 · 10−6

2.50 · 10−3 6.110761 · 10−5 4.862581 · 10−6

1.25 · 10−3 1.024119 · 10−5 2.125253 · 10−6
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Example 2. We take as force fz = x(1− x).

In the next example a ”simple” symmetric force is acting on the cylin-
drical shell. We again show the optimal control uh and the cut through the
cylindrical shell.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

x−region

o
p
ti
m

a
l 
c
o
n
tr

o
l

 

 
u

opt
 Direct Sol.

z
opt

 Sol. of VU

Figure 7: Optimal thickness uh
Figure 8: Configuration of the cylin-
drical shell

For the error, the following values are obtained:

step-size h ‖u− uh‖∞ ‖u− uh‖2
4.00 · 10−2 4.279621 · 10−3 1.663178 · 10−3

2.00 · 10−2 3.652657 · 10−3 1.513568 · 10−3

1.00 · 10−2 3.312656 · 10−3 1.432902 · 10−3

5.00 · 10−3 2.552378 · 10−3 1.187955 · 10−3

2.50 · 10−3 1.194550 · 10−3 1.520591 · 10−4

step-size h ‖u− zh‖∞ ‖u− zh‖2
2.00 · 10−2 1.100842 · 10−3 3.894984 · 10−5

1.00 · 10−2 1.100871 · 10−3 3.895043 · 10−5

5.00 · 10−3 1.100853 · 10−3 3.894977 · 10−5

2.50 · 10−3 1.100852 · 10−3 3.895002 · 10−5

1.25 · 10−3 1.092301 · 10−3 3.864768 · 10−5

Figure 7 indicates that, in the major parts of Intervall [0, 1] the solution
is almost linear. This explains the very good approximation already for
h = 0.02.
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Example 3. The force is given by fz = exp(x).

In this example, an exponential power is applied to the cylindrical shell.
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Figure 9: Optimal thickness uh
Figure 10: Configuration of the
cylindrical shell

For this example, we calculated the following errors:

step-size h ‖u− uh‖∞ ‖u− uh‖2
4.00 · 10−2 6.617402 · 10−3 1.663178 · 10−4

2.00 · 10−2 1.062276 · 10−3 1.513568 · 10−4

1.00 · 10−2 1.073535 · 10−3 1.432902 · 10−5

5.00 · 10−3 9.485243 · 10−4 1.187955 · 10−5

2.50 · 10−3 5.911537 · 10−4 1.520591 · 10−5

step-size h ‖u− zh‖∞ ‖u− zh‖2
2.00 · 10−2 1.479757 · 10−1 2.707877 · 10−2

1.00 · 10−2 3.221490 · 10−3 2.032824 · 10−4

5.00 · 10−3 1.617830 · 10−4 6.937561 · 10−6

2.50 · 10−3 8.919767 · 10−5 3.873755 · 10−6

1.25 · 10−3 1.159797 · 10−5 1.552477 · 10−6
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Example 4. We select as force

fz(x) =

{
exp(x) x ∈ [0, 0.5]

exp(−x) x ∈ (0.5, 1]
.

In this example, we considered also an exponential power influence on the
cylindrical shell. But on half of the interval, we used a negative exponential
power.
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Figure 11: Optimal thickness uh
Figure 12: Configuration of the
cylindrical shell

