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Pod-Deim approach on dimension reduction of a multi-species
host-parasitoid system .............................................................................173

Costică Moroşanu
On the numerical approximation of the nonlinear phase-field equation
supplied with non-homogeneous dynamic boundary conditions.
Case 1D...................................................................................................189

4



ISSN 2066-6594

Ann. Acad. Rom. Sci.
Ser. Math. Appl.

Vol. 7, No. 1/2015

In memoriam

Viorel Arnăutu was my undergraduate and PHD student and also co-
worker in a field where he had a pioneering contribution in Romania: nu-
merical analysis of optimal control problems governed by partial differential
equations. His contribution to the development of this research direction
is indeed remarkable. Computer scientist by training, he became our main
specialist in scientific computation of infinite dimensional optimization prob-
lems and his premature disparition represents a big loss for our mathemat-
ical community. Viorel had a great intelect and a nice personality and will
remain forever in our memory.

Viorel Barbu
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Viorel Arnăutu

(13.10.1955 − 04.01.2014)

Viorel Arnăutu was born on October 13-th, 1955, in Iaşi, the old cap-
ital of Moldavia, in a well-known family of physicians and professors. His
whole life and career was dedicated to mathematics, that he studied in the
schools and in the Department of Mathematics of the ”Al. I. Cuza” Univer-
sity in Iaşi. He obtained his Ph.D. in Applied Mathematics in 1987 under
the supervision of Academician Viorel Barbu. His scientific education also
includes a postdoc grant in 1991 at the Laboratory of Numerical Analysis,
CNRS and University Paris VI. After a short period at the Computer Center
of the ”Al. I. Cuza” University in Iaşi, his professional career included posi-
tions of assistant professor (1982 − 1992), associate professor (1992 − 2002)
and full professor until his untimely death in the beginning of 2014. All
the positions were in Numerical Analysis and Information Technology, at
the Faculty of Mathematics, ”Al. I. Cuza” University in Iaşi, Romania. He
also held temporary positions for various time periods at the Institute for
Applied Mathematics, Freiburg, Germany (1984) and at the Department of
Mathematics, Universita degli Studi di Bari, Italy (1985). With the Uni-
versity of Jyväskyla (Pekka Neittaanmäki) and the Weierstrass Institute
Berlin (Juergen Sprekels, Dietmar Hoemberg) a very long cooperation was
active for many years, concretized in several research projects and many co-
authored scientific works. Other important collaborators of Viorel Arnutu
were Vincenzo Capasso, Viorel Barbu, Dan Tiba, Sebastian Aniţa. The
research interests of Viorel Arnăutu span a large range of subjects: numer-
ical methods (theory, algorithms and computer programs) for optimal con-
trol problems governed by PDE’s and by variational inequalities; numerical
methods for Hamilton-Jacobi equations (the synthesis of optimal control);
numerical methods for PDE’s and integral equations; applied mathematics,
applied optimal control problems; free boundary problems: epidemic mod-
els; optimization of plates; laser hardening of steel; 3D curved mechanical
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structures; population dynamics. Viorel Arnăutu is the author or co-author
of four books and more than 25 papers published in international journals
and proceedings volumes:

• Optimal Control from Theory to Computer Programs (in cooperation
with Pekka Neittaanmäki), Kluwer Academic Publishers, Dordrecht,
Boston, London, 2003.

• Numerical Methods for Variational Problems, University of Jyväskyla,
Department of Mathematical Information Technology, Lecture Notes
8/2001, Jyväskyla, Finland, 2001.

• Metode numerice pentru probleme variaţionale. Teorie şi algoritmi,
Editura Universitaţii ”Alexandru Ioan Cuza”, Iaşi, 2001.

• An Introduction to Optimal Control Problems in Life Sciences and
Economics. From Mathematical Models to Numerical Simulation with
MatLab (in cooperation with S. Aniţa, V. Capasso), Birkhäuser, Boston,
2010.

He had four Ph. D. students. He is survived by his wife Marcela and his
two children. All his relatives, his friends and collaborators, his students will
remember his very warm and pleasant personality, his positive and friendly
attitude, his humour and his kindness.

Pekka Neittaanmäki
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DYNAMICS AND CONTROL OF AN

INTEGRO-DIFFERENTIAL SYSTEM

OF GEOGRAPHICAL ECONOMICS∗

Sebastian Aniţa† Vincenzo Capasso‡ Herb Kunze§

Davide La Torre¶

Dedicated to the memory of Prof. Dr. Viorel Arnăutu

Abstract

In this paper we consider the impact of induced environmental
pollution on the qualitative behavior and control of a system of ge-
ographical economics. Our underlying mathematical model extends
other results in the literature along different directions. A general
class of production functions is considered, including, in addition to
the classical Cobb-Douglas production function, convex-concave pro-
duction functions. The dynamics of the pollution is modelled via a
diffusion equation coupled, via an integral source, with the geographi-
cally distributed production. Reciprocally, we suppose that the (neg-
ative) influence of pollution may be modeled as a negative feedback
acting on the production function, and therefore on capital accumula-
tion. We analyze the qualitative behavior of the coupled system, and

∗Accepted for publication on October 4-th, 2014
†sanita@uaic.ro, Faculty of Mathematics,“Al.I. Cuza” University of Iaşi and “Octav

Mayer” Institute of Mathematics, Iaşi, Romania
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Madrid, Spain
§hkunze@uoguelph.ca University of Guelph, Department of Mathematics and Statis-

tics, Guelph, Ontario, Canada
¶davide.latorre@unimi.it Khalifa University, Department of Applied Mathematics

and Sciences, Abu Dhabi, UAE, and University of Milan, Department of Economics,
Management and Quantitative Methods, Milan, Italy
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Dynamics and control of an integro-differential system 9

then propose an optimal control problem for the above model. In or-
der to solve the system of partial differential equations which describes
the optimality conditions, we implement a Forward-Backward Sweep
algorithm. Numerical simulations are reported which illustrate the be-
havior of the system and its optimal control.

MSC: 35K57; 35Q91; 93D15; 49K20; 91B62; 91B76

keywords: Geographical economics; Environmental pollution; Reaction-
diffusion systems; Integral nonlocal term; Qualitative analysis; Optimal con-
trol; Non-concave production function

1 Introduction

Different from standard macroeconomic models and environmental eco-
nomics, recent literature tends to develop a global theory combining these
two branches of literature (see [12]). In this paper, following this new trend,
we analyze the negative impact of induced pollution on the qualitative be-
havior, and on the control of a mathematical model of geographical eco-
nomics. We suppose that the (negative) influence of pollution may be mod-
eled as a negative feedback to the production function and therefore on
capital accumulation.

The first studies in geographical economics date back to Beckman [9] and
Puu [25], who consider regional problems based simply on flow equations.
These works led to the development of a notion of geographical economics
that uses general equilibrium models to analyze the peculiarities of local
and global markets, as well as the mobility of production factors (see [20],
[22], [23]). More recently, this geographical approach has been introduced
in economic growth models to study the connections between accumulation
and diffusion of capital on economic dynamics (see [10], [11], [14], [16]). The
Solow model [30] with a continuous spatial dimension has been extensively
studied. Camacho and Zou [14] analyze problems of convergence across
regions when capital is mobile, while Brito [11] considers the case in which
both capital and labor are mobile. Capasso et al. [16] introduce technology
diffusion in the same model, under the additional feature of a convex-concave
production function. The Ramsey model [26] has been extended to a spatial
dimension by Brito [11] and Boucekkine et al. [10], respectively in average
and total utilitarianism versions. Other contributions which explore the
spatial dimension in environmental and resource economics can be found in
[5], [13], [31].
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Before moving to the case analyzed in this paper, we wish to point out a
key feature of our models (see also [16]) which concerns the extension of the
production function to a larger class of functions, including both the classical
Cobb-Douglas case, and convex-concave production functions. The neoclas-
sical theory, developed firstly by Solow (1956), is founded, among others,
on two main assumptions driving its main results, namely the fact that
the production function exhibits decreasing marginal returns, and infinite
marginal productivity for very small input levels (Inada conditions). This
ensured that a unique non-trivial equilibrium exists, so that every economic
system would converge in the long-run to such a capital level. However,
such a model provide a good description of systems with an high level of
economic development, and are not applicable to less developed countries
(see [27], [28]). In fact, the presence of fixed costs is an importance hin-
drance to the development of poor countries and only when the production
level can get sufficiently high to compensate for such costs, returns will be-
come decreasing. In order to build a theory able to describe the evolution
of both advanced and less favored countries, we have relaxed these assump-
tions while keeping the general framework unaltered; in this way we have
shown that it is possible to predict the so called poverty traps [16]. In [17]
related inverse problems have been faced.

A short announcement of the main results of our research has been
presented in a letter [3]; here we offer all relevant mathematical analysis
supporting the anticipated results, together with the outcomes of related
numerical simulations.

In Section 2 we present the underlying mathematical model describing
the strong coupling of the evolution equations for the production and the
induced environmental pollution.

In Section 3 we analyze the qualitative behaviour of the system, for large
times and for some relevant cases.

In Section 4, we perform a numerical simulation of the steady-state model
using reasonable parameter values. The results illustrate that both k and p
approach nontrivial and spatially heterogenous equilibria.

In Section 5, we formulate an optimal control problem and solve a par-
ticular case using the Forward-Backward Sweep method. We assume that
there is a representative agent who wishes to maximize his inter-temporal
utility subject to the dynamic constraints (2)-(4). If we denote by
c(x, t)k(x, t) the pointwise instantaneous “harvesting effort”, the control



Dynamics and control of an integro-differential system 11

problem reads as

max
c∈U

∫ T

0

∫

Ω
e−δtc(x, t)k(x, t)dx dt, (1)

subject to the relevant dynamics; δ is a nonnegative real number. The
general cost function using the CIES utility function would have been
[c(x, t)k(x, t)]1−β − 1

1 − β
, where β ∈ [0, 1) is a positive parameter; we may

anticipate that this general case can be treated in the same fashion as we
have treated here the case when β = 0, as in (1).

2 The underlying dynamical model

Let k(x, t) and p(x, t) respectively denote the capital stock held by and
the pollution stock faced by a representative household located at x at date
t, in a habitat Ω (where Ω ⊂ R2 is taken as a nonempty and bounded domain
with a smooth boundary), and t ≥ 0. We also assume that the initial capital
and pollution distributions, k(x, 0) = k0(x) and p(x, 0) = p0(x), are known
and satisfy

k0, p0 ∈ L∞(Ω), k0(x) ≥ k00 > 0, p0(x) ≥ 0 a.e. x ∈ Ω, (H)

and there is no capital or pollution flow through the boundary of Ω, namely
that the normal derivatives ∂k

∂ν (x, t) = ∂p
∂ν (x, t) = 0 at x ∈ ∂Ω and t ≥ 0. We

assume a continuous space structure of both physical capital and pollution,
so that the model we are interested in is the following:





∂k

∂t
(x, t) = d1∆k(x, t) +

sf(k(x, t))

g(p)
− δ1k(x, t) − c(x, t)k(x, t)

∂p

∂t
(x, t) = d2∆p(x, t) + θ

∫

Ω
f(k(x′, t))φ(x′, x)dx′ − δ2p(x, t)

(2)

for (x, t) ∈ Q0,∞, where
g : [0,+∞) → (0,+∞) is continuously differentiable and increasing,
g(0) = 1 and limr→+∞ g(r) = +∞,

subject to homogeneous Neumann boundary conditions

∂k

∂ν
(x, t) =

∂p

∂ν
(x, t) = 0, (x, t) ∈ Σ0,∞, (3)

and initial conditions

k(x, 0) = k0(x), p(x, 0) = p0(x), x ∈ Ω. (4)
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The control variable c(x, t) describes the level of consumption at the loca-
tion x, at the time t (c ∈ L∞(Ω × (0,+∞)), 0 ≤ c(x, t) ≤ L a.e.) and
d1, d2, s, θ, δ1, δ2, L are positive parameters. Here Qa,b = Ω × (a, b) and
Σa,b = ∂Ω × (a, b).

In the above model (2) the symbol f denotes a production function; we
assume it is of the following form

f(r) =
α1r

γ

1 + α2rγ
, (5)

where α1 ∈ (0,+∞), α2 ∈ [0,+∞), γ ∈ (0,+∞). The choice of g(p) = 1+p2

appears suddenly in the literature. We shall use this assumption in our
present paper as well.

For basic results concerning the solutions to reaction-diffusion systems
without integral terms we refer to [29]. We wish to remark that we deal here
with a reaction-diffusion system including an integral (nonlocal) feedback in
the evolution equation of the pollution concentration.

Let us notice that for α2 = 0 and γ ∈ (0, 1], we get the well known Cobb-
Douglas production function. On the other hand, for α2 > 0 and γ > 1,
we get an S-shaped production function. Paper [28] is the first contribution
in the economic literature dealing with non-concave or convex/concave pro-
duction functions. From an economic perspective this kind of assumption is
justified by empirical evidences from less developed countries. Finally, the
kernel φ(x′, x) describes the way in which pollution spreads over space; it
satisfies the following hypotheses: φ ∈ L∞(Ω × Ω), and φ(x′, x) ≥ 0, for
a.e. (x′, x) ∈ Ω × Ω. For γ ∈ [1,+∞), via Banach’s fixed point theorem and
using the fact that f is continuously differentiable, it is possible to prove
that there exists a unique and nonnegative solution to (2)-(4) on the whole
positive time semi-axis. Whenever γ ∈ (0, 1), f is no longer differentiable
at 0; however, since by (H) we have that k0(x) ≥ k00 > 0 a.e. x ∈ Ω, com-
parison results for parabolic equations and the fixed point theorem imply,
in this case too, the existence and uniqueness of a nonnegative solution to
(2)-(4), on the whole positive time semi-axis.
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3 Large-time behavior of the underlying dynami-
cal system

3.1 The case p ≡ 0 and time-independent c

In this case system (2)-(4) reduces to





∂k

∂t
= d1∆k(x, t) + sf(k(x, t)) − δ1k(x, t) − c(x)k(x, t), (x, t) ∈ Q0,∞

∂k

∂ν
(x, t) = 0, (x, t) ∈ Σ0,∞

k(x, 0) = k0(x), x ∈ Ω.
(6)

In the following we discuss the large time behavior of (6) under different
hypotheses on the parameter values.

I) In the production function (5) we first assume that α2 = 0 and
γ ∈ (0, 1). In this case we are assuming that the production
function f takes a Cobb-Douglas form. Then for any space in-
dependent initial datum k01, with k01 > 0 sufficiently small, we
get

sf(k01) − δ1k01 − c(x)k01 > 0, a.e. x ∈ Ω;

i.e. k01(·) is a (strict) lower solution to





d1∆k̃(x) + sf(k̃(x)) − δ1k̃(x) − c(x)k̃(x) = 0, x ∈ Ω

∂k̃

∂ν
(x) = 0, x ∈ ∂Ω.

(7)
Hence, by using comparison results for parabolic equations (see
e.g. [19]) we obtain that the solution k1 to (6), subject to the
initial datum k01, is monotonically increasing in t ∈ [0,+∞), for
almost any x ∈ Ω.

On the other hand any space independent initial datum k02 with
k02 > 0 sufficiently large, is a (strict) upper solution of (7), i.e.

sf(k02) − δ1k02 − c(x)k02 < 0, a.e. x ∈ Ω.

By the same arguments as above, we obtain that the solution
k2 to (6), subject to the initial datum k02, is monotonically de-
creasing in t ∈ [0,+∞), for almost any x ∈ Ω.
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The monotonicity of k1 and k2 implies that k1(·, t) → k̃1, k2(·, t) →
k̃2 in Lq(Ω), as t → +∞, for any q ∈ [1,+∞), where k̃1 and k̃2

are nonnegative solutions to (7). In addition this yields 0 <
k̃1(x) ≤ k̃2(x) a.e. x ∈ Ω.

Actually, using a standard argument for parabolic equations (see
[29]), let us prove that k̃1(x) = k̃2(x), a.e. x ∈ Ω. Since k̃1

satisfies



d1∆k̃1(x) + sα1k̃1(x)
γ − δ1k̃1(x) − c(x)k̃1(x) = 0, x ∈ Ω

∂k̃1

∂ν
(x) = 0, x ∈ ∂Ω,

multiplying by k̃2 and integrating on Ω gives that

−d1

∫

Ω
∇k̃1∇k̃2dx+ sα1

∫

Ω
k̃γ

1 k̃2dx =

∫

Ω
(δ1 + c)k̃1k̃2dx.

In the same manner we get that

−d1

∫

Ω
∇k̃1∇k̃2dx+ sα1

∫

Ω
k̃1k̃

γ
2dx =

∫

Ω
(δ1 + c)k̃1k̃2dx.

We infer that∫

Ω
k̃1(x)

γ k̃2(x)
γ(k̃2(x)

1−γ − k̃1(x)
1−γ)dx = 0

and taking into account that k̃1 and k̃2 are positive and k̃1(x) ≤
k̃2(x) a.e. x ∈ Ω, we conclude that k̃1 ≡ k̃2. Let us denote by
k̃(x), a.e. x ∈ Ω, the common function.

We may now notice that, for any k0 satisfying (H) we can choose
the space independent k01 > 0 sufficiently small and k02 > 0
sufficiently large and such that k01 ≤ k0(x) ≤ k02 for a.e. x ∈ Ω.
Again the comparison results in [19] imply that any solution k to
(6) subject to the initial datum k0 satisfies limt→+∞ k(·, t) = k̃ in
L2(Ω). Regularity results for the solutions of parabolic equations
imply that limt→+∞ k(·, t) = k̃ in L∞(Ω) as well [4].

II) In the production function, see (5), we assume that α2 = 0 and
γ ∈ (1,+∞). For any space independent k01 > 0, with k01

sufficiently small, we get that for any t ∈ (0,+∞) sufficiently
small :

sf(k1(x, t)) − δ1k1(x, t) − c(x)k1(x, t)

= sα1k1(x, t)
γ − δ1k1(x, t) − c(x)k1(x, t) ≤ −δ1

2
k1(x, t)
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a.e. x ∈ Ω, where k1 is the solution to (6) corresponding to
k0 := k01. The comparison result for parabolic equations implies
that the mapping t 7→ k1(x, t) is decreasing on [0,+∞) for almost
any x ∈ Ω and consequently

sf(k1(x, t)) − δ1k1(x, t) − c(x)k1(x, t)

= sα1k1(x, t)
γ − δ1k1(x, t) − c(x)k1(x, t) ≤ −δ1

2
k1(x, t)

for any t ∈ [0,+∞), a.e. x ∈ Ω. We then deduce that

0 < k1(x, t) ≤ k11(x, t)

a.e. x ∈ Ω, for any t ∈ [0,+∞), where k11 is the solution to




∂k

∂t
(x, t) = d1∆k(x, t) − δ1

2
k(x, t), (x, t) ∈ Q0,∞

∂k

∂ν
(x, t) = 0, (x, t) ∈ Σ0,∞

k(x, 0) = k01, x ∈ Ω.

(8)

Since the unique solution to (8) is k11(x, t) = k01 exp{− δ1t
2 },

∀t ≥ 0, a.e. x ∈ Ω, we conclude that

k1(·, t) → 0 in L∞(Ω),

as t → +∞, exponentially.

On the other hand for any space independent and sufficiently
large k02 > 0, we get in the same manner as in (I1) that for any
t ∈ [0,+∞):

sf(k2(x, t)) − δ1k2(x, t) − c(x)k2(x, t)

= k2(x, t)[sα1k2(x, t)
γ−1 − δ1 − c(x)] ≥ ζk2(x, t)

a.e. x ∈ Ω, where k2 is the solution to (6) corresponding to
k0 := k02 and ζ is a positive constant, and that the mapping
t 7→ k2(x, t) is increasing on [0,+∞) for almost any x ∈ Ω.

Using again the comparison result for parabolic equations we get
that

k2(x, t) ≥ k02 exp{ζt},
a.e. x ∈ Ω, for any t ∈ [0,+∞), and consequently

Ess infΩ k2(·, t) → +∞,

as t → +∞, exponentially.
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III) Let us now assume that α2 = 0 and γ = 1. Then system (6)
becomes



∂k

∂t
(x, t) = d1∆k(x, t) + (sα1 − δ1 − c(x))k(x, t), (x, t) ∈ Q0,∞

∂k

∂ν
(x, t) = 0, (x, t) ∈ Σ0,∞

k(x, 0) = k0(x), x ∈ Ω.

We have now the following cases happening.

1. For any c satisfying sα1 −δ1 −c(x) ≤ −ζ a.e. (x, t) ∈ Q0,∞,
where ζ is a positive constant, then the comparison result
for parabolic equations implies that

k(x, t) ≤ ∥k0∥L∞(Ω) exp{−ζt},
a.e. x ∈ Ω, ∀t ≥ 0, and so

k(·, t) → 0 in L∞(Ω),

as t → +∞, exponentially.

2. For any c satisfying sα1 − δ1 − c(x) ≥ ζ a.e. (x, t) ∈ Q0,∞,
where ζ is a positive constant, then the comparison result
for parabolic equations implies that

k(x, t) ≥ k00 exp{ζt},
a.e. x ∈ Ω, ∀t ≥ 0, and so

Ess infΩ k(·, t) → +∞ in L∞(Ω),

as t → +∞, exponentially.

3. For any c a constant satisfying sα1 − δ1 − c = 0, then

k(·, t) →
∫

Ω
k0(x)dx in L∞(Ω),

as t → +∞.

IV) We consider now the case α2 > 0, with γ ∈ (1,+∞), so that
the production function f, as defined by (5), is S−shaped. Then

there exists a positive constant η such that η = sup
r>0

sf(r)

r
. We

also have that f ′(r) > 0, ∀r > 0. In addition, if r ≥ 0 is small
then f(r) ≈ α1r

γ . If r > 0 is large, then f(r) ≈ α1
α2

. By the
same comparison techniques used above, it is possible to prove
the following
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1. If we also have that η − δ1 − c(x) ≤ −c1 < 0 a.e. x ∈ Ω
(where c1 is a positive constant), then k(·, t) → 0 in L∞(Ω),
as t → +∞.

2. If we assume that η − δ1 − c(x) ≥ c1 > 0 a.e. x ∈ Ω (where
c1 is a positive constant), then for any initial datum k0 with
a sufficiently small norm (in L∞(Ω)), one gets k(·, t) → 0
in L∞(Ω), as t → +∞. On the other hand for any initial

datum k0 such that
sf(k00)

k00
≥ δ1 + ∥c∥L∞(Ω) a.e. x ∈ Ω,

we may conclude that k(·, t) → k̃ in L∞(Ω), as t → +∞,
and k̃ is a nontrivial nonnegative solution to





d1∆k̃ + s α1k̃(x)γ

1+α2k̃(x)γ
− δ1k̃ − c(x)k̃ = 0, x ∈ Ω

∂k̃

∂ν
(x) = 0, x ∈ ∂Ω.

(9)

V) Assume now that α2 > 0 and γ = 1. Then the derivative of

G(x, r) := s
α1r

1 + α2r
− δ1r − c(x)r

with respect to r is

∂G

∂r
(x, r) = s

α1

(1 + α2r)2
− δ1 − c(x)

which is a decreasing function of r.

1. If
∂G

∂r
(x, 0) = sα1 − δ1 − c(x) ≤ −c0 < 0 a.e. x ∈ Ω (c0 is a

positive constant), then the solution k to (2) satisfies

k(·, t) → 0 in L∞(Ω)

as t → +∞.

2. If
∂G

∂r
(x, 0) ≥ c0 > 0 a.e. x ∈ Ω, then it follows as in the

case (I1) that for any space independent and sufficiently
small k01 > 0 we get that

k1(·, t) → k̃1 in L∞(Ω),

as t → +∞, where k1 is the solution to (6) corresponding
to k0 := k01, and k̃1 is a positive solution to (7). In the
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same manner as in case (I) it also follows that k̃1 = k̃2 = k̃,
which is the unique nontrivial nonnegative solution to (7),
where k2 and k̃2 are constructed as in (I). Using again the
comparison result for parabolic equations we get that

k(·, t) → k̃ in L∞(Ω),

as t → +∞, where k is the solution to (6).

VI) If α2 > 0 and γ ∈ (0, 1), then for any space independent and
sufficiently small k01 > 0 we get that the mapping t 7→ k1(x, t)
is increasing on [0,+∞), for almost any x ∈ Ω and that

k1(·, t) → k̃1 in L∞(Ω),

as t → +∞, where k1 is the solution to (6) corresponding to
k0 := k01 and k̃1 is a solution to (7) satisfying in addition

0 < k̃1(x) ≤ k̃2(x)

a.e. x ∈ Ω. Here k2 and k̃2 are constructed as in (I). As in the
first case (I) we get that

∫

Ω
(k̃2(x)f(k̃1(x)) − k̃1(x)f(k̃2(x)))dx = 0

and since the function integrated here is nonnegative, we may
conclude that

k̃2(x)f(k̃1(x)) − k̃1(x)f(k̃2(x)) = 0

a.e. x ∈ Ω and consequently that k̃1 = k̃2 = k̃ and this is the
unique nontrivial nonnegative solution to (7).

Repeating the argument in case (I) we may finally infer that for
any k0 satisfying (H) we get

k(·, t) → k̃ in L∞(Ω),

as t → +∞.

The above discussion shows that, under the hypotheses α2 > 0 and γ > 1,
which correspond to the case of an S-shaped production function, a saddle
behavior emerges; i.e. for sufficiently small initial datum k0, the production
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k(x, t) diminishes to 0, as t → +∞, while when k0 is sufficiently large the
production tends to a certain nontrivial steady state. As a conclusion, let
us notice that these results could also be obtained by assuming a general
function f ∈ C1([0,+∞)) such that f ′(0) = 0, f ′(r) > 0 for any r > 0 and
limr→+∞ f(r) = τ ∈ (0,+∞) (see e.g. [15]). To investigate systems with
nonlinear diffusion we have to combine the techniques in this paper with
those in [18].

3.2 The general case with pollution diffusion

We are dealing here with the case when α2 > 0 and γ > 1. Assume
that 0 ≤ c(x, t) ≤ L a.e. (x, t) ∈ Q0,∞. Let (k, p) be the solution to (2)-
(4). Comparison results for parabolic equations imply that k(x, t) ≤ k2(x, t)
a.e. (x, t) ∈ Q0,∞, where k2 is the solution to (6) corresponding to c ≡ 0
and p ≡ 0. By using comparison results for parabolic equations including
integral terms (see [2]), we get that 0 ≤ p(x, t) ≤ p2(x, t) a.e. (x, t) ∈ Q0,∞,
where p2 is the solution to

∂p2

∂t
(x, t) = d2∆p2(x, t)+θ

∫

Ω
f(k2(x

′, t))φ(x′, x)dx′−δ2p2(x, t), (x, t) ∈ Q0,∞,

subject to boundary and initial conditions as in (3) and (4).
If k00 is sufficiently large, then k2(t) → k̃2 in L∞(Ω), as t → +∞, where

k̃2 is the maximal nonnegative solution to (5) corresponding to c ≡ 0. This
implies that p2(·, t) → p̃2 in L∞(Ω), as t → +∞, where p̃2 is the solution to





d2∆p̃2(x) + θ

∫

Ω
f(k̃2(x

′))φ(x′, x)dx′ − δ2p̃2(x) = 0, x ∈ Ω

∂p̃2

∂ν
(x) = 0, x ∈ ∂Ω.