step-size h ‖u− uh‖∞ ‖u− uh‖2
4.00 · 10−2 5.145951 · 10−3 8.806373 · 10−4

2.00 · 10−2 2.393243 · 10−3 2.094697 · 10−4

1.00 · 10−2 1.718650 · 10−3 1.538653 · 10−4

5.00 · 10−3 9.667670 · 10−4 9.869548 · 10−5

2.50 · 10−3 3.907290 · 10−4 6.034828 · 10−5

step-size h ‖u− zh‖∞ ‖u− zh‖2
2.00 · 10−2 1.363838 · 10−1 1.535772 · 10−2

1.00 · 10−2 2.291533 · 10−3 1.604229 · 10−4

5.00 · 10−3 1.537531 · 10−4 8.267414 · 10−6

2.50 · 10−3 1.023066 · 10−4 4.271060 · 10−6

1.25 · 10−3 1.004273 · 10−5 1.403717 · 10−6



206 Peter Nestler

6 Concluding Remarks

We discussed a problem of optimal shape design in linear elasticity theory.
The optimal thickness of a cylindrical tube is determined that minimizes
the displacement of the tube under the influence of given external force.
Necessary optimality conditions for the optimal solution are formulated and
proved. In contrast to previous work on this subject, we selected a direct
method for the optimization for a finite element discretized model. We
also use finite element method to generate gradients and to test necessary
optimality conditions. We considered only small deformations. The case of
large deformations that might lead to effects of plasticity ist not considered
here.

Acknowledgement. The author thanks L. Bittner and W. Schmidt
(Greifswald) for introducing me to this topic. Moreover, he is very grateful
to F. Tröltzsch (Berlin) for this support and extensive discussion during a
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Abstract

The purpose of this paper is to determine conditions for the bound-
edness of the anisotropic norm of discrete–time linear stochastic sys-
tems with state dependent noise. It is proved that these conditions can
be expressed in terms of the feasibility of a specific system of matrix
inequalities.
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results of Kalman and Bucy derived two decades later ([9], [10]) and their
successful implementation in many applications including aerospace, signal
processing, geophysics, etc., strongly stimulated the reasearch in this area.
A comprehensive survey of linear filtering and estimation can be found in
[8]. An important issue concerning the filtering performance is the robust-
ness with respect to the modelling uncertainty of the system which state is
estimated. It is known that the filter performance deteriorates due to the
modelling errors. Many papers have been devoted to the robust filtering
and in the presence of parametric uncertainty (see e.g. [4], [6], [11] and
the references therein). There are applications where the system parameters
are subject to random perturbations requiring stochastic models with state–
dependent noise (or multiplicative noise). Such stochastic systems have been
intensively studied over the last few decades (see [22] for early references) by
considering their H2 and H∞ norms ([6], [20]). Recalling that H2 optimiza-
tion may not be suitable when the considered signals are strongly colored
(e.g. periodic signals), and that H∞-optimization may poorly perform when
these signals are weakly colored (e.g. white noise), compromises between
these two approaches were seeked, mostly by considering multi objective
optimization (see e.g. [1] and [14]).

In the recent years, a considerable effort has been made to characterize
the so called anisotropic norm of linear deterministic systems [5], [12], [18],
[19]. The anisotropic norm offers and intermediate topology between the
H2 and H∞ norms, and as such it provides a single-objective optimization
approach alternative, to the multi objective approach of e.g. [1] and [14].

In [19] it is proved a Bounded Real Lemma type result for the anisotropic
norm of stable deterministic systems. It is shown that the boundedness norm
condition implies to solve a nonconvex optimization problem with reciproci-
cal variables.

The aim of the present paper is to investigate a procedure to determine
the anisotropic norm for stochastic systems with state–dependent noise and
to derive conditions for the boundedness of this norm in this case. Such
characterization will allow future developments in the control and estimation
algorithms to this class of stochastic systems which seems to have some
important applications (see e.g. [6] and [16]).

Notation: Throughout the paper the superscript ‘T ’ stands for matrix
transposition, Rn denotes the n dimensional Euclidean space, Rn×m is the
set of all n × m real matrices, and the notation P > 0, for P ∈ Rn×n



On the anisotropic norm of stochastic systems 211

means that P is symmetric and positive definite. The trace of a matrix Z
is denoted by Tr{Z}, col{a, b} denotes a column vector obtained with the
concatenation of the vectors a and b. We also denote by N (C) the basis for
the right null space of C.

2 Problem Statement

Consider the following discrete-time stochastic system we denote by F with
state- multiplicative noise:

xk+1 = (A+Hξk)xk +Bwk and zk = Cxk +Dwk (1)

where xk ∈ Rn denotes the state vector at moment k, wk ∈ Rm stands for
the input, zk ∈ Rp represents the output and ξk ∈ R is a random discrete-
time white noise sequence, with zero mean and unit covariance.