Now for any ε > 0, there exists t(ε) > 0 such that k(x, t) ≥ k∗
ε(x, t) a.e.

x ∈ Ω, for all t ≥ t(ε), where k∗
ε is the solution to





∂k∗
ε

∂t
= d1∆k

∗
ε +

sf(k∗
ε(x, t))

g(p̃2(x) + ε)
− δ1k

∗
ε(x, t) − Lk(x, t), (x, t) ∈ Qt(ε),∞

∂k∗
ε

∂ν
(x, t) = 0, (x, t) ∈ Σt(ε),∞,

satisfying k∗
ε(x, t(ε)) = k(x, t(ε)) a.e. x ∈ Ω. In conclusion, if η

g(p̃2(x)) −
δ1 − L ≥ µ > 0 a.e. x ∈ Ω, then for any k00 sufficiently large we get the
existence a sustainable economy, characterized by the persistence of k and
the boundedness of the level of pollution. Moreover, for k0 sufficiently small,
the production k(·, t) tends to 0 in L∞(Ω), as t → +∞, which corresponds
to a collapsing economy.
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4 Numerical simulations

In the following simulations we use the parameter values





δ1 = 0.05, δ2 = 0.01, s = 0.25, d1 = 0.01, d2 = 0.01, θ = 0.1, c ≡ 0

φ(x′, x) = 1√
πε
e−

|x−x′|2
ε ψ(x), ε = 0.001, ψ(x) = x2

k(x, 0) = e−x2
and p(x, 0) = ex, Ω = [a, b] = [−1, 1], T = 600

α1 = 100, α2 = 100, γ = 4

g(p) = 1 + p2.
(10)

The above choices of parameter values are explained as follows:

• δ1 = 0.05 can be found in [6] and they describe the physical capital
share and the depreciation rate of physical capital, respectively.

• δ2 = 0.01 represents the environmental ability to absorb pollution.
The growth of CO2 emissions tripled between 2000 and 2004, growing
by more than 3 percent per year according to a new study published
in Proceedings of the National Academy of Sciences USA. Since the
air quality is decreasing, it is ural to suppose that the environmental
ability to absorb pollution is less than 3 per cent.

• d1 and d2 determine the diffusivity. We set them both equal to 0.01.

• s is an efficiency parameter that we assume to be greater than 0.2 (see
[21]).

• θ is a normalization factor.

• In φ(x′, x), the expression 1√
πε
e−

|x−x′|2
ε is a classical Gaussian kernel,

and the function ψ(x) allows from some place-dependent behaviour in
the kernel.

• α1 = α2 = 100 and γ = 4 are set to values so that f is S-shaped.

• T = 600 is the length of the time interval.

The solution surfaces are plotted in Figure 1.
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Figure 1: Solution surfaces for capital and pollution in the case of an S-
shaped production function, kernel, and parameter values as in (10).

5 An optimal harvesting problem

Here we will consider only the case β = 0, α2 > 0, γ > 1. The results
in the previous section imply that for any c ∈ L∞(Q0,∞), 0 ≤ c(x, t) ≤ L
a.e. in Q, then (kc, pc), the solution to (2)-(4) corresponding to c satisfies
0 ≤ kc(x, t) ≤ k2(x, t) a.e. (x, t) ∈ Q. Since k2 ∈ L∞(Q0,∞), there exists
M ≥ 0 such that 0 ≤ k2(x, t) ≤ M a.e. (x, t) ∈ Q0,∞. We may conclude
that

0 ≤
∫ ∞

0

∫

Ω
e−δtc(x, t)kc(x, t)dx dt ≤ LMmeas(Ω)

1

δ

and

0 ≤
∫ ∞

T

∫

Ω
e−δtc(x, t)kc(x, t)dx dt ≤ LMmeas(Ω)

e−δT

δ
.

This means that instead of investigating the control problem formulated
in Section 2 we could treat the following approximating optimal control
problem with a finite horizon time (it is an optimal harvesting problem):

(OH) max
c∈U

∫ T

0

∫

Ω
e−δtc(x, t)kc(x, t)dx dt,

where T > 0 is fixed (and large), and U = {v ∈ L∞(Q0,T ); 0 ≤ v(x, t) ≤
L a.e. in Q0,T } is the set of controls, and (kc, pc) is the solution to (2)-(4)
corresponding to g(p) = 1 + p2, and Q0,T and Σ0,T (instead of Q0,∞ and
Σ0,∞, respectively).
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Since this is a standard optimal control problem, the existence of at
least one optimal control c∗ can be proven following [1, 7, 8]. In addition,
the following result holds.

Theorem 1 If (k∗, p∗) is the optimal state corresponding to c∗, and if (q1, q2)
is the solution to the following problem





∂q1
∂t

(x, t) = −d1∆q1(x, t) −
(
s
f ′(k∗(x, t))
1 + p∗(x, t)2

− δ1

)
q1(x, t)

−θf ′(k∗(x, t))
∫
Ω q2(x

′, t)φ(x, x′)dx′ + c∗(x, t)(e−δt + q1(x, t))
∂q2
∂t

(x, t) = −d2∆q2(x, t) +
2sf(k∗(x, t))p∗(x, t)

(1 + p∗(x, t)2)2
q1(x, t) + δ2q2(x, t),

(11)
for (x, t) ∈ Q0,T , subject to homogeneous Neumann boundary conditions and
final conditions

q1(x, T ) = 0, q2(x, T ) = 0, x ∈ Ω, (12)

then

c∗(x, t) =

{
0, if e−δt + q1(x, t) < 0
L, if e−δt + q1(x, t) > 0.

(13)

Equations (11)-(13) provide the necessary optimality conditions for (OH).
It is obvious that taking into account (13) we may rewrite (11) as





∂q1
∂t

(x, t) = −d1∆q1(x, t) −
(
s
f ′(k∗(x, t))
1 + p∗(x, t)2

− δ1

)
q1(x, t)

−θf ′(k∗(x, t))
∫
Ω q2(x

′, t)φ(x, x′)dx′ + L(e−δt + q1(x, t))
+,

∂q2
∂t

(x, t) = −d2∆q2(x, t) +
2sf(k∗(x, t))p∗(x, t)

(1 + p∗(x, t)2)2
q1(x, t) + δ2q2(x, t),

(14)
for (x, t) ∈ Q0,T , subject to homogeneous Neumann boundary conditions,
and final conditions (12). Using the theorem given before, we can derive a
gradient type algorithm (see [1]) to approximate the optimal control c∗.

We must solve Equations (2) and (14) subject to homogeneous Neumann
boundary conditions, the initial conditions at t = 0 for k(x, t) and p(x, t),
and the final conditions at t = T for q1(x, t) and q2(x, t). One solution
approach is to reverse time in Equations (14) via the change of variable τ =
T−t, turning the problem for q1 and q2 into forward problem with zero initial
conditions. Starting with the solutions k0(x, t) and p0(x, t) corresponding
to c0(x, t) = 0, we use an iterative procedure.
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Figure 2: Approximations of the optimal states k∗ and p∗

Figure 3: Approximation of the optimal control c∗.

The iterative algorithm is very intuitive, and efficient. It is generally
referred to as the Forward-Backward Sweep method [24]. A numerical sim-
ulation of the above procedure is provided in the following example.

Example: We solve the optimal control problem using the same parameters
as in Section 4, but for L = 1, and T = 20, and in addition setting δ = 0.1
in the objective function. In Figure 2 we plot the optimal states k∗ and p∗.
We also include an approximation of the level sets of c∗ in Figure 3.
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Abstract

In this paper we investigate the optimal position of the support of
the control for some optimal harvesting problems. First we refer to
a logistic model with diffusion. We remind the existence result of an
optimal control and the necessary optimality conditions for the related
optimal harvesting problem. Then we obtain an iterative method to
improve the position of the support of the optimal harvesting effort in
order to maximize the harvest (for a simplified model without logistic
term). Numerical tests illustrating the effectiveness of the theoretical
results are given.
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1 Introduction

Since R. A. Fisher introduced in [12] a mathematical model of spatially
structured population, a related flourishing literature was developed (e.g.
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[14], [15], [16],) which combines diffusive motion of individuals with non-
linearities arising from their growth and competition process. For models
related to dynamics of population we refer to [3]. In this paper we recall
the results obtained in [8] for a logistic model with diffusion. We consider a
related optimal harvesting problem. We want to find firstly the magnitude
of the control that acts on a certain subdomain and to study the position
of the subdomain where the control acts in order to optimize the cost (for
basic results and methods in the optimal shape design theory we refer to
[13]).

We consider the following Fisher’s model corresponding to a biological
population that is free to move in an isolated habitat Ω ⊂ RN , N ∈ {2, 3}:





∂ty(x, t) − d∆y(x, t) = a(x)y(x, t) − k(x)y2(x, t), (x, t) ∈ QT ,
∂νy(x, t) = 0, (x, t) ∈ ΣT ,
y(x, 0) = y0(x), x ∈ Ω,

(1)

where Ω is a domain with a sufficiently smooth boundary ∂Ω, QT := Ω ×
(0, T ), ΣT := ∂Ω × (0, T ), T > 0, y = y(x, t) is the population density at
(x, t) ∈ Ω × [0, T ] and y0(x) is the initial population density. The logistic
term, k(x)y2(x, t), describes a local intraspecific competition for resources.
Here d is the diffusion coefficient and a(x) indicates the natural growth rate
of the population. We have prescribed homogeneous Neumann conditions on
the boundary ∂Ω, corresponding to the case of isolated populations. This is
an extended model of the one in Section 5.2 from [4], because the population
coefficients become functions of x. We start with the following hypotheses:

(H1) a ∈ L∞(Ω), d ∈ (0, +∞);

(H2) y0 ∈ L∞(Ω), y0(x) ≥ 0 a.e. x ∈ Ω with ∥y0∥L∞(Ω) > 0;

(H3) k ∈ L∞(Ω), k(x) ≥ 0 a.e. x ∈ Ω.

The optimal harvesting problem is

Maximize

∫ T

0

∫

ω
u(x, t)yu(x, t)dx dt, (2)

subject to u ∈ K, where K = {w ∈ L∞(ω × (0, T )); 0 ≤ w(x, t) ≤
L a.e.}, L > 0. u(x, t) represents the harvesting effort at (x, t) ∈ ω × [0, T ],
where ω ⊂ Ω is a nonempty domain with sufficiently smooth boundary ∂ω
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and such that Ω \ ω is a domain. Here yu is the solution of the problem




∂ty − d∆y = a(x)y − k(x)y2 − χω(x)u(x, t)y(x, t), (x, t) ∈ QT ,
∂νy(x, t) = 0, (x, t) ∈ ΣT ,
y(x, 0) = y0(x), x ∈ Ω,

(3)
(χω is the characteristic function of ω).
We intend to use the necessary optimality conditions to find the position of
ω in Ω (in the set of all of its translations) which gives the maximum value
for the harvest. So we have two maximizing problems: firstly, for a fixed
ω we find the harvesting effort which gives the maximum harvest; secondly,
using this optimal effort (control) we investigate the best position of ω in
order to maximize the harvest.

In fact, our problem of optimal harvesting takes the following form:

Maximizeω∈OMaximizeu∈K

∫ T

0

∫

ω
u(x, t)yu(x, t)dx dt, (4)

where O denotes the set of all translations of ω in Ω.
The paper is structured as follows: in the second section we recall the

necessary optimality conditions for our boundary value problem with logistic
term and we find the derivative of the optimal cost value with respect to
translations of ω in Ω for the linear problem (see [8]). In section 3, we
use these results to develop a conceptual iterative algorithm suitable for
improving the position of the support of the control. In the last section
numerical test are included to sustain the theoretical results.

2 An iterative method to improve the position of
the support of the harvesting effort. The case
k ≡ 0 (the model without logistic term)

First, we refer to the model with logistic term. The existence result of
an optimal control for the problem (2) follows the lines in [4].

Theorem 1 Problem (2) admits at least one optimal control.

Let us denote by p = p(x, t) the adjoint state, i.e. p satisfies




∂tp + d∆p = −a(x)p + 2k(x)yu∗
p + χω(x)u∗(1 + p), (x, t) ∈ QT ,

∂νp(x, t) = 0, (x, t) ∈ ΣT ,
p(x, T ) = 0, x ∈ Ω,

(5)
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where (u∗, yu∗
) is an optimal pair for (2). For the construction of the adjoint

problems in optimal control theory we refer to [11]. We have

Theorem 2 If (u∗, yu∗
) is an optimal pair for problem (2) and if p is the

solution of problem (5), then we have:

u∗(x, t) =

{
0, 1 + p(x, t) < 0
L, 1 + p(x, t) > 0

a.e. (x, t) ∈ ω × (0, T ). (6)

Proof. The existence and uniqueness of the adjoint state p can be proved
via Banach’s fixed point theorem.
Let v ∈ L∞(ω × (0, T )), arbitrary but fixed, such that u∗ + εv ∈ K for
sufficiently small ε > 0.
From the optimality of u∗ we get that

∫ T

0

∫

ω
u∗(x, t)

yu∗+εv(x, t) − yu∗
(x, t)

ε
dxdt+

∫ T

0

∫

ω
v(x, t)yu∗+εv(x, t)dxdt ≤ 0,

(7)
for sufficiently small ε > 0.
In order to continue the proof of the theorem, we need the following conver-
gence result (see [4]).

Lemma 1 One has

yu∗+εv → yu∗
in L∞(QT )

and
yu∗+εv − yu∗

ε
→ f in L∞(QT ),

as ε → 0+, where f = f(x, t) is the solution to





∂tf − d∆f = a(x)f − 2k(x)yu∗
f − χω(x)u∗f − χω(x)vyu∗

, (x, t) ∈ QT ,
∂νf(x, t) = 0, (x, t) ∈ ΣT ,
f(x, 0) = 0. x ∈ Ω.

(8)

Returning to the proof of the theorem, passing to the limit in relation (7)
and taking into consideration the results above, we obtain that:

∫ T

0

∫

ω
u∗(x, t)f(x, t)dxdt +

∫ T

0

∫

ω
v(x, t)yu∗

(x, t)dxdt ≤ 0. (9)
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We multiply the parabolic equation in (8) by p and integrate on QT . We
get that:

∫

Ω
[p(x, T )f(x, T ) − p(x, 0)f(x, 0)]dx −

∫ T

0

∫

Ω
f∂tpdxdt −

∫ T

0

∫

Ω
df∆pdxdt =

=

∫ T

0
a(x)pfdxdt−

∫ T

0

∫

Ω
2k(x)yu∗

fpdxdt−
∫ T

0

∫

ω
u∗pfdxdt−

∫ T

0

∫

ω
pvyu∗

dxdt.

We using the fact that p is the solution of the problem (5) and we obtain
that

−
∫ T

0

∫

ω
fu∗ dxdt = −

∫ T

0

∫

ω
pvyu∗

dxdt. (10)

From (9) and (10) we get that

∫ T

0

∫

ω
v(x, t)yu∗

(x, t)(1 + p(x, t))dxdt ≤ 0, for any v ∈ L∞(ω × (0, T )),

such that u∗+εv ∈ K, for sufficiently small ε > 0 (we have used the positivity
of yu∗

in QT ). So, the optimal control satisfies (6).

Next we remind an iterative method to improve the position of the sup-
port of the harvesting effort obtained in [8] for the model without logistic
term. So, in the follows we will ignore the logistic process, i.e., we will take
the case k ≡ 0. Let us consider ω0 ⊂ Ω, where ω0 ⊂ Ω is a nonempty domain
with sufficiently smooth boundary ∂ω0 and such that Ω \ ω0 is a domain.
We denote by O the set

O = {ω0 + V ⊂ Ω; V ∈ RN}.

For any arbitrary but fixed ω ∈ O, we denote by (u∗
ω, y∗

ω) an optimal pair
for problem (2). The optimal control problem to be investigated is:

Maximizeω∈O

∫ T

0

∫

ω
u∗

ω(x, t)y∗
ω(x, t)dxdt, (11)

where y∗
ω = y∗

ω(x, t) is the solution to problem





∂ty(x, t) − d∆y(x, t) = a(x)y(x, t) − χω(x)u∗
ω(x, t)y(x, t), (x, t) ∈ QT ,

∂νy(x, t) = 0, (x, t) ∈ ΣT ,
y(x, 0) = y0(x), x ∈ Ω

(12)
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In this case, the adjoint system is





∂tp + d∆p = −a(x)p + χω(x)u∗
ω(1 + p), (x, t) ∈ QT ,

∂νp(x, t) = 0, (x, t) ∈ ΣT ,
p(x, T ) = 0, x ∈ Ω

(13)

and the optimal control is given by

u∗
ω(x, t) =

{
0, 1 + pω(x, t) < 0
L, 1 + pω(x, t) > 0

(14)

a.e. (x, t) ∈ ω × (0, T ), where pω = pω(x, t) is the solution to (13).
By (13) and (14) we get that pω is the solution to





∂tp + d∆p = −a(x)p + χω(x)L(1 + p)+, (x, t) ∈ QT ,
∂νp(x, t) = 0, (x, t) ∈ ΣT ,
p(x, T ) = 0, x ∈ Ω.

(15)

Multiplying (12) by pω and multiplying (13) by y∗
ω, and both integrating on

QT we obtain:

∫ T

0

∫

ω
u∗

ω(x, t)y∗
ω(x, t)dxdt = −

∫

Ω
y0(x)pω(x, 0)dx.

In conclusion our problem of optimal harvesting becomes a problem of min-
imizing another functional with respect to the positions of ω.
Let us denote

Jω =

∫

Ω
y0(x)pω(x, 0)dx,

where pω is the solution to (15).
Hence the minimization problem to be investigated is

Minimizeω∈OJω. (16)

For every V ∈ Rn, consider the derivative of Jω with respect to translations.
Actually

Jω+εV − Jω =

∫

Ω
(pω+εV (x, 0) − pω(x, 0))y0(x)dx

and multiplying with 1
ε we have

1

ε
[Jω+εV − Jω] =

∫

Ω

pω+εV (x, 0) − pω(x, 0)

ε
y0(x)dx
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For ε → 0+ we obtain that

dJω(V ) =

∫

Ω
z(x, 0)y0(x)dx,

where z = z(x, t) is the solution of the following boundary value problem:





∂tz + d∆z = −a(x)z + Lχωz∂h(1 + pω(x, t)) + Lmpω(t), (x, t) ∈ QT ,

∂νz(x, t) = 0, (x, t) ∈ ΣT ,
z(x, T ) = 0, x ∈ Ω

(17)
Here h(r) = r+,

∂h(r) =





1, r > 0
I, r = 0
0, r < 0

where I = [0, 1], and

mpω(t)(φ) =

∫

∂ω
(1 + pω(x, t))+φ(x)V · ν(x)dσ, for any φ ∈ H1(Ω)

where ν(x) is the outward normal versor at x to ∂ω, outward with respect
to Ω \ ω. We need to evaluate the form of the directional derivative for our
functional. We recall the following result obtained in [8]:

Theorem 3 For any ω ∈ O and for any V ∈ RN ,

dJω(V ) = −LV ·
∫ T

0

∫

∂ω
(1 + pω(x, t))+gω(x, t)ν(x)dσdt,

where pω is the solution for (15) and gω = gω(x, t) is the solution for the
following boundary value problem:





∂tg − d∆g = a(x)g − Lχωg∂h(1 + pω(x, t)), (x, t) ∈ QT ,
∂νg(x, t) = 0, (x, t) ∈ ΣT ,
g(x, 0) = y0(x), x ∈ Ω

(18)

(For basic properties of the solution to such a problem we refer to [10]).
Proof. We multiply equation (17) with gω and we integrate on QT . This
yields

∫ T

0

∫

Ω
gω(∂tz + d∆z + a(x)z)dxdt = L

∫ T

0

∫

ω
z(x, t)ξ(x, t)gω(x, t)dxdt+
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+L

∫ T

0

∫

∂ω
(1 + pω)+gω(x, t)V · ν(x)dσdt

where ξ(x, t) ∈ ∂h(1 + pω(x, t)) a.e. (x, t) ∈ ω × (0, T ).
Integrating by parts and using the fact that z(x, T ) = 0 and gω(x, 0) = y0(x)
we obtain that

−
∫

Ω
y0(x)z(x, 0)dx −

∫ T

0

∫

Ω
z[∂tgω − d∆gω − a(x)gω]dxdt

= L

∫ T

0

∫

ω
zξ(x, t)gω(x, t)dxdt + L

∫ T

0

∫

∂ω
(1 + pω)+gω(x, t)V · ν(x)dσdt

and from (18) we get that:

−
∫

Ω
y0(x)z(x, 0)dx = L

∫ T

0

∫

∂ω
(1 + pω)+gω(x, t)V · ν(x)dσdt.

The directional derivative of Jω will be of the form

dJω(V ) = −L

∫ T

0

∫

∂ω
(1 + pω(x, t))+gω(x, t)V · ν(x)dσdt

and we get the conclusion of the theorem.

3 A numerical algorithm

From Theorem 3 we derive the following conceptual iterative algorithm,
based on a gradient method, to improve the position (translation) of ω ∈ O
in order to obtain a smaller value for Jω.

Step 0: set k := 0, J (0) := 106.
choose ω(0) the initial positon of ω.

Step 1: compute p(k+1) the solution of the adjoint problem (15)
corresponding to ω(k).

compute J (k+1) =

∫

Ω

y0(x)p(k+1)(x, 0)dx.

Step 2: if
∣∣J (k+1) − J (k)

∣∣ < ε1 or J (k+1) ≥ J (k)

then STOP (ω(k) is the optimal position of ω)
else go to Step 3.

Step 3: compute g(k+1) the solution of problem (18) corresponding to
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ω(k) and p(k+1).

Step 4: compute

V := −
T∫

0

∫

∂ω(k)

(
1 + p(k+1)(x, t)

)+
g(k+1)(x, t)ν(x)dσdt

if |V | < ε2

then STOP (ω(k) is the optimal position of ω)

else go to Step 5.

Step 5: compute the new position of ω

ω(k+1) := ρV + ω(k);

Step 6: if ω(k+1) = ω(k)

then STOP (ω(k) is the optimal position of ω)

else k := k + 1;

go to Step 1.

In Step 5, ρ > 0 is a given parameter (the gradient steplength), and ε1 > 0
in Step 2 and ε2 > 0 in Step 4 are prescribed convergence parameters.
The conceptual iterative algorithm, used to improve the position of ω in
order to obtain a smaller value for Jω, is a descent method. For more
information about gradient (descent) methods, see [9], Section 2.3. The
steplength ρ from Step 5 is variable from an iteration to the next one. To
fit it we have used Armijo method (see [7] for more details).

4 Numerical tests

In order to simplify the discretization formulae for the numerical tests
we have considered Ω and ω(0) to be squares with the sides parallel with Ox1

and Ox2 axes (the space variable is x = (x1, x2)). Let Ω = (0, 1)× (0, 1) and
the length side of ω is equal with 0.2. We introduce equidistant discretization
nodes for both axis corresponding to Ω. The interval [0, T ] is also discretized
by equidistant nodes. The parabolic system from Step 1 is approximated
by a finite difference method, descending with respect to time levels. An
implicit scheme is used. The resulting algebraic linear system is solved by
Gaussian elimination. The parabolic system from Step 3 is approximated
also using a finite difference method, but ascending with respect to time
levels. Integrals from Step 1 and Step 4 are numerical computed using
Simpson’s method corresponding to the discrete grid. In all following figures
the square drawn with solid line represent the initial position of ω, and the
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Figure 1. START/STOP position of ω

square drawn with dashed line is the improved position of ω.

Test 1. We consider the natural growth rate of the population a(x1, x2) =
5, (x1, x2) ∈ Ω, d = 1, and final time T = 1. We take the space discretization
step ∆x1 = ∆x2 = 0.05, and the time discretization step ∆t = 0.025. The
nodes along both axes Ox1 and Ox2 are numbered from 1 to 20. The left-
down corner of Ω is numbered as (1, 1) while the right-up corner is numbered
as (20, 20). For the convergence tests we consider ε1 = ε2 = 0.001. We start
with ω(0) which has the left-down corner at node (1, 1) and the MATLAB
program corresponding to the above algorithm gives after 5 iterations the
optimal ω which has the left-down corner at node (8, 8). The convergence
was obtained by the test in Step 2. The initial and the optimal position
of ω are shown in Figure 1. The corresponding graph of the optimal state
y(x1, x2, t) for t = 1 is given in Figure 2.

Test 2. The results obtained using the same input data from example 1,
except the initial position of ω, are shown in Figure 3. We start with ω(0)

which has the left-down corner at node (16, 10) and the MATLAB program
corresponding to the above algorithm gives after 5 iterations the optimal



Optimizing the position of the support of the harvesting effort 37

0

5

10

15

20

0

5

10

15

20
204

204.5

205

205.5

206

206.5

207

207.5

208

Figure 2. The optimal state y for t = 1

ω which has the left-down corner at the node (7, 8). The convergence was
obtained by the test in Step 4.

Test 3. We consider a(x1, x2) = x2 − x1, (x1, x2) ∈ Ω, d = 1, and final time
T = 1. We take the space discretization step ∆x1 = ∆x2 = 0.05, and the
time discretization step ∆t = 0.05 since the finite difference method used is
implicit. We start with ω(0) which has the left-down corner at node (16, 16)
and the MATLAB program corresponding to the above algorithm gives after
4 iterations the optimal ω which has the left-down corner at the node (7, 9)
(see Figure 4). The convergence was obtained by the test in Step 4.

Let us point out that the final position of ω given by the computer program
is central with respect to Ω no matter the starting position ω(0). This is in
accordance with a more general theoretical result obtained in [2].

Test 4. For the natural growth rate of the population a(x1, x2) = x2sin(x1),
(x1, x2) ∈ Ω, the optimal position of ω is no more central with respect to Ω.
The left-down corner of ω(0) is (4, 7) and the left-hand corner of the final ω
is (2, 4) and it is obtained after 4 iterations (see Figure 5). The convergence
was obtained by the test in Step 4.

Let us point out that the algorithm is fast according to the number of
iterations.
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1 Introduction

This paper deals with second-order optimality conditions of a special
boundary control problem for the viscous Cahn–Hilliard equation with dy-
namic boundary conditions. It continues the work [2] by three of the present
authors in which the first-order necessary conditions of optimality were de-
rived. For the work of other authors concerning the optimal control of
Cahn–Hilliard systems, we refer the reader to the references given in [2].

Crucial contributions in [2] were the derivation of the adjoint problem,
whose form turned out to be nonstandard, and an existence result for its
solutions. As is well known, first-order conditions are in the case of non-
linear equations usually not sufficient for optimality. Also, second-order
sufficient optimality conditions for nonlinear optimal control problems are
essential both in the numerical analysis and for the construction of reliable
optimization algorithms. For instance, the strong convergence of optimal
controls and states for numerical discretizations of the problem rests heavily
on the availability of second-order sufficient optimality conditions; further-
more, one can show that numerical algorithms such as SQP methods are
locally convergent if second-order sufficient optimality conditions hold true.
For a general discussion of second-order sufficient conditions for elliptic and
parabolic control problems, we refer the reader to [6] and references therein;
for the case of control problems involving phase field models, we refer to,
e. g., [3, 5].