We consider the class of wk produced by the following generating filter
with m inputs and m outputs denoted by G:

hk+1 = (α+ ηξk)hk + βvk and wk = γhk + δvk, (2)

where vk is a white noise sequence, independent of ξk and also with zero
mean and unit covariance. Throughout the paper both stochastic systems
(1) and (2) are assumed exponentially stable in mean square. Recall that a
stochastic system of form (1) is called exponentially stable in mean square
if there exist c1 > 0 and c2 ∈ (0, 1) such that E[|xk|2] ≤ c2c

k
1|x0|2 for all

k ≥ 0 and for any initial condition x0 ∈ Rn at k = 0, where E denotes the
expectation and | · | stands for the Euclidian norm. Consider the estimate
ŵk of wk based on past measurements, namely,

ŵk = E{wk|wj , j < k} (3)

and denote the estimation error by

w̃k = wk − ŵk. (4)

The mean anisotropy of G is then obtained by the Szego-Kolmogorov for-
mula:

Ā(G) = −1

2
ln det

(
mE(w̃kw̃

T
k

Tr{wkw
T
k }

)
. (5)
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We denote the class of admissible filters G with Ā(G) < a by Ga. We note
that the anisotropy Ā(G) of wk is a measure of its whiteness. Namely, if wk

is white, then it can not be estimated (i.e. its optimal estimate is just zero)
and w̃k = wk which leads to Ā(G) = 0. On the other hand, if wk can be
perfectly estimated, then Ā(G) tends to infinity.

The a–anisotropic norm of the system F is defined as

||F ||a := supG∈Ga
||FG||2
||G||2

, (6)

where ||G||2 denotes the H2–type norm of the system (2), namely ||G||2 :=

limk→∞E[|wk|2]
1
2 , the sequence wk, k = 0, 1, ... being determined with null

initial conditions in (2). The computation of this norm may allow us to
analyze the disturbance attenuation properties for a given F or to design
feedback controllers which give rise to closed-loop systems F .

3 Generating Filter Mean Anisotropy

We first aim at computing Ā(G) in terms of α, β, γ, δ, η. To this end we
define ĥk = E{hk|wj , j < k} and we have ŵk = γĥk and w̃k = γh̃k + δvk
where h̃k := hk − h̃k denotes the state estimation error. Therefore,

E{w̃kw̃
T
k } = γXγT + δδT (7)

where X := E{h̃kh̃k}. Also, E{wkw
T
k } = γQγT +δδT where Q is the solution

of the Lyapunov equation

Q = αQαT + ηQηT + ββT . (8)

To complete the explicit computation of Ā(G) it remains to derive X. We
have the following result.

Lemma 1. The optimal filter gain L for which α − Lγ is stable and X
is minimized, is given by:

L∗ = (αXγT + βδT )
(
δδT + γXγT

)−1
(9)

where X is the stabilizing solution of the Riccati equation

X = αXαT − (αXγT +βδT )
(
δδT + γXγT

)−1
(γXαT + δβT ) +ηQηT +ββT

(10)
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and Q is the solution of the Lyapunov equation (8).
Proof: Consider the estimator

ĥk+1 = αĥk + L(wk − γĥk) (11)

From the latter and (2) one obtains[
h̃k+1

hk+1

]
=

[
α− Lγ 0

0 α

] [
h̃k
hk

]
+

[
0 η
0 η

] [
h̃k
hk

]
ξk

+

[
β − Lδ
β

]
vk.

According with the results derived for instance in [6, 7] concerning the com-
putation of the H2 norm of stochastic systems with state–dependent noise,

the H2 norm of the above system with the output h̃k equals
[
Tr
(
CPCT

)] 1
2

where C =
[
I 0

]
and the stochastic controllability Gramian

P =

[
X Z
ZT Q

]

is the solution of the Lyapunov equation

P = APAT +DPDT + BBT , (12)

where the following notations have been introduced

A :=

[
α− Lγ 0

0 α

]
, D :=

[
0 η
0 η

]
, B :=

[
β − Lδ
β

]
.