In this paper, we aim to establish second-order sufficient optimality con-
ditions for the boundary control problem studied in [2]. To this end, we
assume that an open, bounded and connected set Ω ⊂ R3, with smooth
boundary Γ and unit outward normal n, and some final time T > 0 are
given, and we set Q := Ω × (0, T ) and Σ := Γ × (0, T ). Moreover, we denote
by ∆Γ, ∇Γ, ∂n, the Laplace–Beltrami operator, the surface gradient, and
the outward normal derivative on Γ, in this order. We make the following
general assumptions:

(A1) There are given nonnegative constants bQ, bΣ, bΩ, bΓ, b0, which do
not all vanish, functions zQ ∈ L2(Q), zΣ ∈ L2(Σ), zΩ ∈ L2(Ω), zΓ ∈ L2(Γ),
as well as a constant M0 > 0 and functions uΓ,min ∈ L∞(Σ) and uΓ,max ∈
L∞(Σ) with uΓ,min ≤ uΓ,max a. e. in Σ.
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(A2) There are given constants −∞ ≤ r− < 0 < r+ ≤ +∞ and two
functions f, fΓ : (r−, r+) → [0,+∞) such that the following holds:

f, fΓ ∈ C4(r−, r+), f(0) = fΓ(0) = 0, (1)

f ′′ and f ′′
Γ are bounded from below, (2)

lim
r↘r−

f ′(r) = lim
r↘r−

f ′
Γ(r) = −∞ and lim

r↗r+

f ′(r) = lim
r↗r+

f ′
Γ(r) = +∞ , (3)

|f ′(r)| ≤ η |f ′
Γ(r)| + C for some η, C > 0 and every r ∈ (r−, r+). (4)

In fact, (1) is fully used only in the last part of the paper, and many of our
results hold under a weaker assumption. We also note that the conditions
(1)–(4) allow for the possibility of splitting f ′ in (3) in the form f ′ = β + π,
where β is a monotone function that diverges at r± and π is a perturbation
having a bounded derivative. Since the same is true for fΓ, the general
assumptions of [1] are satisfied. Typical and important examples for f and
fΓ are the classical regular potential freg and the logarithmic double-well
potential flog given by

freg(r) =
1

4
(r2 − 1)2 , r ∈ R (5)

flog(r) = ((1 + r) ln(1 + r) + (1 − r) ln(1 − r)) − cr2 , r ∈ (−1, 1), (6)

where in the latter case we assume that c > 0 is so large that flog is non-
convex.

With the above assumptions, we consider the following tracking type
optimal boundary control problem:

(CP) Minimize

J(y, yΓ, uΓ) :=
bQ
2

∥y − zQ∥2
L2(Q) +

bΣ
2

∥yΓ − zΣ∥2
L2(Σ)

+
bΩ
2

∥y(T ) − zΩ∥2
L2(Ω) +

bΓ
2

∥yΓ(T ) − zΓ∥2
L2(Γ) +

b0
2

∥uΓ∥2
L2(Σ) (7)

subject to the control constraint

uΓ ∈ Uad :=
{
vΓ ∈ H1(0, T ;L2(Γ)) ∩ L∞(Σ) :

uΓ,min ≤ vΓ ≤ uΓ,max a. e. on Σ, ∥∂tvΓ∥2 ≤ M0

}
(8)

and to the Cahn–Hilliard equation with nonlinear dynamic boundary con-
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ditions as the state system,

∂ty − ∆w = 0 in Q, (9)

w = ∂ty − ∆y + f ′(y) in Q, (10)

∂nw = 0 on Σ, (11)

yΓ = y|Γ on Σ, (12)

∂tyΓ + ∂ny − ∆ΓyΓ + f ′
Γ(yΓ) = uΓ on Σ, (13)

y(·, 0) = y0 in Ω, yΓ(·, 0) = y0Γ on Γ. (14)

Here, and throughout this paper, we generally assume that the admissible
set Uad is nonempty. Moreover, we postulate:

(A3) y0 ∈ H2(Ω), y0Γ := y0|Γ ∈ H2(Γ), and it holds (notice that y0 ∈
C0(Ω))

r− < y0 < r+ in Ω. (15)

We remark at this place that in [1] the additional assumption ∂ny0 = 0 was
made; this postulate is however unnecessary for the results of [1] to hold,
since it is nowhere used in the proofs.

The system (9)–(14) is an initial-boundary value problem with nonlinear
dynamic boundary condition for a Cahn–Hilliard equation. In this connec-
tion, the unknown y usually stands for the order parameter of an isothermal
phase transition, and w denotes the chemical potential of the system.

Our paper is organized as follows: in Section 2, we provide and collect
some results proved in [2, 1] concerning the state system, and we study
a certain linear counterpart thereof that will be employed repeatedly in
the later analysis. In Section 3, the existence of the second-order Fréchet
derivative of the control-to-state mapping will be shown. Section 4 then
brings the derivation of the second-order sufficient condition of optimality.

In order to simplify notation, we will in the following write yΓ for the
trace y|Γ of a function y ∈ H1(Ω) on Γ, and we introduce the abbreviations

V := H1(Ω), H := L2(Ω), VΓ := H1(Γ), HΓ := L2(Γ), H := H ×HΓ,

V := {(v, vΓ) ∈ V × VΓ : vΓ = v|Γ}, G := H2(Ω) ×H2(Γ),

X := H1(0, T ;HΓ) ∩ L∞(Σ), Y := H1(0, T ; H) ∩ L∞(0, T ; V), (16)
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and endow these spaces with their natural norms. Moreover, for the generic
Banach space X we denote by X∗ its dual space and by ∥ · ∥X its norm.
Furthermore, the symbol ⟨ · , · ⟩ stands for the duality pairing between the
spaces V ∗ and V , where it is understood that H is embedded in V ∗ in the
usual way, i. e., such that we have ⟨u, v⟩ = (u, v) for every u ∈ H and
v ∈ V with the standard inner product ( · , · ) of H. Finally, for u ∈ V ∗

and v ∈ L1(0, T ;V ∗) we define their generalized mean values uΩ ∈ R and
vΩ ∈ L1(0, T ), respectively, by setting

uΩ :=
1

|Ω| ⟨u, 1⟩ and vΩ(t) := (v(t))Ω for a. e. t ∈ (0, T ), (17)

where |Ω| stands for the Lebesgue measure of Ω.
During the course of our analysis, we will make repeated use of the

elementary Young’s inequality

ab ≤ δa2 +
1

4δ
b2 for every a, b ≥ 0 and δ > 0, (18)

of Hölder’s inequality, and of Poincaré’s inequality

∥v∥2
V ≤ Ĉ

(
∥∇v∥2

H + |vΩ|2
)

for every v ∈ V , (19)

where Ĉ > 0 depends only on Ω.
Next, we recall a tool that is commonly used in the context of problems

related to the Cahn–Hilliard equation. We define

domN := {v∗ ∈ V ∗ : vΩ
∗ = 0} and N : dom N → {v ∈ V : vΩ = 0} (20)

by setting, for v∗ ∈ dom N,

Nv∗ ∈ V, (Nv∗)Ω = 0, and

∫

Ω
∇Nv∗ · ∇z dx = ⟨v∗, z⟩ ∀ z ∈ V . (21)

That is, v = Nv∗ is the unique weak solution with vΩ = 0 to the Neumann
problem for −∆ with datum v∗. Indeed, if v∗ ∈ H, then the above variational
equation means that −∆Nv∗ = v∗ in Ω and ∂nNv∗ = 0 on Γ. Moreover, we
have

⟨u∗,Nv∗⟩ = ⟨v∗,Nu∗⟩ =

∫

Ω
(∇Nu∗) · (∇Nv∗) dx ∀u∗, v∗ ∈ domN, (22)

whence also, for every v∗ ∈ H1(0, T ;V ∗) satisfying (v∗)Ω = 0 a.e. in (0, T ),

2⟨∂tv∗(t),Nv∗(t)⟩ =
d

dt
∥v∗(t)∥2

∗ for a.a. t ∈ (0, T ), (23)

where we set ∥v∗∥2
∗ :=

∫

Ω
|∇Nv∗|2 dx for every v∗ ∈ V ∗.
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2 The state equation

At first, we specify our notion of solution to the state system (9)–(14).

Definition 1. Suppose that the general assumptions (A1)–(A3) are ful-
filled, and let uΓ ∈ X be given. By a solution to (9)–(14) we mean a triple
(y, yΓ, w) that satisfies

y ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω)), (24)

yΓ ∈ W 1,∞(0, T ;HΓ) ∩H1(0, T ;VΓ) ∩ L∞(0, T ;H2(Γ)), (25)

yΓ(t) = y(t)|Γ for a. a. t ∈ (0, T ), (26)

r− < inf ess
Q

y ≤ sup ess
Q

y < r+ , r− < inf ess
Σ

yΓ ≤ sup ess
Σ

yΓ < r+ , (27)

w ∈ L∞(0, T ;H2(Ω)), (28)

as well as, for almost every t ∈ (0, T ), the variational equations

∫

Ω
∂ty(t) v dx+

∫

Ω
∇w(t) · ∇v dx = 0 , (29)

∫

Ω
w(t) v dx =

∫

Ω
∂ty(t) v dx+

∫

Γ
∂tyΓ(t) vΓ dΓ +

∫

Ω
∇y(t) · ∇v dx

+

∫

Γ
∇ΓyΓ(t) · ∇ΓvΓ dΓ +

∫

Ω
f ′(y(t)) v dx

+

∫

Γ

(
f ′
Γ(yΓ(t)) − uΓ(t)

)
vΓ dΓ, (30)

for every v ∈ V and every (v, vΓ) ∈ V, respectively, and the Cauchy condition

y(0) = y0 , yΓ(0) = y0Γ . (31)

Remark 1. It is worth noting that (recall the notation (17))

(∂ty(t))
Ω = 0 for a. a. t ∈ (0, T ) and y(t)Ω = m0 for every t ∈ [0, T ],

where m0 = (y0)
Ω is the mean value of y0, (32)

as usual for the Cahn–Hilliard equation.

Now recall that Uad is a convex, closed, and bounded subset of the
Banach space X and thus contained in some bounded open ball in X. For
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convenience, we fix such a ball once and for all, noting that any other such
ball could be used instead. The next assumption is thus rather a denotation:

(A4) The set U is some open ball in X that contains Uad and satisfies

∥uΓ∥H1(0,T ;L2(Γ)) + ∥uΓ∥L∞(Σ) ≤ R ∀uΓ ∈ U, (33)

where R > 0 is a fixed given constant.
Concerning the well-posedness of the state system, we have the following

result.

Theorem 1. Suppose that the general hypotheses (A1)–(A4) are fulfilled.
Then the state system (9)–(14) has for any uΓ ∈ U a unique solution
(y, yΓ, w) in the sense of Definition 1. Moreover, there are constants K∗

1 > 0,
K∗

2 > 0, and r̃−, r̃+ ∈ (r−, r+), which depend only on Ω, T , the shape of the
nonlinearities f and fΓ, the initial datum y0, and the constant R, such that
the following holds:
(i) Whenever (y, yΓ, w) is the solution to (9)–(14) associated with some
uΓ ∈ U, then

∥(y, yΓ)∥W 1,∞(0,T ;H)∩H1(0,T ;V)∩L∞(0,T ;G) + ∥w∥L∞(0,T ;H2(Ω)) ≤ K∗
1 , (34)

r̃− ≤ y ≤ r̃+ a. e. in Q, r̃− ≤ yΓ ≤ r̃+ a. e. on Σ. (35)

(ii) Whenever (yi, yi,Γ, wi), i = 1, 2, are the solutions to (9)–(14) associated
with ui,Γ ∈ U, i = 1, 2, then

∥(y1, y1,Γ) − (y2, y2,Γ)∥H1(0,T ;H)∩L∞(0,T ;V) ≤ K∗
2 ∥u1,Γ − u2,Γ∥L2(Σ) . (36)

Proof. We may apply Theorems 2.2, 2.3, 2.4, 2.6 and Corollary 2.7 of [1]
(where V has a slightly different meaning with respect to the present paper)
to deduce that (i) holds true. Moreover, assertion (ii) is a consequence of
[2, Lemma 4.1].

Remark 2. It follows from Theorem 1 that the control-to-state operator

S : U → W 1,∞(0, T ; H) ∩H1(0, T ; V) ∩ L∞(0, T ; G), uΓ 7→ (y, yΓ) , (37)

is well defined and Lipschitz continuous from U, viewed as a subset of L2(Σ),
into Y. Moreover, owing to (34) and (35), we may assume (by possibly
choosing a larger K∗

1 ) that for any uΓ ∈ U the corresponding state (y, yΓ) =
S(uΓ) satisfies

max
1≤i≤4

(
∥f (i)(y)∥L∞(Q) + ∥f (i)

Γ (yΓ)∥L∞(Σ)

)
≤ K∗

1 . (38)
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Next, in order to ensure the solvability of a number of linearized systems
later in this paper, we introduce the linear initial-boundary value problem

∂tχ− ∆µ = 0 in Q, (39)

µ = ∂tχ− ∆χ+ λχ+ g in Q, (40)

∂nµ = 0 on Σ, (41)

χΓ = χ|Γ on Σ, (42)

∂tχΓ + ∂nχ− ∆ΓχΓ + λΓ χΓ = gΓ on Σ, (43)

χ(0) = χ0 in Ω, χΓ(0) = χ0Γ := χ
0|Γ on Γ, (44)

and its variational counterpart, namely, for almost every t ∈ (0, T ),

∫

Ω
∂tχ(t) v dx+

∫

Ω
∇µ(t) · ∇v dx = 0 for every v ∈ V, (45)

∫

Ω
µ(t)v dx =

∫

Ω
∂tχ(t) v dx+

∫

Γ
∂tχΓ(t) vΓ dΓ +

∫

Ω
∇χ(t) · ∇v dx

+

∫

Γ
∇ΓχΓ(t) · ∇ΓvΓ dΓ +

∫

Ω

(
λ(t)χ(t) + g(t)

)
v dx

+

∫

Γ

(
λΓ(t)χΓ(t) − gΓ(t)

)
vΓ dΓ for every (v, vΓ) ∈ V, (46)

together with the Cauchy condition

χ(0) = χ0, χΓ(0) = χ0Γ . (47)

We have the following result.

Lemma 1. Suppose that (g, gΓ) ∈ H1(0, T ; H) ∩ (L∞(Q) × L∞(Σ)) and
(λ, λΓ) ∈ W 1,∞(0, T ; H)∩ (L∞(Q)×L∞(Σ)) are given, and let χ0 ∈ H2(Ω)
be such that χ0Γ := χ

0|Γ ∈ H2(Γ). Then the problem (39)–(44) has a unique
solution in the sense that there is a unique triple (χ, χΓ, µ) that fulfills (45)–
(47) and whose components satisfy the analogue of the regularity require-
ments (24), (25), and (28), respectively. Moreover, there exists a constant
K∗

3 > 0, which depends only on Ω, T , ∥λ∥L∞(Q), and ∥λΓ∥L∞(Σ), such that
the following holds: whenever χ0 = 0, then

∥(χ, χΓ)∥H1(0,T ;H)∩L∞(0,T ;V) ≤ K∗
3 ∥(g, gΓ)∥L2(0,T ;H) . (48)
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Proof. In the following, we denote by Ci, i ∈ N, positive constants that
only depend on the quantities mentioned in the assertion. First, we observe
that the results concerning existence, uniqueness, and regularity follow from
a direct application of [1, Cor. 2.5]. Now assume that χ0 = 0. Then we
have χΩ(t) = 0 for almost every t ∈ (0, T ). We thus may choose in (45)
v = N(χ(t)), and in (46) v = −χ(t). Adding the resulting equalities and
integrating with respect to time, we arrive at the identity

1

2

(
∥χ(t)∥2

∗ + ∥χ(t)∥2
H + ∥χΓ(t)∥2

HΓ

)
+

∫ t

0

∫

Ω
|∇χ|2 dx ds +

∫ t

0

∫

Γ
|∇ΓχΓ|2 dΓ ds

=

∫ t

0

∫

Ω

(
−g − λχ

)
χdx ds +

∫ t

0

∫

Γ

(
gΓ − λΓ χΓ

)
χΓ dΓ ds

for all t ∈ [0, T ]. Estimating the right-hand side with the help of Young’s
and Poincaré’s inequalities, and applying Gronwall’s lemma, we have that

∥(χ, χΓ)∥L∞(0,T ;H)∩L2(0,T ;V) ≤ C1 ∥(g, gΓ)∥L2(0,T ;H). (49)

Moreover, we may insert v = N(∂tχ(t)) in (45) and v = −∂tχ(t) in (46).
Adding the resulting equations, integrating with respect to time, and using
(21), we obtain the identity

∫ t

0
∥∂tχ(s)∥2

∗ ds +

∫ t

0

∫

Ω
|∂tχ|2 dx ds +

∫ t

0

∫

Γ
|∂tχΓ|2 dΓ ds

+
1

2
(∥∇χ(t)∥2

H + ∥∇ΓχΓ(t)∥2
HΓ

)

=

∫ t

0

∫

Ω
(−g − λχ) ∂tχdx ds +

∫ t

0

∫

Γ
(gΓ − λΓ χΓ) ∂tχΓ dΓ ds . (50)

Invoking Young’s inequality, we can easily infer from (49) and (50) the esti-
mate

∥(χ, χΓ)∥H1(0,T ;H)∩L∞(0,T ;V) ≤ C2 ∥(g, gΓ)∥L2(0,T ;H), (51)

whence the assertion follows.

3 Differentiability properties of the control-to-state
mapping

The main objective in this section is to prove that the control-to-state
mapping is twice continuously differentiable. We begin our analysis with
the following result.
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Theorem 2. Suppose that (A1)–(A4) are fulfilled. Then the following
holds true:
(i) The control-to-state mapping S is Fréchet differentiable in U as a map-
ping from U ⊂ X to Y.
(ii) Let uΓ ∈ U, and let (y, yΓ) = S(uΓ) be the associated solution to the
state system (9)–(14). Then the Fréchet derivative DS(uΓ) ∈ L(X,Y) is
given as follows: if hΓ ∈ X, then DS(uΓ)hΓ = (ξ, ξΓ), where (ξ, ξΓ, ζ) with

ξ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω)), (52)

ξΓ ∈ W 1,∞(0, T ;HΓ) ∩H1(0, T ;VΓ) ∩ L∞(0, T ;H2(Γ)), (53)

ζ ∈ L∞(0, T ;H2(Ω)), (54)

is the unique solution to the linearized system

∂tξ − ∆ζ = 0 in Q, (55)

ζ = ∂tξ − ∆ξ + f ′′(y) ξ in Q, (56)

∂nζ = 0 on Σ, (57)

ξΓ = ξ|Γ on Σ, (58)

∂tξΓ + ∂nξΓ − ∆ΓξΓ + f ′′
Γ(yΓ) ξΓ = hΓ on Σ, (59)

ξ(0) = 0 in Ω, ξΓ(0) = 0 on Γ. (60)

(iii) The mapping DS : U → L(X,Y), uΓ 7→ DS(uΓ), is Lipschitz continuous
on U in the following sense: there is a constant K∗

4 > 0, which depends
only on the data and the constant R, such that for all u1,Γ, u2,Γ ∈ U and all
hΓ ∈ X it holds that

∥(DS(u1,Γ) −DS(u2,Γ))hΓ∥Y ≤ K∗
4 ∥u1,Γ − u2,Γ∥L2(Σ) ∥hΓ∥L2(Σ). (61)

Proof. First observe that the system (55)–(60) is of form (39)–(44), and
with (χ, χΓ, µ) := (ξ, ξΓ, ζ), g ≡ 0, gΓ := hΓ, and (λ, λΓ) := (f ′′(y), f ′′

Γ(yΓ)),
the assumptions of Lemma 1 are fulfilled. Consequently, for every hΓ ∈ X,
there is a unique triple (ξ, ξΓ, ζ) that satisfies the corresponding variational
system (45)–(47) and whose components have the regularity properties in
(52), (53) and (54). We may therefore apply [2, Thm. 4.2] to conclude the
validity of the assertions (i) and (ii).

It remains to show (iii). To this end, let uΓ ∈ U be arbitrary and let
kΓ ∈ X be such that uΓ + kΓ ∈ U. We denote (yk, yk

Γ) = S(uΓ + kΓ) and
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(y, yΓ) = S(uΓ), and we assume that any hΓ ∈ X with ∥hΓ∥X = 1 is given.
It then suffices to show that there is some L > 0, independent of hΓ, uΓ and
kΓ, such that

∥(ξk, ξk
Γ) − (ξ, ξΓ)∥Y ≤ L ∥kΓ∥L2(Σ) , (62)

where (ξk, ξk
Γ) = DS(uΓ +kΓ)hΓ and (ξ, ξΓ) = DS(uΓ)hΓ. For this purpose,

in the following we denote by Ci, i ∈ N, positive constants that depend
neither on uΓ, kΓ nor on the special choice of hΓ ∈ X with ∥hΓ∥X = 1 .
To begin with, observe that the triple (ξ̂, ξ̂Γ, ζ̂) := (ξk, ξk

Γ, ζ
k) − (ξ, ξΓ, ζ) is

the unique solution to the variational analogue of the initial-boundary value
problem

∂tξ̂ − ∆ζ̂ = 0 in Q, (63)

ζ̂ = ∂tξ̂ − ∆ξ̂ + f ′′(y) ξ̂ + ξk(f ′′(yk) − f ′′(y)) in Q, (64)

∂nζ̂ = 0 on Σ, (65)

ξ̂Γ = ξ̂|Γ on Σ, (66)

∂tξ̂Γ + ∂nξ̂ − ∆Γξ̂Γ + f ′′
Γ(yΓ) ξ̂Γ = −ξk

Γ(f ′′
Γ(yk

Γ) − f ′′
Γ(yΓ)) on Σ, (67)

ξ̂(0) = 0 in Ω, ξ̂Γ(0) = 0 on Γ. (68)

Moreover, the components of (ξ̂, ξ̂Γ, ζ̂) enjoy the regularity properties indi-
cated in (24), (25), and (28), respectively.

Now observe that it follows from Theorem 1, from part (i) of this proof,
and from (38), that (g, gΓ) := (ξk (f ′′(yk) − f ′′(y)),−ξk

Γ (f ′′(yk
Γ) − f ′′(yΓ)))

belongs to H1(0, T ; H)∩ (L∞(Q)×L∞(Σ)), while (λ, λΓ) := (f ′′(y), f ′′
Γ(yΓ))

belongs to W 1,∞(0, T ; H) ∩ (L∞(Q) × L∞(Σ)). Moreover, (38) also implies
that for every uΓ ∈ U we have for (y, yΓ) = S(uΓ) the estimate

∥f ′′(y)∥L∞(Q) + ∥f ′′
Γ(yΓ)∥L∞(Σ) ≤ K∗

1 .

Hence, it follows from estimate (48) in Lemma 1 that

∥(ξ̂, ξ̂Γ)∥Y ≤ C1

(
∥ξk (f ′′(yk) − f ′′(y))∥L2(Q)

+ ∥ξk
Γ (f ′′

Γ(yk
Γ) − f ′′

Γ(yΓ))∥L2(Σ)

)
. (69)

Now, by the mean value theorem and (38), there exists a positive constant
C2 such that almost everywhere in Q (on Σ, respectively)

|f ′′(yk)−f ′′(y)| ≤ C2 |yk−y| and |f ′′
Γ(yk

Γ)−f ′′
Γ(yΓ)| ≤ C2 |yk

Γ−yΓ| . (70)
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At this point, we recall that U is a bounded subset of X. Since uΓ + kΓ ∈ U

and ∥hΓ∥X = 1, we thus can infer from (38) and from the estimate (48)
in Lemma 1 that (ξk, ξk

Γ) is bounded in Y independently of kΓ, uΓ and the
choice of hΓ ∈ X with ∥hΓ∥X = 1. Using the embedding V ⊂ L4(Ω) and the
stability estimate proved in Theorem 1, we therefore have that

∥ξk (f ′′(yk) − f ′′(y))∥2
L2(Q) ≤ C2

∫ T

0

∫

Ω

(
|ξk|2 |yk − y|2

)
dx dt

≤ C2

∫ T

0

(
∥ξk(t)∥2

L4(Ω) ∥yk(t) − y(t)∥2
L4(Ω)

)
dt

≤ C3 ∥(yk, yk
Γ) − (y, yΓ)∥2

Y ≤ C4 ∥kΓ∥2
L2(Σ) . (71)

Since an analogous estimate holds for the second summand in the bracket
on the right-hand side of (69), the assertion follows.

With the Lipschitz estimate (61) at hand, we are now in the position
to show the existence of the second-order Fréchet derivative. We have the
following result.

Theorem 3. Assume that (A1)–(A4) are fulfilled. Then the following
holds true:
(i) The control-to-state operator S is twice Fréchet differentiable in U as a
mapping from U ⊂ X to Y.
(ii) For all uΓ ∈ U, the second Fréchet derivative D2S(uΓ) ∈ L(X,L(X,Y))
is defined as follows: if hΓ, kΓ ∈ X are arbitrary, then D2S(uΓ)[hΓ, kΓ] =:
(η, ηΓ) is the unique solution to the initial-boundary value problem

∂tη − ∆ϑ = 0 in Q, (72)

ϑ = ∂tη − ∆η + f ′′(y) η + f (3)(y)φψ in Q, (73)

∂nϑ = 0 on Σ, (74)

ηΓ = η|Γ on Σ, (75)

∂tηΓ + ∂nη − ∆ΓηΓ + f ′′
Γ(yΓ) ηΓ = −f (3)

Γ (yΓ)φΓ ψΓ on Σ, (76)

η(0) = 0 in Ω, ηΓ(0) = 0 on Γ, (77)

where we have put

(y, yΓ) = S(uΓ), (φ,φΓ) = DS(uΓ)hΓ, (ψ,ψΓ) = DS(uΓ)kΓ . (78)
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(iii) The mapping D2S : U → L(X,L(X,Y)), uΓ 7→ D2S(uΓ), is Lipschitz
continuous on U in the following sense: there exists a constant K∗

5 > 0,
which depends only on the data and on the constant R, such that for every
u1,Γ, u2,Γ ∈ U and all hΓ, kΓ ∈ X it holds that

∥(D2S(u1,Γ) −D2S(u2,Γ))[hΓ, kΓ]∥Y

≤ K∗
5 ∥u1,Γ − u2,Γ∥L2(Σ) ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ). (79)

Proof. At first, it is easily verified that the pair (g, gΓ) := (f (3)(y)φψ,

−f (3)
Γ (yΓ)φΓ ψΓ) belongs to H1(0, T ; H) ∩ (L∞(Q) ×L∞(Σ)). We thus can

argue as in the proof of Theorem 2 to deduce from Lemma 1 that the system
(72)–(77) is uniquely solvable in the sense that its variational counterpart has
a unique solution (η, ηΓ, ϑ) whose components enjoy the regularity indicated
in (24), (25), and (28), respectively. Moreover, by (48) we have the estimate

∥(η, ηΓ)∥Y ≤ C1

(∥∥∥f (3)(y)φψ
∥∥∥

L2(Q)
+

∥∥∥f (3)
Γ (yΓ)φΓ ψΓ

∥∥∥
L2(Σ)

)
. (80)

Here, and in the remainder of the proof of parts (i), (ii), we denote by Ci,
i ∈ N, positive constants that do not depend on the quantities hΓ, kΓ, and
uΓ. Using (38), and invoking the embedding V ⊂ L4(Ω), we find that

∥∥∥f (3)(y)φψ
∥∥∥

2

L2(Q)
≤ C2

∫ T

0

∫

Ω
|φ|2 |ψ|2 dx dt

≤ C2

∫ T

0
∥φ(t)∥2

L4(Ω) ∥ψ(t)∥2
L4(Ω) dt ≤ C3 ∥φ∥2

L∞(0,T ;V ) ∥ψ∥2
L∞(0,T ;V )

≤ C4 ∥hΓ∥2
L2(Σ) ∥kΓ∥2

L2(Σ) , (81)

where the validity of the last inequality can be seen as follows: by definition
(recall (78)), (φ,φΓ) is the unique solution to the linear problem (55)–(60).
We can therefore infer from (48) that ∥(φ,φΓ)∥Y ≤ C5 ∥hΓ∥L2(Σ). By the
same token, we conclude that ∥(ψ,ψΓ)∥Y ≤ C6 ∥kΓ∥L2(Σ). The asserted
inequality therefore follows from the definition of the norm of the space Y,
and we obtain from similar reasoning that also

∥∥∥f (3)
Γ (yΓ)φΓ ψΓ

∥∥∥
L2(Σ)

≤ C7 ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ) .

Hence, we get

∥(η, ηΓ)∥Y ≤ C8 ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ) . (82)
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In particular, it follows that the bilinear mapping X × X 7→ Y, [kΓ, hΓ] 7→
(η, ηΓ), is continuous.

Now we prove the assertions concerning existence and form of the second
Fréchet derivative. Since U is open, there is some Λ > 0 such that uΓ+kΓ ∈ U

whenever ∥kΓ∥X ≤ Λ. In the following, we only consider such perturbations
kΓ ∈ X. We observe that for (y, yΓ) = S(uΓ) and for (yk, yk

Γ) = S(uΓ + kΓ)
the global estimates (34)–(36) and (38) are satisfied.

After these preparations, we notice that it suffices to show that

∥∥DS(uΓ + kΓ) −DS(uΓ) −D2S(uΓ)kΓ

∥∥
L(X,Y)

= sup
∥hΓ∥X=1

∥∥(
DS(uΓ + kΓ) −DS(uΓ) −D2S(uΓ)kΓ

)
hΓ

∥∥
Y

≤ C ∥kΓ∥2
L2(Σ) (83)

with a constant C independent of kΓ.

To this end, let hΓ ∈ X be arbitrary with ∥hΓ∥X = 1. We put (ρ, ρΓ) =
DS(uΓ + kΓ)hΓ, define the pairs (φ,φΓ), (ψ,ψΓ) as in (78), and define

(ν, νΓ) := (ρ, ρΓ) − (φ,φΓ) − (η, ηΓ).

Observe that the components of (ν, νΓ) have the regularity properties indi-
cated in (24) and (25), respectively. Moreover, in view of (83), we need to
show that

∥(ν, νΓ)∥Y ≤ C ∥kΓ∥2
L2(Σ) . (84)

Now, invoking the explicit expressions for the quantities defined above,
it is easily seen that the triple (ν, νΓ, π) (where π is defined below) is the
unique solution to the variational counterpart of the linear initial-boundary
value problem

∂tν − ∆π = 0 in Q, (85)

π = ∂tν − ∆ν + f ′′(y) ν + σ in Q, (86)

∂nπ = 0 on Σ, (87)

νΓ = ν|Γ and ∂tνΓ + ∂nν − ∆ΓνΓ + f ′′
Γ(yΓ) νΓ = σΓ on Σ, (88)

ν(0) = 0 in Ω, νΓ(0) = 0 on Γ, (89)



Second-order analysis of control for the viscous C.–H. equation 55

where we have put

σ := ρ
(
f ′′(yk) − f ′′(y)

)
− f (3)(y)φψ,

σΓ := −ρΓ

(
f ′′
Γ(yk

Γ) − f ′′
Γ(yΓ)

)
+ f

(3)
Γ (yΓ)φΓ ψΓ . (90)

In view of (38), and since it is easily checked that (σ, σΓ) belongs to the
space H1(0, T ;H) ∩ (L∞(Q) × L∞(Σ)), we may again invoke the estimate
(48) in Lemma 1 to conclude that (84) is satisfied if only

∥(σ, σΓ)∥L2(0,T ;H) ≤ C ∥kΓ∥2
L2(Σ) . (91)

Applying Taylor’s theorem to f ′′, and recalling (38), we readily see that
there is a function ωf ∈ L∞(Q) such that, a. e. in Q,

f ′′(yk) − f ′′(y) = f (3)(y) (yk − y − ψ) + f (3)(y)ψ + ωf (yk − y)2 . (92)

Hence, we have that

σ = ρ f (3)(y) (yk − y − ψ) + ψ f (3)(y) (ρ− φ) + ρωf (yk − y)2 . (93)

Now observe that from the proof of Fréchet differentiability (see inequality
(4.5) in the proof of [2, Thm. 4.2]) and from (61) we can conclude the
estimates

∥(yk, yk
Γ) − (y, yΓ) − (ψ,ψΓ)∥Y ≤ C9 ∥kΓ∥2

L2(Σ) ,

∥(ρ, ρΓ) − (φ,φΓ)∥Y ≤ C10 ∥kΓ∥L2(Σ) . (94)

Moreover, we can infer from inequality (36) in Theorem 1 that

∥(yk, yk
Γ) − (y, yΓ)∥Y ≤ K∗

2 ∥kΓ∥L2(Σ) , (95)

and it follows from Lemma 1 that (ρ, ρΓ) is bounded in Y by a positive
constant that is independent of kΓ, hΓ ∈ X with ∥kΓ∥X ≤ Λ and ∥hΓ∥X = 1.
Finally, we conclude from Lemma 1 (ii) that with a suitable constant C11 > 0
it holds

∥(ψ,ψΓ)∥Y ≤ C11 ∥kΓ∥L2(Σ) . (96)

After these preparations, and invoking Hölder’s inequality and the continuity
of the embeddings V ⊂ L4(Ω) and V ⊂ L6(Ω), we can estimate as follows:

∥σ∥2
L2(Q) ≤ C12

∫ T

0

∫

Ω

(
|ρ|2 |yk − y − ψ|2 + |ψ|2|ρ− φ|2 + |ρ|2|yk − y|4

)
dx dt
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≤ C12

∫ T

0

(
∥ρ(t)∥2

L4(Ω) ∥(yk − y − ψ)(t)∥2
L4(Ω)

+ ∥ψ(t)∥2
L4(Ω) ∥ρ(t) − φ(t)∥2

L4(Ω) + ∥ρ(t)∥2
L6(Ω) ∥yk(t) − y(t)∥4

L6(Ω)

)
dt

≤ C13 sup
t∈(0,T )

(
∥ρ(t)∥2

V ∥(yk − y − ψ)(t)∥2
V + ∥ψ(t)∥2

V ∥ρ(t) − φ(t)∥2
V

+ ∥ρ(t)∥2
V ∥yk(t) − y(t)∥4

V

)

≤ C14 ∥kΓ∥4
L2(Σ). (97)

By the same reasoning, a similar estimate can be derived for ∥σΓ∥L2(Σ),
which concludes the proof of the assertions (i) and (ii).

Next, we prove the assertion (iii). To this end, suppose that uΓ ∈ U and
that hΓ and kΓ are arbitrarily chosen in X, and let δΓ ∈ X be arbitrary with
uΓ+δΓ ∈ U. In the following, we will denote by Ci, i ∈ N, positive constants
that do not depend on any of these quantities. We put

(y, yΓ) = S(uΓ), (yδ, yδ
Γ) = S(uΓ + δΓ),

(φ,φΓ) = DS(uΓ)hΓ, (φδ, φδ
Γ) = DS(uΓ + δΓ)hΓ,

(ψ,ψΓ) = DS(uΓ)kΓ, (ψδ, ψδ
Γ) = DS(uΓ + δΓ)kΓ,

(η, ηΓ) = D2S(uΓ)[hΓ, kΓ], (ηδ, ηδ
Γ) = D2S(uΓ + δΓ)[hΓ, kΓ] .

From the previous results, in particular, (36) and (61), we can infer that
there is a constant C1 > 0 such that

∥(φ,φΓ)∥Y + ∥(φδ, φδ
Γ)∥Y ≤ C1 ∥hΓ∥L2(Σ),

∥(ψ,ψΓ)∥Y + ∥(ψδ, ψδ
Γ)∥Y ≤ C1 ∥kΓ∥L2(Σ),

∥(η, ηΓ)∥Y + ∥(ηδ, ηδ
Γ)∥Y ≤ C1 ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ),

∥(yδ, yδ
Γ) − (y, yΓ)∥Y ≤ C1 ∥δΓ∥L2(Σ),

∥(φδ, φδ
Γ) − (φ,φΓ)∥Y ≤ C1 ∥δΓ∥L2(Σ) ∥hΓ∥L2(Σ),

∥(ψδ, ψδ
Γ) − (ψ,ψΓ)∥Y ≤ C1 ∥δΓ∥L2(Σ) ∥kΓ∥L2(Σ) . (98)

Now observe that (η̃, η̃Γ) = (ηδ, ηδ
Γ) − (η, ηΓ) and ϑ̃ = ϑδ − ϑ (where ϑδ

and ϑ have their obvious meaning corresponding to (73)) satisfy the linear
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initial-boundary value problem

∂tη̃ − ∆ϑ̃ = 0 in Q, (99)

ϑ̃ = ∂tη̃ − ∆η̃ + f ′′(y) η̃ + σ in Q, (100)

∂nϑ̃ = 0 on Σ, (101)

η̃Γ = η̃|Γ and ∂tη̃Γ + ∂nη̃ − ∆Γη̃Γ + f ′′
Γ(yΓ) η̃Γ = σΓ on Σ, (102)

η̃(0) = 0 in Ω, η̃Γ(0) = 0 on Γ, (103)

where we have put

σ = ηδ(f ′′(yδ) − f ′′(y)) + (f (3)(yδ)φδ ψδ − f (3)(y)φψ) ,

σΓ = −ηδ
Γ(f ′′

Γ(yδ
Γ) − f ′′

Γ(yΓ)) − (f
(3)
Γ (yδ

Γ)φδ
Γ ψ

δ
Γ − f

(3)
Γ (yΓ)φΓ ψΓ) . (104)

The system (99)–(103) is again of the form (39)–(44), and since it is readily
verified that (σ, σΓ) belongs to the space H1(0, T ;H) ∩ (L∞(Q) × L∞(Σ)),
we may employ Lemma 1 once more to conclude that

∥(η̃, η̃Γ)∥Y ≤ C2 ∥(σ, σΓ)∥L2(0,T ;H) , (105)

so that it remains to show an estimate of the form

∥(σ, σΓ)∥L2(0,T ;H) ≤ C3 ∥δΓ∥L2(Σ) ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ) . (106)

Since

f (3)(yδ)φδ ψδ − f (3)(y)φψ

= φδ ψ (f (3)(yδ) − f (3)(y)) + f (3)(yδ)φδ (ψδ − ψ) + f (3)(y)ψ (φδ − φ) ,
(107)

we can infer from (38) that, almost everywhere in Q,

|σ| ≤ C4 (|ηδ| |yδ −y| + |φδ| |ψ| |yδ −y| + |φδ| |ψδ −ψ| + |ψ| |φδ −φ|) . (108)

Using (98), Hölder’s inequality and the continuity of the embedding V ⊂
L4(Ω), we find that

∫ T

0

∫

Ω

(
|ηδ|2 |yδ − y|2

)
dx dt ≤

∫ T

0

(
∥ηδ(t)∥2

L4(Ω) ∥(yδ − y)(t)∥2
L4(Ω)

)
dt

≤ C5 ∥ηδ∥2
L∞(0,T ;V )∥yδ − y∥2

L∞(0,T ;V )

≤ C6 ∥δΓ∥2
L2(Σ) ∥hΓ∥2

L2(Σ) ∥kΓ∥2
L2(Σ) . (109)
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Similar reasoning yields

∥φδ(ψδ − ψ)∥2
L2(Q) + ∥ψ(φδ − φ)∥2

L2(Q)

≤ C7 ∥δΓ∥2
L2(Σ) ∥hΓ∥2

L2(Σ) ∥kΓ∥2
L2(Σ) . (110)

Moreover, once again invoking (98), Hölder’s inequality, and the continuity
of the embedding V ⊂ L6(Ω), we conclude that

∫ T

0

∫

Ω

(
|φδ|2 |ψ|2 |yδ − y|2

)
dx dt

≤
∫ T

0

(
∥(yδ − y)(t)∥2

L6(Ω) ∥φδ(t)∥2
L6(Ω) ∥ψ(t)∥2

L6(Ω)

)
dt

≤ C8 ∥φδ∥2
L∞(0,T ;V ) ∥ψ∥2

L∞(0,T ;V ) ∥yδ − y∥2
L∞(0,T ;V )

≤ C9 ∥δΓ∥2
L2(Σ) ∥hΓ∥2

L2(Σ) ∥kΓ∥2
L2(Σ) . (111)

Finally, we can estimate ∥σΓ∥L2(Σ), deriving estimates similar to (108)–
(111), which entails the validity of the required estimate (106). With this,
the assertion is completely proved.

4 Optimality conditions

Now that the second-order Fréchet derivative of the control-to-state op-
erator for problem (CP) is obtained, we can address the matter of deriv-
ing second-order sufficient optimality conditions. As a preparation of the
corresponding theorem, we provide the adjoint system and the first-order
necessary optimality conditions. Since these were already established in [2],
we only present the results without proofs.

At first, it is easily shown (cf. [2, Thm. 2.2]) that (CP) has a solution.
For the remainder of this paper, let us assume that ūΓ ∈ Uad is any such min-
imizer and that (ȳ, ȳΓ, w̄), where (ȳ, ȳΓ) = S(ūΓ), is the associated solution
to the state system. Recall that (ȳ, ȳΓ, w̄) has the regularity properties (24),
(25), and (28), respectively, and that (38) is satisfied for (y, yΓ) = (ȳ, ȳΓ).

The adjoint system to the problem (CP) is formally given by

q + ∆p = 0 in Q, (112)

−∂t(p+ q) − ∆q + f ′′(ȳ) q = bQ(ȳ − zQ) in Q, (113)

∂np = 0 on Σ, (114)
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qΓ = q|Γ and − ∂tqΓ + ∂nq − ∆ΓqΓ + f ′′
Γ(ȳΓ) qΓ = bΣ(ȳΓ − zΣ) on Σ,

(115)

(p+ q)(T ) = bΩ(ȳ(T ) − zΩ) in Ω, (116)

qΓ(T ) = bΓ(ȳΓ(T ) − zΓ) on Γ, (117)

and was derived in [2] under the additional compatibility assumption

bΩ = bΓ = 0. (118)

In order to keep the technicalities at a reasonable level, we will from now
on always assume that (118) is fulfilled; we remark that in [2, Remark 5.6]
it has been pointed out that this assumption is dispensable at the expense
of less regularity of the adjoint state variables.

The following result was proved in [2, Thm. 2.4].

Theorem 4. Let (A1)–(A4) and (118) be fulfilled. Then the adjoint system
(112)–(117) has a unique solution in the following sense: there is a unique
triple (p, q, qΓ) with the regularity properties

p ∈ H1(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)), (119)

q ∈ H1(0, T ;H) ∩ L2(0, T ;H2(Ω)), (120)

qΓ ∈ H1(0, T ;HΓ) ∩ L2(0, T ;H2(Γ)), (121)

qΓ(t) = q(t)|Γ for a.a. t ∈ (0, T ), (122)

that solves for a.a. t ∈ (0, T ) the variational equations
∫

Ω
q(t) v dx =

∫

Ω
∇p(t) · ∇v dx ∀ v ∈ V, (123)

−
∫

Ω
∂t

(
p(t) + q(t)

)
v dx+

∫

Ω
∇q(t) · ∇v dx+

∫

Ω
f ′′(ȳ(t)) q(t) v dx

−
∫

Γ
∂tqΓ(t) vΓ dΓ +

∫

Γ
∇ΓqΓ(t) · ∇ΓvΓ dΓ +

∫

Γ
f ′′
Γ(ȳΓ(t)) qΓ(t) vΓ dΓ

=

∫

Ω
bQ

(
ȳ(t) − zQ(t)

)
v dx+

∫

Γ
bΣ

(
ȳΓ(t) − zΣ(t)

)
vΓ dΓ

for all (v, vΓ) ∈ V, (124)

and the final condition
∫

Ω
(p+ q)(T ) v dx+

∫

Γ
qΓ(T ) vΓ dΓ = 0 ∀(v, vΓ) ∈ V . (125)
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Now, let us introduce the “reduced cost functional” J̃ : U → R by

J̃(uΓ) := J(y, yΓ, uΓ), where (y, yΓ) = S(uΓ). (126)

Since ūΓ is an optimal control with associated optimal state (ȳ, ȳΓ) = S(ūΓ),
the necessary condition for optimality is

DJ̃(ūΓ)(vΓ − ūΓ) ≥ 0 for every vΓ ∈ Uad, (127)

or, written explicitly (recall that bΩ = bΓ = 0),

bQ

∫ T

0

∫

Ω
(ȳ − zQ) ξ dx dt + bΣ

∫ T

0

∫

Γ
(ȳΓ − zΣ) ξΓ dΓ dt

+ b0

∫ T

0

∫

Γ
ūΓ (vΓ − ūΓ) dΓ dt ≥ 0 for every vΓ ∈ Uad, (128)

where, for any given vΓ ∈ Uad, the functions ξ, ξΓ are the first two com-
ponents of the solution triple (ξ, ξΓ, ζ) to the linearized problem (55)–(60)
associated with hΓ = vΓ − ūΓ. Moreover, since the adjoint variables have
been constructed in such a way that

bQ

∫ T

0

∫

Ω
(ȳ−zQ)ξ dx dt+ bΣ

∫ T

0

∫

Γ
(ȳΓ−zΣ)ξΓ dΓdt =

∫ T

0

∫

Γ
qΓ(vΓ−ūΓ)dΓdt,

(129)
we can rewrite (128) in the form (see also [2, Thm. 2.5])

∫ T

0

∫

Γ
(qΓ + b0 ūΓ)(vΓ − ūΓ) dΓ dt ≥ 0 for every vΓ ∈ Uad. (130)

In particular, if b0 > 0, then ūΓ is the orthogonal projection of −qΓ/b0 onto
Uad with respect to the standard scalar product in L2(Σ).

After these preparations, we now derive sufficient conditions for optimal-
ity. But, since the control-to-state operator S is not Fréchet differentiable
on L2(Σ) but only on U ⊂ X, we are faced with the so-called “two-norm
discrepancy”, which makes it impossible to establish second-order sufficient
optimality conditions by means of the same simple arguments as in the
finite-dimensional case or, e. g., in the proof of [6, Thm. 4.23, p. 231]. It will
thus be necessary to tailor the conditions in such a way as to overcome the
two-norm discrepancy. At the same time, for practical purposes the condi-
tions should not be overly restrictive. For such an approach, we follow the
lines of Chapter 5 in [6], here. Since many of the arguments developed here
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are rather similar to those employed in [6], we can afford to be sketchy and
refer the reader to [6] for full details.

To begin with, the quadratic cost functional J, viewed as a map from
C0([0, T ]; H) × U into R, is obviously twice continuously Fréchet differen-
tiable on C0([0, T ]; H)×U and thus, in particular, at ((ȳ, ȳΓ), ūΓ). Moreover,
since bΩ = bΓ = 0, we have for any ((y, yΓ), uΓ) ∈ C0([0, T ]; H) × U and any
((v, vΓ), hΓ), ((ω, ωΓ), kΓ) ∈ C0([0, T ]; H) × X that

D2J((y, yΓ), uΓ)[((v, vΓ), hΓ), ((ω, ωΓ), kΓ)]

= bQ

∫ T

0

∫

Ω
v ω dx dt + bΣ

∫ T

0

∫

Γ
vΓ ωΓ dΓ dt + b0

∫ T

0

∫

Γ
hΓ kΓ dΓ dt . (131)

It then follows from Theorem 3 and from the chain rule that the reduced
cost functional J̃ is also twice continuously Fréchet differentiable on U. Now
let hΓ, kΓ ∈ X be arbitrary. In accordance with our previous notation, we
put

(φ,φΓ) = DS(ūΓ)hΓ, (ψ,ψΓ) = DS(ūΓ)kΓ, (η, ηΓ) = D2S(ūΓ)[hΓ, kΓ] .

Then a straightforward calculation resembling that carried out on page 241
in [6], using the chain rule as the main tool, yields the equality

D2J̃(ūΓ)[hΓ, kΓ] = D(y,yΓ)J((ȳ, ȳΓ), ūΓ)(η, ηΓ)

+D2J((ȳ, ȳΓ), ūΓ)[((φ,φΓ), hΓ) , ((ψ,ψΓ), kΓ)] . (132)

For the first summand on the right-hand side of (132), we have

D(y,yΓ)J((ȳ, ȳΓ), ūΓ)(η, ηΓ) = bQ

∫ T

0

∫

Ω
(ȳ − zQ) η dx dt

+ bΣ

∫ T

0

∫

Γ
(ȳΓ − zΣ) ηΓ dΓdt, (133)

where (η, ηΓ) solves the system (72)–(77). We now claim that

bQ

∫ T

0

∫

Ω
(ȳ − zQ) η dx dt + bΣ

∫ T

0

∫

Γ
(ȳΓ − zΣ) ηΓ dΓ dt

= −
∫ T

0

∫

Ω
f (3)(ȳ)φψ q dx dt −

∫ T

0

∫

Γ
f

(3)
Γ (ȳΓ)φΓ ψΓ qΓ dΓ dt . (134)

To prove this claim, we test (72) by p, insert v = ϑ in (123), and add the
resulting equations to obtain

0 =

∫ T

0

∫

Ω
(∂tη p + q ϑ) dx dt . (135)
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Next, we test (73) by q. Since q|Γ = qΓ, we find the identity
∫ T

0

∫

Ω
q ϑ dx dt =

∫ T

0

∫

Ω
∂tη q dx dt +

∫ T

0

∫

Ω
∇η · ∇q dx dt

+

∫ T

0

∫

Γ
∂tηΓ qΓ dΓ dt +

∫ T

0

∫

Γ
∇ΓηΓ · ∇ΓqΓ dΓ dt +

∫ T

0

∫

Ω
f ′′(ȳ) η q dx dt

+

∫ T

0

∫

Ω
f (3)(ȳ)φψ q dx dt +

∫ T

0

∫

Γ
f ′′
Γ(ȳΓ) ηΓ qΓ dΓ dt

+

∫ T

0

∫

Γ
f

(3)
Γ (ȳΓ)φΓ ψΓ qΓ dΓ dt . (136)

Now observe that the initial condition η(0) = ηΓ(0) = 0 and the final con-
dition (125) imply, using integration by parts with respect to time, that

∫ T

0

∫

Ω
∂tη (p+ q) dx dt +

∫ T

0

∫

Γ
∂tηΓ qΓ dΓ dt

= −
∫ T

0

∫

Ω
∂t(p+ q) η dx dt −

∫ T

0

∫

Γ
ηΓ ∂tqΓ dΓ dt .

Hence, by adding (135) and (136) to each other, we obtain the identity

0 = −
∫ T

0

∫

Ω
∂t(p+ q) η dx dt −

∫ T

0

∫

Γ
ηΓ ∂tqΓ dΓ dt +

∫ T

0

∫

Ω
∇η · ∇q dx dt

+

∫ T

0

∫

Γ
∇ΓηΓ · ∇ΓqΓ dΓdt+

∫ T

0

∫

Ω
f ′′(ȳ)η q dx dt+

∫ T

0

∫

Ω
f (3)(ȳ)φψq dx dt

+

∫ T

0

∫

Γ
f ′′
Γ(ȳΓ) ηΓ qΓ dΓ dt +

∫ T

0

∫

Γ
f

(3)
Γ (ȳΓ)φΓ ψΓ qΓ dΓ dt . (137)

Inserting (v, vΓ) = (η, ηΓ) in (124), we finally obtain that

0 =

∫ T

0

∫

Ω

(
bQ(ȳ − zQ) η + f (3)(ȳ)φψ q

)
dx dt

+

∫ T

0

∫

Γ

(
bΣ(ȳΓ − zΣ) ηΓ + f

(3)
Γ (ȳΓ)φΓ ψΓ qΓ

)
dΓ dt,

by comparison. From this the claim (134) follows.
Now we can recall (131)–(134) in order to find the representation formula

D2J̃(ūΓ)[hΓ, hΓ] = b0 ∥hΓ∥2
L2(Σ) +

∫ T

0

∫

Ω

(
bQ − q f (3)(ȳ)

)
|φ|2 dx dt

+

∫ T

0

∫

Γ

(
bΣ − qΓ f

(3)
Γ (ȳΓ)

)
|φΓ|2 dΓ dt . (138)
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Equality (138) gives rise to hope that, under appropriate conditions,
D2J̃(ūΓ) might be a positive definite operator on a suitable subset of the
space L2(Σ). To formulate such a condition, we introduce for fixed τ > 0
the set of strongly active constraints for ūΓ by

Aτ (ūΓ) := {(x, t) ∈ Σ : |qΓ(x, t) + b0 ūΓ(x, t)| > τ} , (139)

and we define the τ−critical cone Cτ (ūΓ) to be the set of all hΓ ∈ XM0 :=
{hΓ ∈ X : ∥∂thΓ∥L2(Σ) ≤ M0} such that

hΓ(x, t)





= 0 if (x, t) ∈ Aτ (ūΓ)

≥ 0 if ūΓ(x, t) = uΓ,min and (x, t) ̸∈ Aτ (ūΓ)

≤ 0 if ūΓ(x, t) = uΓ,max and (x, t) ̸∈ Aτ (ūΓ)

. (140)

After these preparations, we can formulate the second-order sufficient opti-
mality condition (SSC) as follows.

There exist constants δ > 0 and τ > 0 such that

D2J̃(ūΓ) [hΓ, hΓ] ≥ δ ∥hΓ∥2
L2(Σ) ∀hΓ ∈ Cτ (ūΓ),

where D2J̃(ūΓ) [hΓ, hΓ] is given by (138) with (ȳ, ȳΓ) = S(ūΓ),

(φ,φΓ) = DS(ūΓ)hΓ and the associated adjoint state (p, q, qΓ). (141)

The following result resembles Theorem 5.17 in [6].

Theorem 5. Suppose that the conditions (A1)–(A4) and (118) are ful-
filled, and assume ūΓ ∈ Uad, (ȳ, ȳΓ) = S(ūΓ), and that the triple (p, q, qΓ)
satisfies (119)–(125). Moreover, assume that the conditions (130) and (141)
are fulfilled. Then there are constants ε > 0 and σ > 0 such that

J̃(uΓ) ≥ J̃(ūΓ) + σ ∥uΓ−ūΓ∥2
L2(Σ) for all uΓ ∈ Uad with ∥uΓ−ūΓ∥X ≤ ε .

(142)
In particular, ūΓ is locally optimal for (CP) in the sense of X.