Then direct algebraic computations show that the blocks (1,1) and (2,2)
of equation (12) give

X = (α− Lγ)X (α− Lγ)T + ηQηT + (β − Lδ)(β − Lδ)T , (13)

and (8), respectively. The above equation (13) can be readily written as:

X = αXαT − (αXγT + βδT )
(
δδT + γXγT

)−1
(γXαT + δβT ) + ηQηT + ββT

+ (L− L∗)
(
δδT + γXγT

)
(L− L∗)T
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where L∗ is given by (9). Noting that Q satisfies (8), the theorem follows by
the monotonicity property of discrete-time Riccati equations (see for instance
[2], [17], [21]).

The stability of α − Lγ directly follows from the fact that X is the
stabilizing solution of (10).

We can, therefore, now present the formula for the mean anisotropy of
the generating filter (2):

Ā(G) = −1

2
ln det

(
m(γXγT + δδT )

Tr(γQγT + δδT )

)
(14)

where X and Q respectively satisfy (10) and (8). Thus the condition Λ̄(G) <
a becomes

−1

2
ln det

(
m(γXγT + δδT )

Tr(γQγT + δδT )

)
< a

which gives

det
(
γXγT + δδT

)
> e−

2a
m

(
Tr
(
γQγT + δδT

))m
.

One can show that the above condition is fulfilled if there exists q > 0
such that

γXγT + δδT > qIm > e−
2a
m

(
γQγT + δδT

)
. (15)

Recall that in the above developments X denotes the stabilizing solution of
the Riccati equation (10). Considering instead of this equation the inequality

X < αXαT − (αXγT + βδT )
(
δδT + γXγT

)−1
(γXαT + δβT )

+ηQηT + ββT
(16)

with X > 0, from the monotonicity properties of the stabilizing solution of
the Riccati equation with respect to the free term, it follows that if X̃ > 0
verifies (16) then X̃ < X where X is the solution of (10). Therefore the left
side inequality in (15) is fulfilled by the solution X of the Riccati equation
if it holds for a solution X̃ > 0 of (16).
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Defining

G =

[
α β
γ δ

]
, (17)

it follows based on Schur complements arguments that (16) is equivalent
with the inequality[

−X + ηQηT 0
0 0

]
+ G

[
X 0
0 Im

]
GT > 0. (18)

With the notation (17) the left side inequality in (15) may be written in the
equivalent form

[
0 Im

]
G
[
X 0
0 Im

]
GT
[

0
Im

]
> qIm. (19)

Remark 1. (i) S ince X > 0 it follows that condition (18) is fulfilled if
ηQηT > X;

(ii) I f δδT > qIm, the left side inequality in (15) is automatically fulfilled
for any X > 0.

Using again Schur complement arguments it follows that the right side
inequality in (15) is equivalent with

[
0 Im

]
G
[
X 0
0 Im

]
GT
[

0
Im

]
< qe

2a
m Im. (20)

4 Anisotropic Norm Computation

We note that the anisotropy Ā(G) of wk is a measure of its whiteness.
Namely, if wk is white, then it can not be estimated (i.e. its optimal es-
timate is just zero) and w̃k = wk which leads to Ā(G) = 0. In the case of
η = 0 (i.e. the case without mutiplicative noise) this corresponds to G = λI
for some λ > 0, where G notation is abused to be the transfer function
matrix of the generating system. If on the other hand the transfer matrix
function corresponding to G is rank deficient (namely w has frequency bands
with zero power spectrum) on some finite interval of frequencies, then Ā(G)
tends to infinity. These facts may provide intuitive explanation to the result
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of [12] where it is shown that ||F ||a of (6) coincides with the H2 norm at
a→ 0+ whereas it coincides with the H∞-norm for a→ +∞. We note that
[12] also provides asymptotic expansions of ||F ||a in the vicinity of those two
extremes.