Proof. The proof closely follows that of [6, Thm. 5.17], and therefore we can
refer to [6]. We only indicate one argument that needs additional explana-
tion. To this end, let uΓ ∈ Uad be arbitrary. Since J̃ is twice continuously
Fréchet differentiable in U, it follows from Taylor’s theorem with integral
remainder (see, e. g., [4, Thm. 8.14.3, p. 186]) that

J̃(uΓ) − J̃(ūΓ) = DJ̃(ūΓ)vΓ +
1

2
D2J̃(ūΓ)[vΓ, vΓ] + RJ̃(uΓ, ūΓ) , (143)
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with vΓ = uΓ − ūΓ and the remainder

RJ̃(uΓ, ūΓ) =

∫ 1

0
(1 − s)

(
D2J̃(ūΓ + s vΓ) −D2J̃(ūΓ)

)
[vΓ, vΓ] ds. (144)

Now, we estimate the integrand (D2J̃(ūΓ + s vΓ) − D2J̃(ūΓ))[vΓ, vΓ] in
(144). To this end, we put

(ys, ys
Γ) = S(ūΓ + svΓ), (φ,φΓ) = DS(ūΓ)vΓ, (φs, φs

Γ) = DS(ūΓ + svΓ)vΓ,

(η, ηΓ) = D2S(ūΓ)[vΓ, vΓ], (ηs, ηs
Γ) = D2S(ūΓ + svΓ)[vΓ, vΓ] ,

and use the representation formulas (131)–(133). We obtain

D(y,yΓ)J((ys, ys
Γ), ūΓ + svΓ)(ηs, ηs

Γ) −D(y,yΓ)J((ȳ, ȳΓ), ūΓ)(η, ηΓ) = I1 + I2,

(145)

with the integrals

I1 := bQ

∫ T

0

∫

Ω
(ys − ȳ) η dx dt + bΣ

∫ T

0

∫

Γ
(ys

Γ − ȳΓ) ηΓ dΓ dt,

I2 := bQ

∫ T

0

∫

Ω
(ys − zQ) (ηs − η) dx dt + bΣ

∫ T

0

∫

Γ
(ys

Γ − zΣ) (ηs
Γ − ηΓ) dΓ dt.

(146)

Moreover,

D2J((ys, ys
Γ), ūΓ + svΓ)[((φs, φs

Γ), vΓ) , ((φs, φs
Γ), vΓ)]

−D2J((ȳ, ȳΓ), ūΓ)[((φ,φΓ), vΓ) , ((φ,φΓ), vΓ)] = I3, where

I3 := bQ

∫ T

0

∫

Ω
(φs − φ)(φs + φ) dx dt + bΣ

∫ T

0

∫

Γ
(φs

Γ − φΓ)(φs
Γ + φΓ) dΓ dt .

(147)

We now estimate the integrals I1, I2, and I3, where we denote by Ci, i ∈ N,
constants that depend neither on s ∈ [0, 1] nor on uΓ ∈ Uad. At first, using
the Cauchy-Schwarz inequality, we obtain

|I1| ≤ max{bQ, bΣ} ∥(ys, ys
Γ) − (ȳ, ȳΓ)∥L2(0,T ;H) ∥(η, ηΓ)∥L2(0,T ;H)

≤ max{bQ, bΣ} ∥(ys, ys
Γ) − (ȳ, ȳΓ)∥Y ∥(η, ηΓ)∥Y

≤ C1 s ∥vΓ∥3
L2(Σ), (148)
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where in the last inequality we have employed the estimates (36) and (82).
Similarly, we have

|I2| ≤ max{bQ, bΣ}∥(ys, ys
Γ) − (zQ, zΣ)∥L2(0,T ;H)∥(ηs, ηs

Γ) − (η, ηΓ)∥L2(0,T ;H)

≤ max{bQ, bΣ} ∥(ys, ys
Γ) − (zQ, zΣ)∥L2(0,T ;H) ∥(ηs, ηs

Γ) − (η, ηΓ)∥Y

≤ C2 s ∥vΓ∥3
L2(Σ), (149)

where, for the last inequality, we used (A1) and (34) to estimate the first
norm and (79) for the second one. Finally, we get

|I3| ≤ max{bQ, bΣ}∥(φs, φs
Γ)−(φ,φΓ)∥L2(0,T ;H)∥(φs, φs

Γ)+(φ,φΓ)∥L2(0,T ;H)

≤ max{bQ, bΣ} ∥(φs, φs
Γ) − (φ,φΓ)∥Y ∥(φs, φs

Γ) + (φ,φΓ)∥Y

≤ C3 s ∥vΓ∥3
L2(Σ). (150)

For the last inequality, we applied (61) to estimate the first norm and the
triangle inequality and (48) to estimate the second one. Combining the
above estimates, we thus have finally shown that

∣∣∣RJ̃(uΓ, ūΓ)
∣∣∣ ≤ C4

∫ 1

0
(1− s) s ∥vΓ∥3

L2(Σ) ds ≤ C5 ∥vΓ∥X ∥vΓ∥2
L2(Σ) , (151)

with global constants C4 > 0 and C5 > 0 that do not depend on the choice
of uΓ ∈ Uad. But this means that

∣∣∣RJ̃(uΓ, ūΓ)
∣∣∣

∥uΓ − ūΓ∥2
L2(Σ)

→ 0 as ∥uΓ − ūΓ∥X → 0. (152)

With this information at hand, we can argue along exactly the same lines as
on pages 292–294 in the proof of Theorem 5.17 in [6] to conclude the validity
of the assertion.
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jected to nonlocal implicit initial conditions of the form





u′(t) ∈ Au(t) + f(t), t ∈ R+,

f(t) ∈ F (t, ut), t ∈ R+,

u(t) = g(u)(t), t ∈ [−τ, 0 ],

(1)

where X is a Banach space, τ ≥ 0, A : D(A) ⊆ X ↪→ X is the in-
finitesimal generator of a nonlinear semigroup of contractions, the multi-
function F : R+ × C([ −τ, 0 ];D(A)) ↪→ X is nonempty, convex weakly
compact valued and strongly-weakly u.s.c., and g : Cb([ −τ,+∞);D(A)) →
C([ −τ, 0 ];D(A)) is nonexpansive and has affine growth, i.e. there exists
m0 ≥ 0 such that

∥g(u)∥C([ −τ,0 ];X) ≤ ∥u∥Cb([ 0,+∞);X) +m0 (2)

for each u ∈ Cb([ −τ,+∞);D(A)).
If I is an interval, Cb(I;X) denotes the space of all bounded and con-

tinuous functions from I, equipped with the sup-norm ∥ · ∥Cb(I;X), while

Cb(I;D(A)) denotes the closed subset in Cb(I;X) consisting of all elements
u ∈ Cb(I;X) satisfying u(t) ∈ D(A) for each t ∈ I. Let a ∈ R. On
the linear space Cb([ a,+∞);X) let us consider the family of seminorms
{∥ · ∥k; k ∈ N, k ≥ a}, defined by ∥u∥k = sup{∥u(t)∥; t ∈ [ a, k ]} for each
k ∈ N, k ≥ a. Endowed with this family of seminorms, Cb([ a,+∞);X)
is a separated locally convex space, denoted by C̃b([ a,+∞);X). Further,
C([ a, b ];X) stands for the space of all continuous functions from [ a, b ] to X
endowed with the sup-norm ∥ · ∥C([ a,b ];X) and C([ a, b ];D(A)) is the closed

subset of C([ a, b ];X) containing all u ∈ C([ a, b ];X) with u(t) ∈ D(A)
for each t ∈ [ a, b ]. Finally, if u ∈ Cb([ −τ,+∞);X) and t ∈ R+, ut ∈
C([ −τ, 0 ];X) is defined by

ut(s) := u(t+ s)

for each s ∈ [ −τ, 0 ].
The existence problem on the standard compact interval [ 0, 2π ], in the

simplest case when τ = 0, i.e. when the delay is absent, was studied by
Paicu, Vrabie [41]. In this case C([ −τ, 0 ];D(A)) identifies with D(A), F
identifies with a multifunction from [ 0, 2π ] × X to X. By using an inter-
play between compactness arguments and invariance techniques, they have
proved an existence result handling periodic, anti-periodic, mean-value evo-
lution inclusions subjected to initial condition expressed by an integral with
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respect to a Radon measure µ. A very important specific case concerns T -
periodic problems, which corresponds to the choice of g as g(u) = u(T ), was
studied by Paicu [39]. For F single-valued, this case was analyzed by Aiz-
icovici, Papageorgiou, Staicu [3], Caşcaval, Vrabie [18], Hirano, Shioji [34],
Paicu [40], Vrabie [44]. For a survey concerning: periodic, anti-periodic,
quasi-periodic and almost periodic solutions to differential inclusions, see
Andres [6]. As long as differential inclusions subjected to general nonlocal
initial conditions without delay are concerned, we mention the papers of
Aizicovici, Staicu [5] and Paicu, Vrabie [41]. The case of periodic retarded
equations and inclusions subjected to nonlocal initial conditions were stud-
ied by Vrabie [46], and Chen, Wang, Zhou [20], while the general delay
equations was considered by Burlică, Roşu [14] and Vrabie [48], [49] and
[50].

Existence results in the periodic abstract undelayed case were obtained
by Aizicovici, Papageorgiou, Staicu [3], Caşcaval, Vrabie [18], Hirano, Sh-
ioji [34], Paicu [40], Vrabie [44], while the anti-periodic case was considered
by Aizicovici, Pavel, Vrabie [4]. The semilinear case of undelayed differential
equations subjected to nonlocal initial data, was initiated by the pioneer-
ing work of Byszewski [15]. Further steps in this direction were made by
Byszewski [16], Byszewski, Lakshmikantham [17], Aizicovici, Lee [1], Aiz-
icovici, McKibben [2], Zhenbin Fan, Qixiang Dong, Gang Li [27], Garćıa-
Falset [29] and Garćıa-Falset, Reich [30]. All these studies are strongly mo-
tivated by the fact that specific problems of this kind describe the evolution
of various phenomena in Physics, Meteorology, Thermodynamics, Popula-
tion Dynamics. A model of the gas flow through a thin transparent tube,
expressed as a problem with nonlocal initial conditions, was analyzed in
Deng [24]. Some models in Pharmacokinetics were discussed in the mono-
graph of McKibben [35, Section 10.2, pp. 394–398]. Models arising from
Physics were analyzed by Olmstead, Roberts [38] and Shelukhin [43]. Linear
second order evolution equations subjected to linear nonlocal initial condi-
tions in Hilbert triples were considered in Avalishvili, Avalishvili [8] and
motivated by mathematical models for long-term reliable weather forecast-
ing as mentioned in Rabier, Courtier, Ehrendorfer [42]. For Navier-Stokes
equations subjected to initial nonlocal conditions see Gordeziani [32]. Clas-
sical nonlinear delay evolution initial-value problems, i.e. when g ≡ ψ with
ψ ∈ C([τ, 0 ];D(A)), were considered by Mitidieri, Vrabie [36] and [37], also
by using compactness arguments. It should be emphasized that in Mitidieri,
Vrabie [36] and [37] the general assumptions on the forcing term F are very
general allowing – in certain specific cases when A is a second order elliptic
operator – F to depend on Au as well.
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Our paper extends the main result in Vrabie [47] to cover the more
general case in which g has affine rather than linear growth. This case is
important in applications and does not follow by a simple modification of
the arguments used in Vrabie [47].

The paper is divided into 7 sections. In Section 2 we have included some
concepts and results widely used subsequently. In Section 3 we prove an
existence and uniqueness result for the unperturbed problem (1) which, al-
though auxiliary, is important by its own. Section 4 collects the hypotheses
used and provides some comments on several remarkable particular cases
handled by the general frame considered. Section 5 is devoted to the state-
ment of the main result, i.e. Theorem 7 and to a short description of the
idea of the proof. Section 6 is concerned with the proof of the main result
and the last Section 7 contains an example illustrating the possibilities of
the abstract developed theory.

2 Preliminaries

Although the paper is almost self-contained, some familiarity with the
basic concepts and results on nonlinear evolution equations governed by m-
dissipative operators, delay evolution equations and on multifunction theory
would be welcome. For details in these three topics, we refer the reader, in
order, to Barbu [11], Hale [33] and Vrabie [45]. However, we recall for easy
reference the most important notions and results we will use in the sequel.

Definition 1 If X is a Banach space and C ⊆ X, the multifunction F :
C ↪→ X is said (strongly-weakly) upper semicontinuous (u.s.c.) at ξ ∈ C
if for every (weakly) open neighborhood V of F (ξ) there exists an open
neighborhood U of ξ such that F (η) ⊆ V for each η ∈ U ∩C. We say that F
is (strongly-weakly) u.s.c. on C if it is (strongly-weakly) u.s.c. at each ξ ∈ C.

Definition 2 A multifunction F : I × C ↪→ X is said to be almost strongly-
weakly u.s.c. if for each γ > 0 there exists a Lebesgue measurable subset
Eγ ⊆ I whose Lebesgue measure λ(Eγ) ≤ γ and such that F it is strongly-
weakly u.s.c. from (I \ Eγ) × C to X.

Remark 1 If the sequence (εn)n is strictly decreasing to 0, we can always
choose the sequence (Eεn)n, where Eεn corresponds to εn as specified in
Definition 2, such that Eεn+1 ⊆ Eεn , for n = 0, 1, . . . .

We also need the following general fixed point theorem for multifunctions
obtained independently by Ky Fan [28] and Glicksberg [31].
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Theorem 1 (Ky Fan-Glicksberg) Let K be a nonempty, convex and com-
pact set in a separated locally convex space and let Γ : K ↪→ K be a
nonempty, closed and convex valued multifunction with closed graph. Then
Γ has at least one fixed point, i.e. there exists f ∈ K such that f ∈ Γ(f).

A very useful variant of Theorem 1, is

Theorem 2 Let K be a nonempty, convex and closed set in a separated
locally convex space and let Γ : K ↪→ K be a nonempty, closed and convex
valued multifunction with closed graph. If Γ(K) := ∪x∈KΓ(x) is relatively
compact, then Γ has at least one fixed point, i.e. there exists f ∈ K such
that f ∈ Γ(f).

Proof. Since K is closed, convex and Γ(K) ⊆ K, we have

convΓ(K) ⊆ convK = K.

So,
Γ( convΓ(K)) ⊆ Γ(K) ⊆ convΓ(K),

which shows that the set C := convΓ(K), which by Mazur’s Theorem, i.e.
Dunford, Schwartz [22, Theorem 6, p. 416] is compact, is nonempty, closed,
convex and Γ(C) ⊆ C. So, we are in the hypotheses of Theorem 1, with K
substituted by C ⊆ K, wherefrom the conclusion.

Since, by Edwards [23, Theorem 8.12.1, p. 549], the weak closure of a
weakly relatively compact set, in a Banach space, coincides with its weak
sequential closure, Theorem 2 implies:

Theorem 3 Let K be a nonempty, convex and weakly compact set in Ba-
nach space and let Γ : K ↪→ K be a nonempty, closed and convex valued
multifunction with sequentially closed graph. Then Γ has at least one fixed
point, i.e. there exists f ∈ K such that f ∈ Γ(f).

In the single-valued case, Theorem 3 is due to Arino, Gautier, Penot [7].
If x, y ∈ X, we denote by [x, y ]± the right (left) directional derivative of

the norm calculated at x in the direction y, i.e.

[x, y ]+ = lim
h↓0

∥x+ hy∥ − ∥x∥
h

(
[x, y ]− = lim

h↑0

∥x+ hy∥ − ∥x∥
h

)
.

We recall that:
[x, y + ax ]± = [x, y ]± + a∥x∥ (3)
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for a ∈ R. See Barbu [11, Proposition 3.7, p. 101].
We say that the operator A : D(A) ⊆ X ↪→ X is dissipative if

[x1 − x2, y1 − y2 ]− ≤ 0

for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2, andm-dissipative if it is dissipative
and, for each λ > 0, or equivalently for some λ > 0, R(I − λA) = X.

Let A : D(A) ⊆ X ↪→ X be an m-dissipative operator, let ξ ∈ D(A),
f ∈ L1(a, b;X) and let us consider the differential equation

u′(t) ∈ Au(t) + f(t). (4)

Theorem 4 (Benilan) Let ω ∈ R and let A : D(A) ⊆ X ↪→ X be an m-
dissipative operator such that A+ωI is dissipative. Then, for each ξ ∈ D(A)
and f ∈ L1(a, b ;X), there exists a unique C0-solution of (4) on [ a, b ] which
satisfies u(a) = ξ. Furthermore, if f, g ∈ L1(a, b ;X) and u, v are the two
C0-solutions of (4) corresponding to f and g respectively, then :

∥u(t) − v(t)∥ ≤ e−ω(t−s)∥u(s) − v(s)∥ +

∫ t

s
e−ω(t−θ)∥f(θ) − g(θ)∥dθ (5)

for each a ≤ s ≤ t ≤ b.

See Benilan [12], or Barbu [11, Theorem 4.1, p. 128].
We denote by u(·, a, ξ, f) the unique C0-solution of the problem (4) sat-

isfying
u(a, a, ξ, f) = ξ

and we notice that u(t, 0, ξ, 0) = S(t)ξ, where {S(t); S(t) : D(A) → D(A)}
is the semigroup of nonexpansive mappings generated by A via the Crandall-
Liggett Exponential Formula. See Crandall, Liggett [21].

We recall that the semigroup {S(t); S(t) : D(A) → D(A)} is called
compact if, for each t > 0, S(t) is a compact operator.

We conclude this section with some compactness results concerning the
set of C0-solutions of the problem (4) whose initial data u(a) and forc-
ing terms f belong to some subsets B, in D(A), and respectively F , in
L1(a, b;X). First, we introduce:

Definition 3 Let (Ω,Σ, µ) be a complete measure space, µ(Ω) < +∞. A
subset F ⊆ L1(Ω, µ;X) is called uniformly integrable if for each ε > 0 there
exists δ(ε) > 0 such that

∫

E
∥f(t)∥ dµ(t) ≤ ε

for each f ∈ F and each E ∈ Σ satisfying µ(E) ≤ δ(ε).
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The next result is an extension of a compactness theorem due to Baras [10].

Theorem 5 Let X be a Banach space, let A : D(A) ⊆ X ↪→ X be an m-
dissipative operator and let us assume that A generates a compact semigroup.
Let B ⊆ D(A) be bounded and let F be uniformly integrable in L1(a, b;X).
Then, for each σ ∈ (a, b), the set {u(·, a, ξ, f) ; (ξ, f) ∈ B × F} is rela-
tively compact in C([σ, b ];X). If, in addition, B is relatively compact, then
{u(·, a, ξ, f) ; (ξ, f) ∈ B × F} is relatively compact even in C([ a, b ];X).

See Vrabie [45, Theorems 2.3.2 and 2.3.3, pp. 46–47].

Definition 4 An m-dissipative operator A is called of complete continuous
type if for each a < b and each sequences (fn)n in L1(a, b;X) and (un)n

in C([ a, b ];X), with um a C0-solution on [ a, b ] of the problem u′
m(t) ∈

Aum(t) + fm(t), m = 1, 2, . . . satisfying :





lim
n
fn = f weakly in L1(a, b;X),

lim
n
un = u strongly in C([ a, b ];X),

it follows that u is a C0 solution on [ a, b ] of the limit problem u′(t) ∈
Au(t) + f(t).

Remark 2 If the topological dual of X is uniformly convex and A generates
a compact semigroup, then A is of complete continuous type. See Vrabie [45,
Corollary 2.3.1, p. 49]. An m-dissipative operator of complete continuous
type in a nonreflexive Banach space (and, by consequence, whose dual is not
uniformly convex) is the nonlinear diffusion operator ∆φ in L1(Ω). See the
example below.

Example 1 Let ∆ be the Laplace operator in the sense of distributions
over Ω. Let φ : D(φ) ⊆ R ↪→ R, let u : Ω → D(φ) and let us denote by

Sφ(u) = {v ∈ L1(Ω); v(x) ∈ φ(u(x)), a.e. for x ∈ Ω}.

We recall that φ : D(φ) ⊆ R ↪→ R is said to be maximal monotone if
−φ is m-dissipative.

The (i) part in Theorem 6 below is due to Brezis, Strauss [13], the (ii)
part to Badii, Dı́az, Tesei [9] and the (iii) part to Cârjă, Necula, Vrabie [19].

Theorem 6 Let Ω be a nonempty, bounded and open subset in Rd with C1

boundary Σ and let φ : D(φ) ⊆ R ↪→ R be maximal monotone with 0 ∈ φ(0).
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(i) Then the operator ∆φ : D(∆φ) ⊆ L1(Ω) ↪→ L1(Ω), defined by

{
D(∆φ) = {u ∈ L1(Ω); ∃v ∈ Sφ(u) ∩W 1,1

0 (Ω), ∆v ∈ L1(Ω)}
∆φ(u) = {∆v; v ∈ Sφ(u) ∩W 1,1

0 (Ω)} ∩ L1(Ω) for u ∈ D(∆φ),

is m-dissipative on L1(Ω).

(ii) If, in addition, φ : R → R is continuous on R and C1 on R \ {0} and
there exist two constants C > 0 and α > 0 if d ≤ 2 and α > (d− 2)/d
if d ≥ 3 such that

φ′(r) ≥ C|r|α−1

for each r ∈ R \ {0}, then ∆φ generates a compact semigroup.

(iii) In the hypotheses of (ii), ∆φ is of complete continuous type.

For the proof of (i) see Barbu [11, Theorem 3.5, p. 115], for the proof
of (ii) see Vrabie [45, Theorem 2.7.1, p. 70] and for proof of the (iii) –
which rests heavily on slight extension of a continuity result established
in Dı́az, Vrabie [26, Corollary 3.1, p. 527] which, in turn, follows from a
compactness result due to Dı́az, Vrabie [25] –, see Cârjă, Necula, Vrabie [19,
Theorem 1.7.9, p. 22].

3 An auxiliary lemma

We begin by considering the problem

{
u′(t) ∈ Au(t) + f(t), t ∈ R+,

u(t) = g(u)(t), t ∈ [ −τ, 0 ].
(6)

Lemma 1 Let us assume that A is m-dissipative, 0 ∈ D(A), 0 ∈ A0 and
there exists ω > 0 such that A + ωI is dissipative, too. Let us assume,
in addition, that there exists a > 0 such that g : Cb([ −τ,+∞);D(A)) →
C([ −τ, 0 ];D(A)) satisfies

∥g(v) − g(ṽ)∥
Cb([ −τ,0 ];D(A))

≤ ∥v − ṽ∥
Cb([ a,+∞);D(A))

, (7)

for each v, ṽ ∈ Cb([ −τ,+∞);D(A)) and has affine growth, i.e. satisfies (2).
Then, for each f ∈ L∞(R+;X) ∩ L1(R+;X), (6) has a unique C0-solution
u ∈ Cb([ −τ,+∞);D(A)).
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Remark 3 If g : Cb([ −τ,+∞);D(A)) → C([ −τ, 0 ];D(A)) satisfies (7),
then g depends only on the restriction v|[ a,+∞) of v to [ a,+∞).

We can now pass to the proof of Lemma 1.

Proof. Let us observe first that, for each v ∈ Cb([ −τ,+∞);D(A)), the
initial value problem for the delay equation

{
u′(t) ∈ Au(t) + f(t), t ∈ R+,

u(t) = g(v)(t), t ∈ [ −τ, 0 ]
(8)

has a unique C0-solution u : [ −τ,+∞) → D(A). Clearly, u is bounded
on [ −τ, 0 ] because it is continuous. Next, recalling that 0 ∈ A0, from
Theorem 4 we conclude that

∥u(t)∥ ≤ e−ωt∥u(0)∥ +

∫ t

0
e−ω(t−θ)∥f(θ)∥dθ

≤ ∥u(0)∥ +
1

ω
∥f∥L∞(R+;X),

for each t ≥ 0. Finally, since u is bounded on both [ −τ, 0 ] and [ 0,+∞), it
follows that u ∈ Cb([ −τ,+∞);D(A)).

Now let us observe that, in view of Remark 3, g(v)(t) = g(ṽ)(t) for each
t ∈ [ −τ, 0 ] whenever v and ṽ coincide on [ a,+∞) and so, g depends only
on the restriction of v on [ a,+∞) To conclude the proof, it suffices to show
that the operator

Q : Cb([ a,+∞);D(A)) → Cb([ a,+∞);D(A)),

defined by

Q(v) := u|[ a,+∞),

where u is the unique C0-solution of the problem (8), is a strict contraction.
Hence by the Banach Fixed Point Theorem, Q has a unique fixed point
v = u|[ a,+∞) and

u(t) =

{
u(t), t ∈ R+

g(v)(t), t ∈ [ −τ, 0 ],

is the unique C0-solution of (6).

To this end, let v, ṽ ∈ Cb([ a,+∞);D(A)) and t ∈ [ a,+∞) be arbitrary.
We have

∥Q(v)(t) −Q(ṽ)(t)∥ ≤ e−ωt∥Q(v)(0) −Q(ṽ)(0)∥
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≤ e−ωa∥g(v)(0) − g(ṽ)(0)∥ ≤ e−ωa∥v − ṽ∥Cb([ a,+∞);X).

To complete the proof, we have merely to observe that

∥Q(v) −Q(ṽ)∥Cb([ a,+∞);X) ≤ e−ωa∥v − ṽ∥Cb([ a,+∞);X)

for each v, ṽ ∈ Cb([ a,+∞);D(A)).

4 The general frame and basic assumptions

In the sequel we shall denote by z : [ −τ,+∞) → D(A) the unique
C0-solution of the unperturbed problem

{
z′(t) ∈ Az(t), t ∈ R+,

z(t) = g(z)(t), t ∈ [ −τ, 0 ].
(9)

which, in view of Lemma 1, belongs to Cb([ −τ,+∞);D(A)).
The assumptions we need in that follows are listed below.

(HA) A : D(A) ⊆ X ↪→ X is an operator with the properties:

(A1) A is m-dissipative, there exists ω > 0 such that A + ωI is dissi-
pative too, 0 ∈ D(A), 0 ∈ A0 and D(A) is convex ;

(A2) the semigroup generated by A on D(A) is compact ;

(A3) A is of complete continuous type. See Definition 4.

(HF ) F : R+ × C([ −τ, 0 ];D(A)) ↪→ X is a nonempty, convex and weakly
compact valued, almost strongly-weakly u.s.c. multifunction. See Def-
inition 2.

(HI) There exists r > 0 such that for each t ∈ R+, each v ∈ C([ −τ, 0 ];D(A)),
with ∥v−zt∥C([ −τ,0 ];X) = r and f ∈ F (t, v), we have [ v(0)−z(t), f ]+ ≤
0, where z is the unique C0-solution of the unperturbed problem (9).

(H ′
I) There exists r > 0 such that for each t ∈ R+, each v ∈ C([ −τ, 0 ];D(A))

with ∥v(0) − z(t)∥ > r and f ∈ F (t, v), we have [ v(0) − z(t), f ]+ ≤ 0,
where z is the unique C0-solution of the unperturbed problem (9).

(HB) There exists ℓ ∈ L∞(R+;R+)∩L1(R+;R+) such that for almost every
t ∈ R+ and for each v ∈ C([ −τ, 0 ];D(A)) satisfying ∥v(0)−z(t)∥ ≤ r,
where r > 0 is given by (HI), and each f ∈ F (t, v), we have

∥f∥ ≤ ℓ(t).
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(H ′
B) There exists ℓ ∈ L∞(R+;R+) ∩ L1(R+;R+) such that

∥f∥ ≤ ℓ(t)

for each v ∈ C([ −τ, 0 ];D(A)), each f ∈ F (t, v) and a.e. for t ∈ R+.

(Hg) g : Cb([ −τ,+∞);D(A)) → C([ −τ, 0 ];D(A)) satisfies:

(g1) g has affine growth, i.e. there exists m0 ≥ 0 such that for each u
in Cb([ −τ,+∞);D(A)), g satisfies (2) ;

(g2) there exists a > 0 such that for each u, v ∈ Cb([ −τ,+∞);D(A)),
we have

∥g(u) − g(v)∥C([ −τ,0 ];X) ≤ ∥u− v∥Cb([ a,+∞);X) ;

(g4) g is continuous from C̃b([ −τ,+∞);D(A)) to C([ −τ, 0 ];D(A)).

Remark 4 The hypothesis (HI) ensures the invariance of a certain moving
set with respect to the C0-solutions of the problem

{
u′(t) ∈ Au(t) + f(t), t ∈ R+,
u(t) = g(v)(t), t ∈ [ −τ, 0 ].

Namely, if a C0-solution u of the problem above satisfies the initial constraint
u(t) − z(t) ∈ D(0, r) for each t ∈ [ −τ, 0 ], where z is the unique C0-solution
of (9), then (HI) implies that u satisfies the very same constraint for all t
belonging to domain of existence of u.

If ∥g(u)∥C([ −τ,0 ];X) ≤ ∥u∥Cb([ 0,+∞);X) for each u ∈ Cb([ −τ,+∞);X),
case in which we will say that g has linear growth, we have g(0) = 0 and,
accordingly, the unique C0-solution z of (9) is identically 0. So, in this case,
the invariance condition is nothing but a variant of the condition (H3) in
Vrabie [47].

Conditions (g1) ∼ (g2) and (g4) are satisfied by all functions g of the
general form specified in Remark 5 below.

Remark 5 Let 0 ≤ τ < T . If the function g is defined as

(i) g(u)(t) = u(T + t), t ∈ [ −τ, 0 ] (T -periodicity condition);

(ii) g(u)(t) = −u(T + t), t ∈ [−τ, 0 ] (T -antiperiodicity condition);
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(iii) g(u)(t) =

∫ +∞

τ
k(θ)u(t+θ) dθ, t ∈ [ −τ, 0 ], where k ∈ L1([ τ,+∞);R)

and

∫ +∞

τ
|k(θ)| dθ = 1 (mean condition);

(iv) g(u)(t) =

n∑

i=1

αiu(t + ti) for each t ∈ [ −τ, 0 ], where

n∑

i=1

|αi| ≤ 1 and

τ < t1 < t2 < · · · < tn = T are arbitrary, but fixed (multi-point
discrete mean condition);

then g satisfies (g1) with m0 = 0 and (g2) with a = T − τ > 0. A more
general case is that in which the support of the measure µ is in (τ,+∞) and
the function is g given by

g(u)(t) =

∫ +∞

τ
N (u(t+ θ)) dµ(θ) + ψ(t), (10)

for each u ∈ Cb([ −τ,+∞);D(A)) and t ∈ [ −τ, 0 ]. Here N : X → X is
a (possible nonlinear) nonexpansive operator with N (0) = 0 and µ is a σ-
finite and complete measure on [ τ,+∞), for which there exists b > τ such
that supp µ = [ b,+∞), µ([ b,+∞)) = 1 and ψ ∈ C([ −τ, 0 ];X) is such that
g(u)(t) ∈ D(A) for each t ∈ [ −τ, 0 ]. Obviously, in this case, the constant
a > 0 in (g2) is exactly b− τ .

Remark 6 From (g2), (g4) and Remark 3, we conclude that, for each
convergent sequence (uk)k in C̃b([ a,+∞);D(A)) to some limit u we have
limk g(uk) = g(u) in C([ −τ, 0 ];X).

5 The main result

We may now proceed to the statement of the main result in this paper.

Theorem 7 If (HA), (HF ), (HI), (HB) and (Hg) are satisfied, then (1) has

at least one C0-solution, u ∈ Cb([ −τ,+∞);D(A)) satisfying u(t) − z(t) ∈
D(0, r) for each t ∈ R+, where z is the unique C0-solution of (9) and r > 0
is given by (HI).

We will prove our Theorem 7 with the help of :

Theorem 8 If (HA), (HF ), (H ′
I), (H ′

B) and (Hg) are satisfied, then (1) has

at least one C0-solution, u ∈ Cb([ −τ,+∞);D(A)) and u(t) − z(t) ∈ D(0, r)
for each t ∈ R+, where z is the unique C0-solution of (9) and r > 0 is given
by (H ′

I).
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The proof of Theorem 8 is divided into four steps.

The first step. We begin by showing that, for each ε ∈ (0, 1) and
f ∈ L1(R+;X), the problem

{
u′(t) ∈ Au(t) − ε[u(t) − z(t) ] + f(t), t ∈ R+,

u(t) = g(u)(t), t ∈ [ −τ, 0 ],
(11)

has a unique C0-solution uf
ε ∈ Cb([ −τ,+∞);D(A)).

The second step. We show that for each fixed ε ∈ (0, 1), the operator

f 7→ uf
ε , which associates to f the unique C0-solution uf

ε of the problem
(11), is compact from L∞(R+;X) ∩ L1(R+;X) to C̃b([ −τ,+∞);D(A)).

The third step. As F is almost strongly-weakly u.s.c. – see Defini-
tion 1 –, it follows that, for the very same ε > 0, there exists Eε ⊆ R+

whose Lebesgue measure λ(Eε) ≤ ε and such that F|(R+\Eε)×C([ −τ,0 ];D(A))

is strongly-weakly u.s.c., we construct an approximation for F as follows.
Let

D(F ) = R+ × C([ −τ, 0 ];D(A)),

Dε(F ) = (R+ \ Eε) × C([ −τ, 0 ];D(A))

and let us define the multifunction Fε : R+ × C([ −τ, 0 ];D(A)) ↪→ X, by

Fε(t, v) =

{
F (t, v), (t, v) ∈ Dε(F ),

{0}, (t, v) ∈ D(F ) \Dε(F ).
(12)

Further, we prove that the multifunction f 7→ SelFε(·, uf
ε (·)), where

SelFε(·, uf
ε (·)) = {h ∈ L1(R+;X); h(t) ∈ Fε(t, u

f
ε t) a.e. t ∈ R+},

maps some nonempty, convex and weakly compact set K ⊆ L1(R+;X) into
itself and has weakly×weakly sequentially closed graph. Then, we are in
the hypotheses of Theorem 3, wherefrom it follows that this mapping has
at least one fixed point which, by means of f 7→ uf

ε , produces a C0-solution
for the approximate problem





u′(t) ∈ Au(t) − ε[u(t) − z(t) ] + f(t), t ∈ R+,

f(t) ∈ Fε(t, ut), t ∈ R+,

u(t) = g(u)(t), t ∈ [−τ, 0 ],

(13)

where Fε is defined by (12).

The fourth step. For each ε ∈ (0, 1), we fix a C0-solution uε of the
problem (13), and we show that there exists a sequence εn ↓ 0 such that
(uεn)n converges in C̃b([ 0,+∞);D(A)) to a C0-solution of the problem (1).
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6 Proofs of Theorems 7 and 8

We begin with the proofs of the four steps outlined above which are
labeled here as four lemmas.

Lemma 2 Let us assume that (A1) in (HA), and (g1) ∼ (g2) in (Hg) are
satisfied. Then, for each ε > 0 and each f ∈ L∞(R+;X) ∩ L1(R+;X), the

problem (11) has a unique C0-solution uf
ε : [ −τ,+∞) → X which belongs

to Cb([ −τ,+∞);D(A)). Moreover, uf
ε satisfies

∥uf
ε − z∥Cb([ −τ,+∞);X) ≤ 1

ε
∥f∥L∞(R+;X), (14)

where z is the unique C0-solution of the problem (9).

Proof. First, let us observe that the problem (11) has the form

{
u′(t) ∈ Aεu(t) + fε(t), t ∈ R+,

u(t) = g(u)(t), t ∈ [ −τ, 0 ],
(15)

where Aε = A−εI and fε(t) = f(t)+εz(t) for t ∈ R+. Clearly, Aε+εI is m-
dissipative, 0 ∈ D(Aε) and 0 ∈ Aε0. Since z ∈ Cb([ 0,+∞);D(A)) we have
fε ∈ L∞(R+;X) ∩L1(R+;X) and so Lemma 1 applies with ω = ε and this

implies the existence and uniqueness of solution uf
ε ∈ Cb([ −τ,+∞);D(A)).

Next, using the very same operator Aε = A− εI, we rewrite the unper-
turbed problem (9) as

{
z′(t) ∈ Aεz(t) + hε(t), t ∈ R+,

z(t) = g(z)(t), t ∈ [ −τ, 0 ],
(16)

with hε(t) = εz(t), for t ∈ R+. Then, for each t ∈ (0,+∞), the unique

C0-solution uf
ε of (15) and the unique solution z of (16) satisfy

∥uf
ε (t) − z(t)∥ ≤ e−εt∥uf

ε (0) − z(0)∥ +

∫ t

0
e−ε(t−s)∥f(s)∥ ds

≤ e−εt∥uf
ε − z∥Cb([ a,+∞);X) +

1 − e−εt

ε
∥f∥L∞(R+;X),

for each t ∈ (0,+∞).
Clearly, there exists a sequence (αn) in (0, a) such that

lim
n

∥uf
ε − z∥Cb([ αn,+∞);X) = ∥uf

ε − z∥Cb([ 0,+∞);X). (17)
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From the last inequality it follows that, for every n ∈ N, we have

∥uf
ε (t)− z(t)∥ ≤ e−εαn∥uf

ε − z∥Cb([ αn,+∞);X) +
1 − e−εαn

ε
∥f∥L∞(R+;X) (18)

for each t ∈ [αn,+∞), and so

∥uf
ε − z∥Cb([ αn,+∞);X) ≤ 1

ε
∥f∥L∞(R+;X),

for every n ∈ N. From (17), it readily follows that

∥uf
ε − z∥Cb([ 0,+∞);X) ≤ 1

ε
∥f∥L∞(R+;X).

Next, if t ∈ [ −τ, 0 ], from (g2) in (Hg), we get

∥uf
ε (t) − z(t)∥ = ∥g(uf

ε )(t) − g(z)(t)∥

≤ ∥uf
ε − z∥Cb([ a,+∞);X) ≤ ∥uf

ε − z∥Cb([ 0,+∞);X)

and thus (14) holds true, and this completes the proof.

Lemma 3 Let us assume that (A1), (A2) in (HA) and (Hg) are satisfied,
let ε > 0 be fixed and let ℓ ∈ L∞(R+;R+)∩L1(R+;R+). Then the operator

f 7→ uf
ε , where uf

ε is the unique solution of the problem (11) corresponding
to f , maps the set

F = {f ∈ L∞([ 0,+∞);X) ∩ L1(R+;X); ∥f(t)∥ ≤ ℓ(t) a.e. for t ∈ R+},

into a relatively compact set in C̃b([ −τ,+∞);D(A)).

Proof. By (14), {uf
ε ; f ∈ F} is bounded in Cb([ 0,+∞);D(A)) and thus

{uf
ε (0); f ∈ F} is bounded in D(A). Since F is uniformly integrable in

L1(0, k;X) for k = 1, 2, . . . – see Definition 3 –, from (A2) and Theorem 5,

we conclude that, for every k = 1, 2, . . . , and σ ∈ (0, k), {uf
ε ; f ∈ F} is

relatively compact in C([σ, k ];D(A)). Thanks to (g2), (g4) in (Hg) and to

Remark 6, we deduce that the set {g(uf
ε ); f ∈ F} is relatively compact

in C([ −τ, 0 ];D(A)), and therefore
{
g(uf

ε )(0); f ∈ F
}

= {uf
ε (0); f ∈ F}

is relatively compact in D(A). Again, from (g1) and the second part of

Theorem 5, it follows that the set {uf
ε ; f ∈ F)} is relatively compact in

C̃b([ −τ,+∞);D(A)). The proof is complete.



82 M. Necula, I. I. Vrabie

Lemma 4 Let us assume that (HA), (HF ), (H ′
B) and (Hg) are satisfied.

Then, for each ε > 0, the problem (13) has at least one solution uε.

Since the proof follows the very same lines as those in the proof of
Lemma 4.3 in Vrabie [47], we do not give details.

Lemma 5 If (HA), (HF ), (H ′
I), (H ′

B) and (Hg) are satisfied, then, for each
ε ∈ (0, 1), each C0-solution uε of the problem (13) satisfies

∥uε − z∥Cb([ 0,+∞);X) ≤ r, (19)

where r > 0 is given by (H ′
I).

Proof. Let us observe that, if 0 ≤ t < t̃, we have

∥uε(t̃) − z(t̃)∥ ≤ ∥uε(t) − z(t)∥ (20)

+

∫ t̃

t
[uε(s) − z(s), f(s) ]+ ds− ε

∫ t̃

t
∥uε(s) − z(s)∥ ds.

Let us assume by contradiction that there exists t ∈ R+ such that

∥uε(t) − z(t)∥ > r.

We distinguish between two cases.

Case 1. There exists tm ∈ R+ such that

r < ∥uε − z∥Cb([ 0,+∞);X) = ∥uε(tm) − z(tm)∥. (21)

If tm = 0, then

r < ∥uε − z∥Cb([ 0,+∞);X) = ∥uε(0) − z(0)∥ = ∥g(uε)(0) − g(z)(0)∥

≤ ∥uε − z∥Cb([ a,+∞);X) ≤ ∥uε − z∥Cb([ 0,+∞);X)

and so

∥uε − z∥Cb([ 0,+∞);X) = ∥uε − z∥Cb([ a,+∞);X).

Therefore, we can always confine ourselves to analyze the case when, in (21),
either tm ∈ (0,+∞) or there is no tm ∈ (0,+∞) satisfying the equality in
(21).
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So, if there exists tm ∈ (0,+∞) such that (21) holds true, then the
mapping

t 7→ ∥uε(t) − z(t)∥
cannot be constant on (0, tm). Indeed, if we assume that

∥uε(s) − z(s)∥ = ∥uε(tm) − z(tm)∥

for each s ∈ (0, tm), then, taking t ∈ (0, tm) and t̃ = tm in (20) and using
(H ′

I) with v(0) = uεs(0) = uε(s), we get

r < r − ε(tm − t)r < r (22)

which is impossible. Consequently, there exists t0 ∈ (0, tm) such that

r < ∥uε(t0)−z(t0)∥ < ∥uε(s)−z(s)∥ ≤ ∥uε(tm)−z(tm)∥ = ∥uε−z∥Cb([ 0,+∞);X)

for each s ∈ (t0, tm). Since

∥uε(s) − z(s)∥ ≤ ∥uεs − zs∥C([ −τ,0 ];X),

for each s ∈ R+, we have

r < ∥uεs − zs∥C([ −τ,0 ];X)

for each s ∈ (t0, tm) and then, using again (20) and (H ′
I), we get

r < ∥uε(tm) − z(tm)∥ ≤ ∥uε(t0) − z(t0)∥ − ε(tm − t0)r

which implies the very same contradiction as before, i.e. (22).
It remains only to analyze

Case 2. There is no tm ∈ R+ such that (21) holds true. Then, there
exists at least one sequence (tk)k such that





lim
k
tk = +∞,

lim
k

∥uε(tk) − z(tk)∥ = ∥uε − z∥Cb([ 0,+∞);X).

If there exists t̃ ∈ R+ such that ∥uε(t̃)−z(t̃)∥ = r, then ∥uε(t)−z(t)∥ ≤ r
for each t ∈ [ t̃,+∞). Indeed, if we assume the contrary, there would exists
[ t, t̃ ] ⊆ [ 0,+∞) such that

∥uε(t) − z(t)∥ = r



84 M. Necula, I. I. Vrabie

and
r < ∥uε(s) − z(s)∥

for each s ∈ (t, t̃ ]. Then, using once again (20) and (H ′
I), we get

r < ∥uε(t̃) − z(t̃)∥ ≤ ∥uε(t) − z(t)∥ − ε(t̃− t)r

≤ r − ε(t̃− t)r

leading to (22) which is impossible.
So, when both

r < ∥uε − z∥Cb([ 0,+∞);X)

and
∥uε(t) − z(t)∥ < ∥uε − z∥Cb([ 0,+∞);X)

hold true for each t ∈ R+, we necessarily have

∥uε(t) − z(t)∥ > r

for each t ∈ R+. If this is the case, let us remark that we may assume with
no loss of generality, by extracting a subsequence if necessary, that

tk+1 − tk ≥ 1

for k = 0, 1, 2, . . . . Then, by (3) and (H ′
I), we have

r < ∥uε(tk+1) − z(tk+1)∥

≤ ∥uε(tk) − z(tk)∥ +

∫ tk+1

tk

[uε(s) − z(s), f(s) − ε(uε(s) − z(s)) ]+ ds

≤ ∥uε(tk) − z(tk)∥ − ε

∫ tk+1

tk

∥uε(s) − z(s)∥ ds

≤ ∥uε(tk) − z(tk)∥ − ε(tk+1 − tk)r ≤ ∥uε(tk) − z(tk)∥ − εr

for each k ∈ N. Passing to the limit for k → +∞ in the inequalities

∥uε(tk+1) − z(tk+1)∥ ≤ ∥uε(tk) − z(tk)∥ − εr, k = 1, 2, . . .

we get
∥uε − z∥Cb([ 0,+∞);X) ≤ ∥uε − z∥Cb([ 0,+∞);X) − εr.

But, in view of Lemma 2, ∥uε − z∥Cb([ 0,+∞);X) is finite and thus we get a
contradiction. This contradiction can be eliminated only if Case 2 cannot
hold. Thus, both Case 1 and Case 2 are impossible. In turn, this is a
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contradiction too, because at least one of these two cases should hold true.
So, the initial supposition, that ∥uε −z∥Cb([ 0,+∞);X) > r, is necessarily false.
It then follows that (19) holds true and this completes the proof.

Now, we can pass to the proof of Theorem 8.

Proof. Let (εn)n be a sequence with εn ↓ 0, let (un)n be the sequence
of the C0-solutions of the problem (13) corresponding to ε = εn for n ∈ N,
and let (fn)n be such that





u′
n(t) ∈ Aun(t) − εn[un(t) − z(t) ] + fn(t), t ∈ R+,
fn(t) ∈ Fεn(t, unt), t ∈ R+,
un(t) = g(un)(t), t ∈ [ −τ, 0 ].

In view of Remark 1, we may assume without loss of generality that Eεn+1 ⊂
Eεn for n = 0, 1, . . . . This means that

Fεn(t, v) = Fεn+1(t, v) (23)

for each t ∈ R+ \ Eεn and v ∈ C([ −τ, 0 ];D(A)).

From (H ′
B), we deduce that, for k = 1, 2, . . . , the set {fn; n ∈ N} is

uniformly integrable in L1(0, k;X). Then, from Lemma 5, (A2) in (HA)
and Theorem 5, it follows that, for k = 1, 2, . . . , and each σ ∈ (0, k),
the set {un; n ∈ N} is relatively compact in C([σ, k ];D(A)). In view
of (g4) in (Hg), we deduce that the set {un; n ∈ N} is relatively compact

in C([ −τ, 0 ];D(A)). In particular, the set

{un(0) = g(un)(0); n ∈ N}

is relatively compact in D(A). From the second part of Theorem 5, we
conclude that {un; n ∈ N} is relatively compact in C([ 0, k ];D(A)) for
k = 1, 2, . . . and thus in C([ −τ, k ];D(A)). So, {un; n ∈ N} is relatively
compact in C̃b([ −τ,+∞);D(A)). Accordingly, for each k = 1, 2, . . . ,

Ck = {un(t); n ∈ N, t ∈ [ 0, k ]}

is compact in D(A). Let γ ∈ (0, 1) be arbitrary, let Eγ be the Lebesgue
measurable set in [ 0,+∞) given by Definition 2 and, for each k = 1, 2, . . . ,
let us define the set

Dγ,k =
∪

n∈N

{(t, uεn t); t ∈ [ 0, k ] \ Eγ}.
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Clearly, Dγ,k is compact in R+×C([ −τ, 0 ];D(A)). Next, for each γ ∈ (0, 1)
and each k = 1, 2, . . . , let us define

Cγ,k = Fγ(Dγ,k) = F (Dγ,k) ∪ {0}

which is weakly compact since Dγ,k is compact and F|Dγ,k
is strongly-weakly

u.s.c. See Lemma 2.6.1, p. 47 in Cârjă, Necula, Vrabie [19]. Further, the
family F = {fεn ; n = 0, 1, . . . } ⊆ L1(R+;X) satisfies the hypotheses of
Theorem 4.1 in Vrabie [46]. So, on a subsequence at least, we have





lim
n
fn = f weakly in L1(R+;X),

lim
n
un = u in C̃b([ −τ,+∞);D(A)),

lim
n
unt = ut in C([ −τ, 0 ];D(A)) for each t ∈ R+.

From Lemma 2.6.2, p. 47 in Cârjă, Necula, Vrabie [19] combined with
(23), we get

f(t) ∈ Fεn(t, ut)

for each n ∈ R and a.e. t ∈ R+ \Eεn . Since limn λ(Eεn) = 0, it follows that

f(t) ∈ F (t, ut)

a.e. t ∈ R+. But A is of complete continuous type, wherefrom it follows
that u is a C0-solution of the problem (1) corresponding to the selection f
of t 7→ F (t, ut). Finally, it suffices to observe that, from (19) in Lemma 5,
it follows that u(t) − z(t) ∈ D(0, r) for each t ∈ R+.

We can now proceed to the proof of Theorem 7.
Proof. Let r > 0 be given by (HI) and let us define the set

Kr = {(t, v) ∈ R+ × C([ −τ, 0 ];D(A)); ∥v(0) − z(t)∥ ≤ r}.

Clearly, Kr is nonempty and closed in R+ × C([ −τ, 0 ];X), In addition,
since by (A1) in (HA), D(A) is convex, it follows that for each t ∈ R+, the
cross-section of Kr at t, i.e.

Kr(t) = {v ∈ C([ −τ, 0 ];D(A)); (t, v) ∈ Kr}

is convex. Let π : R+ ×C([ −τ, 0 ];D(A)) → R+ ×C([ −τ, 0 ];X) be defined
by

π(t, v) =





(t, v) if ∥v(0) − z(t)∥ ≤ r,
(
t,

r

∥v − zt∥C([ −τ,0 ];X)
(v − zt) + zt

)
if ∥v(0) − z(t)∥ > r.
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We observe that π is continuous, π restricted to Kr is the identity operator
and π maps R+ × C([ −τ, 0 ];D(A)) into Kr. The first two properties men-
tioned are obvious. To prove the fact that π maps R+ × C([ −τ, 0 ];D(A))
into Kr, we have merely to observe that if ∥v(0) − z(t)∥ > r then, inasmuch
as D(A) is convex and v, zt ∈ C([ −τ, 0 ];D(A), it follows that their convex
combination

r

∥v − zt∥C([ −τ,0 ];X)
(v − zt) + zt − zt ∈ C([ −τ, 0 ];D(A)).

Moreover
∥∥∥∥

r

∥v − zt∥C([ −τ,0 ];X)
(v − zt) + zt − zt

∥∥∥∥
C([ −τ,0 ];X)

= r

and so, in this case, π(t, v) ∈ Kr. If ∥v(0) − z(t)∥ ≤ r, then π(t, v) = (t, v)
and thus, π maps R+ × C([ −τ, 0 ];D(A)) into Kr.

Then, we can define the multifunction Fπ : R+ ×C([ −τ, 0 ];D(A)) ↪→ X
by

Fπ(t, v) = F (π(t, v)),

for each (t, v) ∈ R+ × C([ −τ, 0 ];D(A)). As π is continuous, it follows that
Fπ satisfies (HF ). Moreover, one can easily verify that it satisfies (H ′

B).
Moreover, since

π(R+ × C([ −τ, 0 ];D(A))) ⊆ Kr,

we conclude that Fπ satisfies (H ′
I) too. Indeed, let (t, v) ∈ R+ ×C([ −τ, 0 ];

D(A)) be arbitrary and satisfying

∥v(0) − z(t)∥ > r (24)

and let f ∈ F (π(t, v)).
From the definition of π, it follows that the projection P2 of π(t, v) on

the second component, i.e.

P2(π(t, v)) =





v if ∥v(0) − z(t)∥ ≤ r,

r

∥v − zt∥C([ −τ,0 ];X)
(v − zt) + zt if ∥v(0) − z(t)∥ > r.

satisfies:

∥P2(π(t, v))− zt∥C([ −τ,0 ];X) =

{
r if ∥v(0) − z(t)∥ > r,

∥v − zt∥C([ −τ,0 ];X) if ∥v(0) − z(t)∥ ≤ r.
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Therefore, if (t, v) satisfies (24), it follows that

∥P2(π(t, v)) − zt∥C([ −τ,0 ];X) = r.

So, by (HI), we have

[ v(0) − z(t), f ]+ = [P2(π(t, v))(0) − z(t), f ]+ ≤ 0

which proves that Fπ satisfies (H ′
I).

Hence, by virtue of Theorem 8, the problem





u′(t) = Au(t) + f(t), t ∈ R+,

f(t) ∈ Fπ(t, ut), t ∈ R+,

u(t) = g(u)(t), t ∈ [ −τ, 0 ]

has at least one C0-solution u ∈ Cb([ −τ,+∞);D(A)).

By (19), we have ∥ut(0) − z(t)∥ ≤ r for each t ∈ R+. So, (t, ut) ∈ Kr,
which shows that

Fπ(t, ut) = F (t, ut)

for each t ∈ R+. Thus u is a C0-solution of (1) and this completes the proof
of Theorem 7.

7 Nonlinear diffusion in L1(Ω)

Let Ω be a nonempty, bounded and open subset in Rd, d ≥ 1, with C1

boundary Σ, let φ : D(φ) ⊆ R ↪→ R be maximal monotone with 0 ∈ φ(0)
and let ω > 0. Let us consider the porous medium equation subjected to
nonlocal initial conditions





∂u

∂t
(t, x) ∈ ∆φ(u(t, x)) − ωu(t, x) + f(t, x), in Q+,

f(t, x) ∈ F

(
t, u(t),

∫ 0

−τ
u(t+ s, x) ds

)
, in Q+,

φ(u(t, x)) = 0, on Σ+,

u(t, x) =

∫ +∞

τ
N (u(θ + t))(x) dµ(θ) + ψ(t)(x), in Qτ .

(25)
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Let us consider the auxiliary problem





∂z

∂t
(t, x) ∈ ∆φ(z(t, x)) − ωz(t, x), in Q+,

φ(z(t, x)) = 0, on Σ+,

z(t, x) =

∫ +∞

τ
N (z(θ + t))(x) dµ(θ) + ψ(t)(x), in Qτ

(26)

and let us denote by z ∈ Cb([ −τ,+∞);L1(Ω)) the unique C0-solution of
(26).

Before passing to the statement of the main existence result concerning
(25), we need to introduce some notation and to explain the exact definition
of F .