Appending (2) to (1), and defining the augmented state-vector x̄k =
col{xk, hk} we readily obtain:

x̄k+1 = (Ā+ H̄ξk)x̄k + B̄wk and zk = C̄x̄k + D̄vk (21)

where

Ā =

[
A Bγ
0 α

]
, B̄ =

[
Bδ
β

]
, H̄ =

[
H 0
η 0

]
(22)

and

C̄ =
[
C Dγ

]
, D̄ = Dδ (23)

We now note that

||G||22 = Tr{γQγT + δδT } (24)

where Q satisfies (8) and that

||FG||22 = Tr{C̄P C̄T + D̄D̄T } (25)

where

P = ĀP ĀT + B̄B̄T + H̄PH̄T (26)

Applying Schur’s complements arguments, the following linear matrix in-
equalities, therefore, characterize ||F ||a < θ:

−P B̄ H̄P ĀP
B̄T −I 0 0
PH̄T 0 −P 0
PĀT 0 0 −P

 < 0 (27)

and 
−Q β ηQ αQ
βT −I 0 0
QηT 0 −Q 0
QαT 0 0 −Q

 < 0 (28)

where

Tr{C̄P C̄T + D̄D̄T } − Tr{γQγT + δδT }θ2 < 0. (29)
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We next partition P as follows:

P =

[
R M
MT S

]
. (30)

Using this notation and (17), the inequality (27) can be rewritten as

Z + PTGQ+QTGTP < 0 (31)

where

Z =



−R −M 0 HR HM AR AM
−MT −S 0 ηR 0 0 0

0 0 −I 0 0 0 0
RHT RηT 0 −R −M 0 0
MTHT 0 0 −MT −S 0 0
RAT 0 0 0 0 −R −M
MTAT 0 0 0 0 −MT −S


. (32)

and where

P =

[
0 I 0 0 0 0 0
BT 0 0 0 0 0 0

]
(33)

and

Q =

[
0 0 0 0 0 0 S
0 I 0 0 0 0 0

]
(34)

Then according to the so–called Projection Lemma (see e.g. [3], p. 22) there
exists G for which the condition (31) if and only if

W T
PZWP < 0 (35)

and
W T
QZWQ < 0 (36)

where WP and WQ are bases of the null spaces of P and Q, respectively.
Denoting NBT = N (BT ) we readily obtain:

WP =



NBT 0 0 0 0 0
0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


and WQ =



I 0 0 0 0
0 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
0 0 0 0 0


.
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Similarly, we rewrite (28), as:

Z̄ + P̄TGQ̄+ Q̄TGT P̄ < 0 (37)

where

Z̄ =


−Q 0 ηQ 0
0 −I 0 0

QηT 0 −Q 0
0 0 0 −Q


and

P̄T =

[
I 0 0 0
0 0 0 0

]
, Q̄ =

[
0 0 0 Q
0 I 0 0

]
.

Remark 2. The solutions G of (31) (and similarly of (37)) may be
expressed using the following parameterization (see the proof in [15], p. 30)
G = Φ1 + Φ2LΦ3 with the parameter L such that LTL < I, where Φ1, Φ2

and Φ3 depends on Z, P and Q.

Further, based on the notations introduced above, the condition (29)
becomes

Tr


[
C

[
0 D

]
G
[
In
0

] ] [
R M
MT S

] CT[
In 0

]
GT
[

0
DT

] 
+
[

0 D
]
G
[

0
DT

]
− θ2

[
0 Im

]
G
[
Q 0
0 Im

]
GT
[

0
Im

]}
< 0.

(38)

The above developments are concluded in the following result.

Theorem 1. The a–anisotropic norm of the stochastic system with
state–dependent noise (1) is less than θ > 0 if the system of matrix in-
equalities (18)–(20), (31), (37), (38) are feasible with respect to the scalar
q > 0 and to the matrices G, η, Q > 0, X > 0, P > 0 where G and P are
defined by (17) and (30), respectively .

5 Final remarks

The boundedness conditions for the anisotropic norm given by Theorem 1
require to solve a sign–indefinite quadratic optimization problem. The fol-
lowing research will be devoted to the development of numerical algorithms
based on semidefinite programming to solve this optimization problem.
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