Let fi : R+ × R × R → R be two functions with f1(t, u, v) ≤ f2(t, u, v)
for each (t, u, v) ∈ R+ × R × R and let

F : R+ × C([ −τ, 0 ];L1(Ω)) ↪→ L1(Ω)

be given by

F := F0 + F1,

where

F0(t, v) =
{
f ∈ L1(Ω); f(x) ∈ [ f̃1(t, v)(x), f̃1(t, v)(x) ], a.e. for x ∈ Ω

}

and

F1(t, v)(x) := {σ(t)h(x)}

for each (t, v) ∈ R+ × C([ −τ, 0 ];L1(Ω)). Here

f̃i : R+ × Ω × C([ −τ, 0 ];L1(Ω)) → R, i = 1, 2,

are defined as:




f̃1(t, x, v) := f1

(
t, v(0)(x),

∫ 0

−τ
v(s)(x) ds

)

f̃2(t, x, v) := f2

(
t, v(0)(x),

∫ 0

−τ
v(s)(x) ds

) (27)

for each (t, v) ∈ R+ × C([ −τ, 0 ];L1(Ω)), a.e. in Ω, h ∈ L1(Ω) is a fixed
element satisfying ∥h∥L1(Ω) ̸= 0 and σ ∈ L1(R+;R).
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Theorem 9 Let Ω be a nonempty, bounded and open subset in Rd with C1

boundary Σ, let ω > 0 and let φ : R → R be continuous on R and C1 on
R \ {0} with φ(0) = 0 and for which there exist two constants C > 0 and
α > 0 if d ≤ 2 and α > (d− 2)/d if d ≥ 3 such that

φ′(r) ≥ C|r|α−1

for each r ∈ R \ {0}. Let fi : R+ × R × R → R be two given functions,
h ∈ L1(Ω), ∥h∥L1(Ω) > 0, σ ∈ L1(R+;R) and let F be defined as above.

Let N : L1(Ω) → L1(Ω), ψ ∈ C([ −τ, 0 ];L1(Ω)) and let µ be a σ-finite
and complete measure on [ τ,+∞). Let us assume that :

(σ1) ∥σ(t)∥ ≤ 1 for each t ∈ R+ ;

(F1) f1(t, u, v) ≤ f2(t, u, v) for each (t, u, v) ∈ R+ × R × R ;

(F2) f1 is l.s.c. and f2 is u.s.c. and, for each (t, u, v), (t, u, w) ∈ R+×R×R
with v ≤ w, we have

{
f1(t, u, v) ≤ f1(t, u, w),

f2(t, u, v) ≥ f2(t, u, w) ;

(F3) there exists c > 0 such that, for every (t, x, v) ∈ D(f1, f2) with

∥v(0)(·) − z(t, ·)∥L1(Ω) ≤ c−1∥h∥L1(Ω)

we have

sign [ v(0)(x) − z(t, x) ]f0(x) ≤ −c|v(0)(x) − z(t, x)|

for each f0(x) ∈ [ f1(t, x, v), f2(t, x, v) ], z being the unique C0-solution
of the problem (26) ;

(F4) there exists a nonnegative function ℓ̃ ∈ L1(R+;R) ∩ L∞(R+;R) such
that

|fi(t, u, v)| ≤ ℓ̃(t)

for i = 1, 2 and for each (t, u, v) ∈ R+ × R × R ;

(F5) for each t ∈ R+ and each v ∈ C([ −τ, 0];L1(Ω)), we have

fi(t, z(t, x), v) = 0

for i = 1, 2 and a.e. for x ∈ Ω ;
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(µ1) there exists b > τ such that suppµ ⊆ [ b,+∞) ;

(µ2) µ([ b,∞)) = 1 ;

(N1) ∥N (u) − N (v)∥L1(Ω) ≤ ∥u− v∥L1(Ω) for each u, v ∈ L1(Ω) ;

(N2) N (0) = 0.

Then, the problem (25) has at least one C0-solution u ∈ Cb([ −τ,+∞);L1(Ω))
satisfying

∥u− z∥Cb(R+;L1(Ω)) ≤ c−1∥h∥L1(Ω).

Remark 7 Condition (F5) is satisfied, for instance, if

fi(t, u, v) = ψ(t, u) · f i(t, u, v),

where ψ is positive, continuous and bounded and ψ(t, z(t, x)) = 0, while f i

satisfy (F1) ∼ (F4), i = 1, 2. In the particular case in which ψ ≡ 0, it follows
that z ≡ 0 and so, (F5) reduces to

fi(t, 0, v) = 0

for each (t, v) ∈ R+ × R.

Proof. Let X = L1(Ω) and let us define A : D(A) ⊆ L1(Ω) → L1(Ω), by

Au := ∆φ(u) − ωu

for each u ∈ D(A), where

D(A) =
{
u ∈ L1(Ω); φ(u) ∈ W 1,1

0 (Ω), ∆φ(u) ∈ L1(Ω)
}
.

As φ(0) = 0, C∞
0 (Ω) is dense in D(A) and so D(A) = L1(Ω).

Theorem 6 implies that A is m-dissipative and A + ωI is dissipative
in L1(Ω), A0 = 0, A generates a compact semigroup and is of complete
continuous type on D(A) = L1(Ω). Hence, A satisfies (HA). Let F be
defined as above and

g : Cb([ −τ,+∞);L1(Ω)) → C([ −τ, 0 ];L1(Ω))

be defined by

g(u)(t)(x) =

∫ +∞

τ
N (u(t+ θ))(x) dµ(θ) + ψ(t)(x)
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for each u ∈ Cb([ −τ,+∞);L1(Ω)), each t ∈ [ −τ, 0 ] and a.e. for x ∈ Ω.
From (σ1), (F1), (F2), (F4) and Lemma 5.1 in Vrabie [47], using a similar

arguments as in the proof of the corresponding part in the preceding section,
we conclude that F satisfies (HF ). From (F2) and (F3), we conclude that F
satisfies (HI) and (HB) with

r = c−1∥h∥L1(Ω).

Indeed, we will show that for each (t, v) ∈ R+ × C([ −τ, 0 ];L1(Ω)), with

∥v(0)(·) − z(t, ·)∥L1(Ω) = r,

and every f ∈ F (t, v), we have

[ v(0)(·) − z(t, ·), f ]+ ≤ 0.

Let us observe that in our case, i.e. X = L1(Ω), we have

[ v(0)(·) − z(t, ·), f ]+ =

∫

{y∈Ω;v(0)(y)−z(t,y)>0}
f(x) dx

−
∫

{y∈Ω;v(0)(y)−z(t,y)<0}
f(x) dx+

∫

{y∈Ω;v(0)(y)−z(t,y)=0}
|f(x)| dx.

Let f ∈ F (t, v). Clearly f is of the form f = f0 + h, where f0 ∈ L1(Ω)
satisfies f1(t, x, v) ≤ f0(x) ≤ f2(t, x, v) a.e. for x ∈ Ω. From the definition
of [ ·, · ]+ in L1(Ω), we deduce

[ v(0)(·) − z(t, ·), f ]+

≤
∫

{y∈Ω;v(0)(y)−z(t,y)>0}
f0(x) dx−

∫

{y∈Ω;v(0)(y)−z(t,y)<0}
f0(x) dx

+

∫

{y∈Ω;v(0)(y)−z(t,y)=0}
|f0(x)| dx+

∫

{y∈Ω;v(0)(y)−z(t,y)>0}
α(t)h(x) dx

−
∫

{y∈Ω;v(0)(y)−z(t,y)<0}
h(x) dx+

∫

{y∈Ω;v(0)(y)−z(t,y)=0}
|α(t)| · |h(x)| dx.

Next, taking into account that, from (F5), we have f0(x) = 0 a.e. for
those x ∈ Ω for which v(0)(x) = z(t, x), the last inequality, conjunction with
(F4), yields

[ v(0)(·)−z(t, ·), f ]+ ≤
∫

Ω
sign [ v(0)(x)−z(t, x) ]f0(x) dx+

∫

Ω
|α(t)|·|h(x)| dx
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≤ −c
∫

Ω
|v(0)(x) − z(t, x)| dx+

∫

Ω
|h(x)| dx ≤ 0.

So, F satisfies (HI). As (H4) follows from (F3), we deduce that F satisfies
(HB). Since the proof of (Hg) is very simple, we do not enter into details.
So, we are in the hypotheses of Theorem 7 wherefrom the conclusion.
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1 Introduction

Since the pioneer Kalman’s work [15], the matrix Riccati differential (dif-
ference) equations played a central role in the derivation of the solution of
various robust linear quadratic control problems as well as H2 filtering and
H∞-filtering problems, see e.g. [2, 4, 17] for the continuous-time case, or
[3, 9] for the discrete-time case. In [20] where introduced the Riccati differen-
tial equations of stochastic control in the case of continuous-time stochastic
systems. In the case of discrete-time systems affected by sequences of in-
dependent random variables, the discrete-time Riccati equations (DTREs)
were introduced in [7, 8, 22].

To solve the linear quadratic optimal control problems on infinite time
horizon, a crucial role is played by the so called stabilizing solution of a
DTRE. An unified approach of the problem of the existence and uniqueness
of a wide class of discrete-time Riccati equations both from deterministic
and stochastic framework may be found in the Chapter 5 of [5] for the finite
dimensional case and in [19] for infinite dimensional case.

Lately, there is an increasing interest in investigation of several control
problems for systems with periodic coefficients. For the readers convenience
we refer to [1, 3, 6, 18] and the references therein. Based on the uniqueness
of the bounded and stabilizing solution one deduces that in the case of a
DTRE with periodic coefficients the bounded and stabilizing solution is also
a periodic sequence. This fact is important in the applications because it
is necessary finite memory for the offline computation of the gain matrix of
the optimal control.

It is worth mentioning that we do not know apriori neither an initial
value nor a boundary value of the stabilizing solution of a DTRE. Hence, the
existing methods for the computation of a solution with given initial values
or boundary values problem for a differential (difference) equation cannot be
applied to compute the bounded and stabilizing solution of a DTRE. In the
deterministic context there exist two important classes of numerical methods
to compute the stabilizing solution of a DTRE namely, the method based
on invariant subspaces of associated canonical system [1, 3, 18] and iterative
methods [16]. In the case of DTREs from stochastic control the methods
based on invariant subspaces are not applicable. Therefore, in this case only
iterative methods are mainly used to compute the stabilizing solution of a
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Riccati differential (difference) equation. The most popular iterative method
is an improved version of Kleinman algorithm. Even if the Kleinman type
algorithm is a fast convergent method it has the disadvantage that in the
stochastic case require that at each step to compute the unique bounded
solution (periodic solution in the periodic case) of a perturbed Lyapunov
equation. The numerical computation of such a solution becomes difficult
in the case of systems of high dimension of their state space and /or large
values of periods in the case of systems with periodic coefficients. That is
why in practice were proposed other iterative methods which can be easier
implementable (see e.g. Chapter 5 [5] or [14]).

In this paper we consider four iterative methods for computing the sta-
bilizing solution of the discrete-time generalized Riccati equations. There
are two Stein iterations which we apply for solving the problem. Similar al-
gorithms for solving the discrete-type algebraic Riccati equations have been
developed in our previous investigations [11, 12, 13, 14].

In the last part of the paper, we propose a method to compute the pe-
riodic solution occurring at each step of a Kleinman type algorithm. Our
method is based on the so called H-representation technique recently de-
veloped in [21]. This method allows us to reduce the computation of the
periodic solution of a Lyapunov type equation to the computation of the
periodic solution of a backward affine equation on an euclidian space of di-
mension n(n + 1)/2, n being the dimension of the state space of controlled
system under consideration. In the last section of the paper, a comparison
between several types of numerical methods discussed in the paper is done.

2 A class of discrete-time Riccati equations of
stochastic control (DTRE)

2.1 On the stabilizing solution of DTRE

Consider the discrete-time Riccati equation (DTRE):

X(t) = G(X(t + 1)) :=
∑r

j=0 AT
j (t)X(t + 1)Aj(t)

−(
∑r

j=0 AT
j (t)X(t + 1)Bj(t) + L(t))

×
(
R(t) +

∑r
j=0 BT

j (t)X(t + 1)Bj(t)
)−1

×(
∑r

j=0 BT
j (t)X(t + 1)Aj(t) + LT (t)) + M(t), t ∈ Z.

(1)
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This equation arising in connection with the linear quadratic optimization
problem described by the discrete-time linear stochastic system:

x(t + 1) = [A0(t) +

r∑

j=1

wj(t) Aj(t)]x(t) + [B0(t) +

r∑

j=1

wj(t) Bj(t)]u(t) (2)

and the cost functional

J(u, x0) =

∞∑

t=0

E [

(
x(t)
u(t)

)T
(

M(t) L(t)

LT (t) R(t)

) (
x(t)

u(t)

)
] (3)

with M(t) = MT (t), R(t) = RT (t). In (2), w(t) = (w1(t), . . . , wr(t))
T , t ≥ 0

are independent random vector with zero mean and satisfying
E[w(t)wT (t)] = Ir for all t ≥ 0. In (2) and (3), x(t) ∈ Rn is the state of the
system and u(t) ∈ Rm are the control parameters.

We make the assumption:

H1) There exists an integer θ ≥ 1 such that Aj(t+θ) = Aj(t); Bj(t+θ) =
Bj(t); 0 ≤ j ≤ r; M(t + θ) = M(t); L(t + θ) = L(t); R(t + θ) = R(t), t ∈ Z.

Definition 1 A solution {Xs(t)}t∈Z of DTRE (1) is named stabilizing so-
lution if the zero state equilibrium of the closed-loop system

x(t + 1) = [A0(t) + B0(t)Fs(t) +
r∑

j=1

wj(t) (Aj(t) + Bj(t)Fs(t))]x(t) (4)

is exponentially stable in mean square (ESMS), where

Fs(t) = −
(
R(t) +

∑r
j=0 BT

j (t)Xs(t + 1)Bj(t)
)−1

×(
∑r

j=0 BT
j (t) Xs(t) Aj(t) + LT (t)).

(5)

From the developments from Section 5.8 in [5] one deduces a set of neces-
sary and sufficient conditions which guarantee the existence and uniqueness
of the bounded and stabilizing solution of DTRE (1).

Proposition 2.1 Under the assumption H1), the following are equiva-
lent:

(i) DTRE (1) has a unique bounded and stabilizing solution {Xs(t)}t∈Z
with the properties:

(a) Xs(·) is periodic with period θ;
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(b)

R(t) +

r∑

j=0

BT
j (t)Xs(t + 1)Bj(t) > 0, forall t ∈ Z ; (6)

(ii) the system (2) is stochastic stabilizable and there exist symmetric
matrices X̂(t), 0 ≤ t ≤ θ − 1, satisfying:

(
M(t) − X̂(t) L(t)

LT (t) R(t)

)
+

r∑

j=0

(Aj(t) Bj(t))
T X̂(t + 1)(Aj(t) Bj(t)) > 0

(7)
0 ≤ t ≤ θ − 1, with X̂(θ) = X̂(0).

Remark 2.1 a) Since any assumption regarding the sign of the quadratic
form from (3) was not made, it is not expected to obtain information about
the sign of the bounded and stabilizing solution Xs(·). The only relevant
information about the solution of the linear quadratic optimization problem
described by (2) and (3) is the sign condition (6). In this case, the quadratic
part of the discrete-time Riccati equation (1) has defined sign.

b) Even if the stabilizing solution Xs(·) is defined for all t ∈ Z, from
Proposition 2.1 one obtains that under the assumption H1) it is sufficient
to compute a finite number of values Xs(t), 0 ≤ t ≤ θ − 1.

The next result may be used to compute a stabilizing control in a state
feedback form for the system (2).

Proposition 2.2 Under the assumption H1) the following are equivalent:

(i) the system (2) is stochastically stabilizable;

(ii) there exist the matrices Y (t) = Y T (t) > 0 ∈ Rn×n, Γ(t) ∈ Rm×n, 0 ≤
t ≤ θ − 1, satisfying the following system of LMIs:




−Y (t) (Ã0(t))
T . . . (Ãr(t))

T

Ã0(t) −Y (t + 1) . . . 0

. . . . . . . . . . . .

Ãr(t) 0 . . . −Y (t + 1)




< 0 (8)

Ãj(t) = Aj(t)Y (t)+Bj(t)Γ(t), j = 0, . . . , r, 0 ≤ t ≤ θ−1, with Y (θ) = Y (0).

If (Y (t), Γ(t)), 0 ≤ t ≤ θ − 1 is a solution of the LMIs (8), then the
control u(t) = F (t) x(t) stabilizes the system (2), where

F (t) = Γ(t − [
t

θ
]θ) Y −1(t − [

t

θ
]θ), t ≥ 0. (9)
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(iii) there exist the matrices Y (t) = Y T (t) ∈ Rn×n, Γ(t) ∈ Rm×n, 0 ≤ t ≤
θ − 1, satisfying the following system of LMIs:




−Y (t + 1) Ã0(t) . . . Ãr(t)

(Ã0(t))
T −Y (t) . . . 0

. . . . . . . . . . . .

(Ãr(t))
T 0 . . . −Y (t)




< 0 (10)

0 ≤ t ≤ θ − 1, with Y (θ) = Y (0). If (Y (t), Γ(t)), 0 ≤ t ≤ θ − 1 is a solution
of the LMIs (10), then the stabilizing feedback gain can be obtained as in
(9).

Proof. One obtains immediately applying Theorem 3.11 and Theorem
3.12 [5] in the case of the corresponding closed-loop systems completed with
the Schur complement technique.

2.2 Several iterative procedures to compute the stabilizing
solution of DTRE

Here we recall several iterative methods which allow us to compute the
bounded and stabilizing solution of DTRE (1).

I. A Newton-Kantorovich type method

For each k = 1, 2, . . . one computes X(k)(·) as the unique periodic solu-
tion of the discrete-time backward affine equation:

X(k)(t) =
∑r

j=0(Aj(t)+Bj(t)F
(k−1)(t))T X(k)(t+1)

(Aj(t)+Bj(t)F
(k−1)(t)) + QF (k−1)(t)

(11)

where

QF (k−1)(t) =

(
In

F (k−1)(t)

)T (
M(t) L(t)

LT (t) R(t)

) (
In

F (k−1)(t)

)
(12)

and

F (k)(t) = −∑r
j=0

(
R(t) + BT

j (t)X(k)(t + 1)Bj(t)
)−1

×(
∑r

j=0 BT
j (t) X(k)(t) Aj(t) + LT (t))

(13)

if k ≥ 1, while F (0)(t) is a stabilizing feedback gain for the system (2).
For example F (0)(t) could be computed via formula (9) either based on a
solution of the system of LMIs (8) or a solution of the system of LMIs (10).
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One may show in a standard way that if the conditions from Proposition
2.1 (ii) are fulfilled, then for each k ≥ 1 the control u(t) = F (k)(t)x(t)
stabilizes the system (2), thus one obtains that (11) has an unique bounded
solution and this solution is periodic with period θ. Furthermore, we have
X(k)(t) ≥ X(k+1)(t) ≥ . . . ≥ X̂(t), k ≥ 1, t ∈ Z, X̂(·) being any θ-periodic
sequence satisfying (7) and limk→∞ X(k)(t) = Xs(t), t ∈ Z.

Even if the Newton-Kantorovich type method described by (11)-(13)
has a quadratic convergence rate it is less used being difficult implementable.
The difficulties consist in finding the periodic solution of (11) in the case r ≥
1 and θ ≥ 1 sufficiently large. That is way ofen alternative methods where
derived. Even if those alternative methods have only linear convergence
rate, they have the advantage to be easier implementable.

Below, we present some alternative methods to compute the stabilizing
solution of DTRE (1). In Section 4 we shall present a method which allows
us to compute the θ-periodic solution of (11).

II. A successive approximation method

Step 0. We choose a θ-periodic sequence {F (0)(t)}t∈Z with the property

that the control u(t) = F (0)(t)x(t) stabilizes the system (2). For the de-
signing of such a stabilizing feedback gain, may be used, for example, the
procedure described by Proposition 2.2. One computes X(1)(·) as a solution
of the following system of LMIs:

X(1)(t) ≥∑r
j=0 (Aj(t) + Bj(t)F

(0)(t))T X(1)(t + 1)

(Aj(t) + Bj(t)F
(0)(t)) + QF (0)(t) + ε2 In

(14)

0 ≤ t ≤ θ − 1, with X(1)(θ) = X(1)(0), ε is a fixed parameter, QF (0)(t) being
computed as in (12) with F (k−1)(t) replaced by F (0)(t).

Step k, k ≥ 1. Compute X(k+1)(·) by

X(k+1)(t) =
∑r

j=0 (Aj(t) + Bj(t)F
(k)(t))T X(k)(t + 1)

(Aj(t) + Bj(t)F
(k)(t)) + QF (k)(t) + ε2

k+1 In ,
(15)

QF (k)(t) being computed as in (12) while F (k)(t) is computed as in (13).
Since the algorithm described by (14)-(15) is a special case of that de-
scribed in Section 5.7 from [5], we may conclude that under the conditions
of Proposition 2.1 X(1)(t) ≥ . . . ≥ X(k)(t) ≥ X(k+1)(t) ≥ . . . ≥ X̂(t) and
limk→∞ X(k)(t) = Xs(t), 0 ≤ t ≤ θ − 1.
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In the next section we shall discuss some procedural aspects regarding
the computation of a solution of the system of LMIs (14).

III. Stein iterations

Step 0. Coincides with Step 0 from the previous algorithm. One com-

putes X(1)(·), 0 ≤ t ≤ θ − 1 as a solution of the system of LMIs (14). Also
one computes F (1)(t) as in (13) ) for k = 1.

Step k. k ≥ 1. Compute X(k+1)(·) as a unique θ−periodic solution of
the backward Stein equation:

X(k+1)(t)

= (A0(t) + B0(t)F
(k)(t))T X(k+1)(t + 1)(A0(t) + B0(t)F

(k)(t))

+
∑r

j=1 (Aj(t) + Bj(t)F
(k)(t))T X(k)(t + 1)

×(Aj(t) + Bj(t)F
(k)(t)) + QF (k)(t) + ε2

k+1 In

(16)

t ∈ Z, F (k)(t) being computed as in (13).

Some procedural issues regarding the computation of the θ−periodic so-
lution of (16) will be discussed in the next section.

IV. Modified Stein iterations

Step 0. Coincides with Step 0 from the algorithm described in II. One

computes X(1)(·) as a solution of the system of LMIs (14) and F (1)(t) as in
(13) for k = 1.

Step k. k ≥ 1. One computes X(k+1)(·) as a unique θ−periodic solution
of the backward Stein equation:

X(k+1)(t)

= (A0(t) + B0(t)Γ
(k)(t))T X(k+1)(t + 1)(A0(t) + B0(t)Γ

(k)(t))

+
∑r

j=1 (Aj(t) + Bj(t)Γ
(k)(t))T X(k)(t + 1)

×(Aj(t) + Bj(t)Γ
(k)(t)) + QΓ(k)(t) + ε2

k+1 In

(17)
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where Γ(k)(t) = F1(t) if k = 1 and

Γ(k)(t) = −
(
R(t) + BT

0 (t) X(k)(t + 1)B0(t)

+
∑r

j=1 BT
j (t) X(k−1)(t + 1)Bj(t)

)−1

×(BT
0 (t) X(k)(t + 1)A0(t)

+
∑r

j=1 BT
j (t) X(k−1)(t + 1)Aj(t) + LT (t))

(18)

if k ≥ 2 and QΓ(k)(t) one computes as in (12) taking Γ(k)(t) instead of
F (k−1)(t).

3 Procedural issues

In this section we shall analyze some aspects regarding the computation
of the sequences of approximations of the stabilizing solution of DTRE (1)
described in the previous section.

3.1 The computation of the θ-periodic solution of a backward
Stein equation with periodic coefficients

The discrete-time backward affine equations (16)-(17) can be regarded
as special cases of the discrete-time backward affine equation:

X(t) = ÂT (t)X(t + 1)Â(t) + H(t) (19)

t ∈ Z, where {Â(t)}t∈Z ⊂ Rn×n, {H(t)}t∈Z ⊂ Sn are periodic sequences of
period θ. Assume that the discrete-time linear equation

X(t + 1) = Â(t)X(t) (20)

is exponentially stable.
Let T (t, s) = Â(t − 1)Â(t − 2)...Â(s) if t > s and T (t, s) = In if t = s,
t, s ∈ Z.

The solutions of equation (19) have the representation:

X(t) = T T (θ, t)X(θ)T (θ, t) +
θ−1∑

s=t

T T (s, t)H(s)T (s, t), t ≤ θ − 1.

The periodicity condition X(0) = X(θ) yields

X(θ) = T T (θ, 0)X(θ)T (θ, 0) + H̃ (21)
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where

H̃ =
θ−1∑

s=0

T T (s, 0)H(s)T (s, 0). (22)

Since the zero solution of (20) is exponentially stable it follows that the
spectral radius of the monodromy matrix T (θ, 0) satisfies ρ(T (θ, 0)) < 1
(see e.g. [3] or [10]).

Hence (21) has a unique solution which may be computed using any
existing solver for time invariant Stein equations. Instead of (22), the last
term H̃ from (21) may be computed also as: H̃ = X(0; θ, 0) where t →
X(t; θ, 0) is the solution of (19) satisfying the final condition X(θ; θ, 0) = 0.
Then, the other values X(t), 1 ≤ t ≤ θ − 1 of the θperiodic solution of the
equation (19) are obtained recursively from this equation.

Remark 3.1. The unique θ-periodic solution of (16) and (17), respec-
tively can be computed according to the procedure described before taking
successively Â(t) = A0(t) + B0(t)F

(k)(t) in the case of equation (16) or
Â(t) = A0(t) + B0(t)Γ

(k)(t) in the case of equation (17).

3.2 An iterative method for computation of a solution of a
system of LMIs (14)

Let {F (0)(t)}t∈Z be a θ-periodic sequence such that the zero solution of
the closed-loop system

x(t + 1) = [A0(t) + B0(t)F
(0)(t) +

r∑

j=1

wj(t)(Aj(t) + Bj(t)F
(0)(t))]x(t) (23)

is ESMS. Therefore, the discrete-time backward affine equation

Y (t) =
r∑

j=0

(Aj(t) + Bj(t)F
(0)(t))T Y (t + 1)(Aj(t) + Bj(t)F

(0)(t))

+QF (0)(t) + 2ε2In (24)

has a unique θ-periodic solution {Ỹ (t)}t∈Z.
Let Y (k)(t) be the θ-periodic solution of the discrete-time backward affine
equation:

Y (k)(t) = [A0(t) + B0(t)F
(0)(t)]T Y (k)(t + 1)

× [A0(t) + B0(t)F
(0)(t)] + H(k)(t)

(25)
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where

H(k)(t) =
r∑

j=1

(Aj(t) + Bj(t)F
(0)(t))T Y (k−1)(t + 1)(Aj(t) + Bj(t)F

(0)(t))

+QF (0)(t) + 2ϵ2In, k ≥ 1, (26)

with

Y (0)(t) = 0, t ∈ Z. (27)

Proposition 3.1. If the zero solution of (23) is ESMS then the θ-
periodic sequences {Y (k)(t)}t∈Z, k = 0, 1, ... are well defined via (25)-(27)
and have the properties:

a) 0 = Y (0)(t) ≤ Y (1)(t) ≤ ... ≤ Y (k)(t) ≤ ... ≤ Ỹ (t);
b) lim

k→∞
Y (k)(t) = Ỹ (t), t ∈ Z, Ỹ (·) being the θperiodic solution of 24.

If k0 is such that 0 ≤
r∑

j=1
(Aj(t) + Bj(t)F

(0)(t))T (Y (k0)(t + 1) − Y (k0−1)(t +

1))(Aj(t) + Bj(t)F
(0)(t)) ≤ ε2In, 0 ≤ t ≤ θ − 1, then X(1)(t) , Y (k0)(t),

0 ≤ t ≤ θ − 1, satisfy the system of LMIs (14).
The proof is a special case of Corollary 5.3 from [5].
Remark 3.2. For the computation of the θ-periodic solution of the

equation (25)-(27) one may use the procedure described in Subsection 3.1.

4 The computation of the θ-periodic solution of a
discrete-time backward Stein equation of stochas-
tic control

In this section we shall present an alternative method for the computa-
tion of the θ-periodic solution of backward affine equations of type (11)-(13).
These equations are special cases of a discrete-time backward affine equation
of the form:

X(t) =
r∑

j=0

ÂT
j (t)X(t + 1)Âj(t) + G(t) (28)

where {Âj(t)}t∈Z ⊂ Rn×n, 0 ≤ j ≤ r, {G(t)}t∈Z ⊂ Sn are periodic sequences
of period θ. Assume that the zero solution of the discrete-time stochastic
linear equation:

x(t + 1) = (Â0(t) +

r∑

j=1

wj(t)Âj(t))x(t) (29)
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is ESMS. Under these condition (28) has a unique bounded on Z solution
X̂(·) and additionally that solution is periodic with period θ.

Reasoning as in the case of the equation (24) one obtains that X̂(t) =
lim

k→∞
Z(k)(t), where Z(k)(·), k ≥ 1 is the unique θ-periodic solution of the

backward Stein equation:

Z(k)(t) = ÂT
0 (t)Z(k)(t+1)Â0(t)+

r∑

j=1

ÂT
j (t)Z(k−1)(t+1)Âj(t)+G(t)

Z(0)(t) = 0, t ∈ Z. (30)

In the following, we shall provide an alternative method which allows us to
avoid the iterative process described in (30) to obtain the θ-periodic solution
of (28).

4.1 The periodic solution of a discrete-time backward affine
equation on an Euclidian space

Let us consider the discrete-time equation

x(t) = M̂(t)x(t + 1) + g(t) (31)

where {M̂(t)}t∈Z ⊂ Rn̂×n̂, {g(t)}t∈Z ⊂ Rn̂ are periodic sequences of period
θ. Assume that the linear equation associated to (31):

x(t) = M̂(t)x(t + 1) (32)

has not nonzero solutions which are periodic of period θ. We set T̂ (t, s) =
M̂(t)M̂(t + 1)...M̂(s − 1) if t < s and T̂ (t, s) = In̂ if t = s. T̂ (t, s) is the
anti-causal evolution operator defined on Rn̂ by the discrete-time backward
equation (32).

The solutions of (31) have the representation:

x(t) = T̂ (t, τ)x(τ) +

τ−1∑

s=t

T̂ (t, s)g(s), ∀ t ≤ τ − 1 ∈ Z.

The periodicity condition x(0) = x(θ) leads to

x(0) = T̂ (0, θ)x(0) +

θ−1∑

s=0

T̂ (0, s)g(s).
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Hence, the initial condition x(0) of the unique θ-periodic solution of (31)
one obtains solving the system of linear equations

(In̂ − T̂ (0, θ))ζ = g̃ (33)

where

g̃ =

θ−1∑

s=0

T̂ (0, s)g(s). (34)

Since the linear equation (32) has no nonzero solutions which are periodic
sequences of period θ we deduce that det(In̂− T̂ (0, θ)) ̸= 0. This allows us to
conclude that the equation (33)-(34) has a unique solution ζ = x̃(0) = x̃(θ).
The other values x̃(t), 1 ≤ t ≤ θ−1 of the periodic solution x̃(·) are obtained
directly from (31).

Remark 4.1 The term g̃ from (34) may be obtain also from g̃ =
x(0; θ, 0) where ttox(t; θ, 0) is the solution of (31) satisfying the final condi-
tion x(θ; θ, 0) = 0.

4.2 The H-representation technique revisited

In this paragraph we briefly recall the method of H-representation of
a Lyapunov operator in terms of a matrix on the space of dimension n̂ =
n(n+1)

2 . This allows us to rewrite the equation (28) in the form of an equation
of type (31).

For details we refer to [21], where this method was introduced. We re-
call that if X ∈ Rn×n, then Ψ(X) = V ec(X) = (x(1), x(2), ..., x(n))T ∈ Rn2

where x(i) is the ith line of the matrix X, 1 ≤ i ≤ n.
Let E11, E12, ..., E1n, E22, ..., E2n, ..., En−1n−1, En−1n, Enn be the standard
base of the space of symmetric matrices Sn.
This means that Epq = (epq(i, j))i,j=1,n with epq(ij) = 1 if (ij) ∈ {(pq), (qp)}
and epq(ij) = 0 otherwise. If X ∈ Sn is an arbitrary symmetric matrix, then

X = E11x1 + ... + E1nxn + E22xn+1 + ... + Ennxn̂. (35)

We introduce the linear operator φ : Sn → Rn̂ defined by

φ(X) = x (36)

where x = (x1, x2, ..., xn̂)T is the vector whose components occur in the right
hand side of (35). We introduce also the matrix

H =
(

Ψ(E11) Ψ(E12) ... Ψ(E1n) Ψ(E22) ... Ψ(En−1n) Ψ(Enn)
)
.
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The matrix H has n2 lines and n(n+1)
2 columns. Also, rankH = n(n+1)

2 . For
details see for example [21].
From the definition of the operators φ, Ψ and of the matrix H, we obtain
the following fundamental relation:

Ψ(X) = Hφ(X) (37)

for all X ∈ Sn. Let L(t) : Sn → Sn,

L(t)X =

r∑

j=0

ÂT
j (t)XAj(t). (38)

Applying Lemma 2.2. in [21] we may write

Ψ(L(t)X) = (

r∑

j=0

ÂT
j (t) ⊗ ÂT

j (t))Ψ(X)

for all X ∈ Sn, ⊗ being the Kronecker product. Using (37) we obtain

Ψ(L(t)X) = (

r∑

j=0

ÂT
j (t) ⊗ ÂT

j (t))Hφ(X), ∀X ∈ Sn. (39)

4.3 The computation of the θ-periodic solution of the equa-
tion (28)

Now we show how the computation of the θ-periodic solution of (28) can
be reduced to the computation of the θ-periodic solution of an equation of
type (31.

First, let us remark that (38) allows us to write (28) in a compact form:

X(t) = L(t)X(t + 1) + G(t) (40)

Since Ψ : Rn×n → Rn2
is an isomorphism we may deduce that the equation

(40) is equivalent to the equation:

Ψ(X(t)) = Ψ(L(t)X(t + 1)) + Ψ(G(t)). (41)

Based on (37) and (39) we rewrite (41) in the form

Hφ(X(t)) = (

r∑

j=0

ÂT
j (t) ⊗ ÂT

j (t))Hφ(X(t + 1)) + Hφ(G(t)). (42)
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Multiplying to the left (42) by HT and taking into account that HT H is
invertible, we obtain that x(t) , φ(X(t)) is a solution of the discrete-time
backward equation on Rn̂:

x(t) = M(t)x(t + 1) + g(t) (43)

where

M(t) =

r∑

j=0

(HT H)−1HT (ÂT
j (t) ⊗ ÂT

j (t))H (44)

and

g(t) = φ(G(t)). (45)

We have:
Proposition 4.1 (i) If {X(t)}t∈Z is a global solution of equation (28)

then {x(t)}t∈Z defined by x(t) = φ(X(t)), t ∈ Z is a global solution of
equation (43)-(45).

(ii) If {x̃(t)}t∈Z is a global solution of the backward affine equation (43)-
(45), then {X̃(t)}t∈Z defined by X̃(t) = φ−1(x̃(t)) is a global solution of
equation (28).

Proof. (i) follows immediately from the previous developments.
(ii) Let x̃(·) be a global solution of (43)-(45). If X̃(t) = φ−1(x̃(t)), t ∈ Z,

we define ∆(t) = X̃(t)−L(t)X̃(t+1)−G(t). We have to show that ∆(t) = 0,
for all t ∈ Z. The previous equality is rewritten as:

X̃(t) = L(t)X̃(t + 1) + G(t) + ∆(t). (46)

Using again (37), (39) and taking into account that φ(X̃(t)) = x̃(t) we
deduce from (46) that

Hx̃(t) = (

r∑

j=0

ÂT
j (t) ⊗ ÂT

j (t))Hx̃(t + 1) + Hφ(G(t)) + Hφ(∆(t)). (47)

Multiplying to the left (47) by HT and taking into account that HT H is
invertible, we obtain via (44) and (45) that:

X̃(t) = M(t)x̃(t + 1) + g(t) + φ(∆(t)).

Since x̃(·) is a solution of (43)-(45) we infer that φ(∆(t)) = 0, t ∈ Z. Taking
into account that φ is an invertible operator, we may conclude that ∆(t) = 0
for all t ∈ Z, which ends the proof.
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Remark 4.2 It is easy to see that x̃(t), t ∈ Z, is a θperiodic solution of
(43)-(45) if and only if φ−1(x̃(t)), t ∈ Z is a θ-periodic solution of (28).

Proposition 4.2 If the zero solution of equation (29) is ESMS then
the zero solution is the only one θ-periodic solution of the backward linear
equation

x(t) = M(t)x(t + 1) (48)

associated to (43)-(45).

Proof. Let {x̂(t)}t∈Z be a θ-periodic solution of (48). Let X̂(t) =
φ−1(x̂(t)), t ∈ Z. From Proposition 4.1 and Remark 4.2 we deduce that
X̂(·) is a θ-periodic solution of the linear backward equation

X(t) = L(t)X(t + 1). (49)

Applying Theorem 2.5 and Theorem 3.11 in [5] we deduce that if the zero-
solution of (29) is ESMS, then the discrete-time backward equation (49) has
a unique, periodic solution of period θ. Hence, X̂(t) = 0, t ∈ Z. This allows
us to deduce that x̂(t) = φ(0) = 0, t ∈ Z. Thus the proof is complete.

So, the computation of the value x̃(θ) of the θ-periodic solution of the

equation (43)-(45) can be performed solving the linear system of n(n+1)
2

scalar equations with n(n+1)
2 scalar unknowns:

(I − T (0, θ))ζ = g̃ (50)

where

g̃ =

θ−1∑

s=0

T (0, s)g(s) (51)

T (t, s) being the anticausal linear evolution operator on Rn̂ defined by the
backward linear equation (48) and g(s) are the ones defined in (45).

If x̃(θ) = ζ is the unique solution of the linear equation (50)-(51) then
the value X̃(θ) of the θ-periodic solution of (28) is obtained by

X̃(θ) = φ−1(x̃(θ)). (52)

To this end, the components of the vector x̃(θ) are plugged in the right hand
side of (35). The other related values X̃(t), 1 ≤ t ≤ θ − 1 of the θ-periodic
solution X̃(·) are obtained directly from (28).
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5 Numerical experiments

In this section we present how the considered iterations work for finding
a stabilizing solution to (1). We will carry out experiments for numerically
solving discrete-time generalized Riccati equation (1).

Our experiments are executed in MATLAB on a 2,16GHz Intel(R) Duo
CPU computer. We denote tol- a small positive real number denoting the
accuracy of computation; E = maxt ||X(k)(t) − G(X(k)(t + 1))||2. We use
the following stop criterion for all algorithms:

E ≤ tol .

5.1 Example 1

Consider a discrete-time 3-periodic linear system with r=1, t=0,1,2,
given by (n=3) the coefficient matrices:

A0(0)=




−0.466 0.0100 0.002

−0.09 −0.45 0.1

−0.035 −0.01 −0.485


 , A0(1)=




−0.33 −0.03 −0.004

−0.075 −0.49 0.09

−0.025 −0.015 −0.495


 ,

A0(2)=




−0.45 0 −0.001

−0.095 −0.505 0.1

0.033 −0.02 −0.473


 , A1(0)=




−0.055 −0.05 −0.008

0.13 −0.12 0

−0.3 0.25 0


 ,

A1(1)=




−0.04 0.02 −0.02

0.2 −0.035 −0.01

−0.1 −0.25 −0.06


 , A1(2)=




0 −0.01 0.04

0.1 −0.055 0

0.02 0.025 −0.045


 ,

B0(0)=




1 12 −5

0.1 −1 1.5

0.2 −0.5 0


 , B0(1)=




1 8 4.5

−0.5 −3 −2.5

−1 −0.8 −0.6


 ,

B0(2)=




1 −6.5 −8

1 −2.5 6

−0.8 −0.8 −0.4


 , B1(0)=




−1 10 −5

0.2 −1 −1.5

−0.2 −2 −0.5


 ,
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B1(1)=




1 −6.5 −8

1 −2.5 6

−0.8 −0.8 −0.4


 , B1(2)=




−1 10 −5

0.2 −1 −1.5

−0.2 −2 −0.5


 .

L(0)= 1
90




−0.5 −0.3 −0.4

−0.25 −0.4 −0.6

−0.5 −0.5 −0.8


 , L(1)= 1

90




−0.5 −0.14 −0.8

−0.5 −0.5 −0.8

−0.6 −0.8 −0.3


 .

L(2)= 1
90




−0.3 −0.15 −0.7

−0.6 −0.6 −0.5

−0.4 −0.7 −0.4


 ,





R(0) = diag(1.5; 1.5; 1.5),

R(1) = diag(1; 1; 1),

R(2) = diag(1.25; 1.25; 1.25),

M(0) = M(1) = M(2) = 0 .

.

We have found the solutions Y (0), Y (1), Y (2) using inequality (8). Then
we compute F (0), F (1), F (2) using (9). Thus, we can apply iteration (11).
After one iteration steps we obtain the stabilizing solution to (1). The
solution is negative definite. Next, we compute the stabilizing solution using
iteration (15). We solve inequality (14) for finding X(1)(0), X(1)(1), X(1)(2).
We need three LMI iteration steps for solving (14). We find the solution
after 7 iteration steps with (15).

Next iteration (16). The solution is obtained after 5 iteration steps.

Next iteration (17). The solution is obtained after 6 iteration steps.

5.2 Two additional examples

Let us consider the new discrete-time 3-periodic linear system with r=1,
t=0,1,2. The matrix coefficients are constructed using the following MAT-
LAB code:

Aj(t) = randn(n, n); m1 = max(Aj(t)); m2 = max(m1);

Aj(t) = Aj(t)/(10 ∗ m2); j = 0, 1

Bj(t) = randn(n, n); m1 = max(Bj(t)); m2 = max(m1);

Bj(t) = Bj(t)/(m2); j = 0, 1

L(t) = abs(randn(n, n)); m1 = max(L(t)); m2 = max(m1);

L(t) = −L(t)/(80 ∗ m2);

M(t) = zeros(n, n);



116 V. Dragan, I.G. Ivanov

5.2.1 Example 2.1

R(0) = eye(n, n) ∗ 1.05; R(1) = eye(n, n) ∗ 0.175; R(2) = eye(n, n) ∗
0.125.

In this table the full execution time for each iteration is given. This in-
cludes the time for computing the initial point X(1)(0), X(1)(1), X(1)(2) and
the time for approximating the stabilizing solution using the corresponding
iteration formula.

Results for n = 8 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (11) is 18.0620 seconds; the average number of iteration steps is
2.02 and the maximal error from all runs is E = 3.7852e − 06.

Results for n = 8 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (15) is 3.7970 seconds; the average number of iteration steps is
4.1800 and the maximal error from all runs is E = 4.8106e − 06.

Results for n = 8 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (16) is 4.6560 seconds; the average number of iteration steps is 4.0
and the maximal error from all runs is E = 9.0651e − 06.

Results for n = 8 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (17) is 4.77 seconds; the average number of iteration steps is 5.06
and the maximal error from all runs is E = 6.9399e − 06.

Results for n = 12 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (11) is 125.9060 seconds; the average number of iteration steps is
2.08 and the maximal error from all runs is E = 9.5401e − 06.

Results for n = 12 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (15) is 11.7350 seconds; the average number of iteration steps is
4.26 and the maximal error from all runs is E = 9.4270e − 06.

Results for n = 12 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (16) is 12.8440 seconds; the average number of iteration steps is
4.160 and the maximal error from all runs is E = 8.4240e − 06.

Results for n = 12 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (17) is 15.0380 seconds; the average number of iteration steps is
5.36 and the maximal error from all runs is E = 9.0533e − 06.

5.2.2 Example 2.2

We choose: R(0) = eye(n, n) ∗ 1.45; R(1) = eye(n, n) ∗ 0.175; R(2) =
eye(n, n) ∗ 0.125.

We present the full information about each iteration. This includes the
time for approximating the stabilizing solution using the corresponding it-
eration formula. The initial point X(1)(0), X(1)(1), X(1)(2) is the same for
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all iterations and it is computing via (14).

Results for n = 18 and tol = 1e − 4 for 50 runs are: the CPU time for
iteration (11) is 811.5010 seconds; the average number of iteration steps is
2.36 and the maximal error from all runs is E = 9.8986e − 05.

Results for n = 18 and tol = 1e − 4 for 50 runs are: the CPU time
for iteration (15) is 0.622 seconds; the average number of iteration steps is
4.5800 and the maximal error from all runs is E = 8.2157e − 05.

Results for n = 18 and tol = 1e − 4 for 50 runs are: the CPU time
for iteration (16) is 3.312 seconds; the average number of iteration steps is
4.2200 and the maximal error from all runs is E = 9.3210e − 05.

Results for n = 18 and tol = 1e − 4 for 50 runs are: the CPU time for
iteration (17) is 3.61 seconds; the average number of iteration steps is 5.46
and the maximal error from all runs is E = 8.6559e − 05.

6 Conclusion

We have considered four iterations for computing the stabilizing solution
to (1). In order to execute iterations (11), (16) and (17) we have to solve
a linear system with a big dimension, i.e. it has the size (θ n)2 × (θ n)2. In
the same time iteration (15) gives us a possibility to find X(k+1)(t) in the
following way:

X(k+1)(θ − 2) =

=
∑r

j=0 (Aj(θ − 2) + Bj(θ − 2)F (k)(θ − 2))T X(k)(θ − 1)

×(Aj(θ − 2) + Bj(θ − 2)F (k)(θ − 2)) + QF (k)(θ − 2) + ε2

k+1 In

X(k+1)(θ − 3) =

=
∑r

j=0 (Aj(θ − 3) + Bj(θ − 3)F (k)(θ − 3))T X(k+1)(θ − 2)

×(Aj(θ − 3) + Bj(θ − 3)F (k)(θ − 3)) + QF (k)(θ − 3) + ε2

k+1 In

....

X(k+1)(0) =

=
∑r

j=0 (Aj(0) + Bj(0)F (k)(0))T X(k+1)(1)(Aj(0) + Bj(0)F (k)(0))

+QF (k)(0) + ε2

k+1 In
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X(k+1)(θ − 1) =

=
∑r

j=0 (Aj(θ − 1) + Bj(θ − 1)F (k)(θ − 1))T X(k+1)(0)

×(Aj(θ − 1) + Bj(θ − 1)F (k)(θ − 1)) + QF (k)(θ − 1) + ε2

k+1 In

We call the last iteration the improved approximation method. This
method is applied to Example 2.2. Results for n = 18 and tol = 1e − 4 for
50 runs are: the CPU time is 0.02 seconds; the average number of iteration
steps is 2.06 and the maximal error from all runs is E = 3.7096e − 05.
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Abstract

Sufficient conditions for the existence of solutions in strongly non-
linear boundary value problems of elliptic and parabolic type, inclu-
ding ordinary differential equations with unilateral conditions on the
boundary, are derived by means of an abstract scheme for continuous
perturbations of accretive operators in Banach spaces.

MSC: 35J25, 35K20, 34B15

keywords: nonlinear boundary value problems, partial differential equa-
tions, ordinary differential equations

1 Introduction

This paper is concerned with strongly nonlinear boundary value prob-
lems of elliptic type

Au + f(x, u, grad u) = 0, a.e. Ω (1)
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−∂u

∂ν
∈ β(u) a.e. Γ (2)

and parabolic type

∂u

∂t
= Au + f(x, u, grad u) = 0 a.e. ]0, T [×Ω (3)

u(0) = u0 a.e Ω (4)

−∂u

∂ν
∈ β(u) a.e. [0, T ] × Γ.

We also prove some existence results for the two points and the periodic
problem associated with ordinary differential equations

−u′′(s) + f(s, u(s), u′(s)) = 0 a.e. [0, 1], (5)

which can be compared with the classical result of Bernstein [7].

Above A denotes a second order elliptic operator, f is function satisfying
the Caratheodory assumptions, β is the subdifferential of a convex, lower-
semicontinuous, proper function j : R →] − ∞, +∞] and Ω is a bounded
domain in RN with sufficiently smooth boundary Γ.

The following notation will be used throughout this paper. If E is a Ba-
nach space, we shall denote by Lp(0, T ; E), 1 ≤ p ≤ ∞, the space of all p -
integrable, E - valued functions on [0, T ] and by C(0, T ; E) the Banach space
of all continuous functions from [0, T ] to E. We shall denote by W 1,p(0, T ; E)
the space of all p - integrable, E - valued distributions y with derivative y′

taken in the sense of vectorial distributions on ]0, T [, p - integrable. Equiva-
lently, y′ ∈ W 1,p(0, T ; E) means that y : [0, T ] → E is absolutely continuous,
almost everywhere differentiable on ]0, T [ and y′ ∈ Lp(0, T ; E). By W k,p(Ω)
we mean the usual Sobolev space of real distributions in Ω. We shall use
the symbols || · ||p, || · ||k,p for the norms in Lp(Ω), W k,p(Ω) respectively. In
the case p = 2, we put Hk(Ω) instead of W k,p(Ω).

We assume familiarity with concepts and methods of nonlinear monotone
equations and we refer to Barbu [2], Brezis [3], [4] for significant results in
this field. However, for easy references we recall some facts about sub-
differentials.

Let φ : E → ] − ∞, +∞] be a convex, lower semicontinuous, proper
function. We denote by ∂φ(x) the set of all z ∈ E′, the dual of E, such that

φ(x) ≤ φ(y) + (x − y, z) ∀ y ∈ E,
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and call it the subdifferential of φ at x, where (·, ·) is the pairing between E
and E′.

Conditions of type (2), (4) are called unilateral conditions on the bound-
ary and they arise in elasticity. See for instance Duvaut - Lions [10],
Goeleven [11], Goeleven et. al. [12].

Problems (1) - (4) are very much discussed in the literature. We mention
the papers for Brezis - Haraux [5], Brezis - Nirenberg [6], Vy Khoi Le [14]
that deal with the case when the nonlinear term f does not depend on
grad u or the elliptic operator is degenerate and with Landesman - Lazer
conditions.

Equations of form (1), (3) appear in the paper of Puel [16], but the
problem is the Dirichlet one with unilateral constraints in the interior of
Ω and certainly the methods are different. Our method of proof is similar
to that used in [19], [20]. Regularity results and various extensions are
discussed in [8], [9], [13], [18].

Our approach applies to a large class of problems and, in certain cases,
quadratic growth with respect to the gradient is allowed.

In the subsequent sections we introduce an abstract scheme based on
m - accretive operators and we apply it to elliptic, parabolic and ordinary
differential boundary value problems. An Appendix briefly analyzes some
properties of the Nemitsky operator.

2 An Abstract Perturbation Scheme

Let W be a Banach space, topologically and algebraically included in X,
another Banach space with dual X ′ uniformly convex.

Proposition 1. Let T : X → X be a m - accretive operator with
0 ∈ T0, D(T ) ⊂ W and (λI + T )−1 : X → W compact for some λ ≥ 0. Let
S : W → X be a bounded, demicontinuous mapping.

Then, for every m ∈ N , there is xm ∈ W , such that

λxm + Txm + Smxm ∋ 0. (6)

Here we have defined the truncate Sm of S − λI by

Smx =

{
Sx − λx, ||x||W ≤ m

S(
mx

||x||W
) − λ

mx

||x||W
, ||x||W > m .
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Proof.

The equation (6) can be written as

xm = (λI + T )−1(−Smxm).

The operator defined by the right hand side is compact in W because
(λI + T )−1 is and Sm is bounded. It maps a certain sphere with a suffi-
ciently large radius in itself because Sm is uniformly bounded on W and
(λI + T )−1 is compact from X in W .

It is continuous. Here is the argument
Let xn → x in W , then Smxn → Smx weakly in X because Sm is also

demicontinuous. It yields {Smxn}n to be bounded in X that is extract-
ing a convenient subsequence, denoted again by xn, we have (λI + T )−1 ·
(−Smxn) → y strongly in W . Hence (λI + T )−1(−Smxn) → y strongly in
X. Operator (λI + T )−1 is single-valued, demiclosed in X, so (λI + T )−1 ·
(−Smx) = y.

Therefore, one can use the Schauder fixed point theorem to obtain the
desired solution.

3 Elliptic Problems

Let A be the second order elliptic operator

Au = −
∑

i,j

∂

∂xj
(aij

∂u

∂xi
) + u (7)

with ∑

i,j

aij(x)ξiξj ≥ α|ξ|2 a.e. Ω, α > 0, ξ ∈ RN . (8)

Here aij ∈ C1(Ω), aij = aji and Ω is a bounded domain with a sufficiently
smooth boundary Γ.

We denote by
∂u

∂ν
the conormal derivative associated to A

∂u

∂ν
=

∑

i,j

aij
∂u

∂xi
cos(n̄, xj) (9)

where n̄ is the exterior normal to Ω.
Consider two real numbers 2 ≥ q ≥ 1, p > 1 such that W 1,q(Ω) ⊂ Lp(Ω)

topologically and W 2,p(Ω) ⊂ W 1,q(Ω) with compact inclusion. The existence
of these numbers is ensured by the wellknown Sobolev embedding theorem.
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Assume that f : Ω × R × RN → R satisfies the Caratheodory conditions
f(·, u, v1, . . . , vN ) is measurable for every u, v.
f(x, ·, ·) is continuous a.e. x ∈ Ω.

The Nemitsky operator S : W 1,q(Ω) → Lp(Ω) defined by

(Su)(x) = f(x, u(x), grad u(x)) a.e. Ω (10)

satisfies
S is bounded (11)

S is demicontinuous. (12)

See the Appendix for a discussion of such hypotheses. Moreover, the follow-
ing growth restriction is needed

f(x, u, v)u ≥ K|u|s − d|v|2 − γ(x) · u (13)

where K > 0, s > 1 is choosen such that W 1,q(Ω) ⊂ Ls(Ω), γ ∈ L∞(Ω) and
d is a small constant.

Remark 1. Condition W 2,p(Ω) ⊂ W 1,q(Ω), with compact inclusion,

shows that growth order of f(x, u, ·), which is
q

p
(see Appendix), cannot

exceed 2 when N = 2, cannot exceed
3

2
when N = 3 and so on, according

to the Sobolev inequalities.

Remark 2. We give a simple example of function f(x, u, v), where v =
(v1, . . . , vN ) ∈ RN

f(x, u, v) = |u|r · u + |v|
q
p η(u) + γ(x)

Conditions (11), (12), (13) are fulfilled evidently for an appropriate r (see
the Appendix) under assumption that η : R → R is a monotone continuous
and bounded function.

Remark 3. The operator A can be more generally

A′u = −
∑

i,j

∂

∂xj
(aij

∂u

∂xi
) +

∑

i

bi
∂u

∂xi
+ cu.

The last two terms can be taken in f(x, u, v) and one can apply the present
results under appropriate conditions on bi, c > 0, [4], p. 6.
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Theorem 1. Under the above hypotheses, problem (1), (2) has at least
one solution u in W 2,p(Ω).

Proof.
We apply Proposition 1 with W 1,q(Ω) and X = Lp(Ω).
Operator T : Lp(Ω) → Lp(Ω) defined by

Tu = Au

D(T ) = {u ∈ W 2,p(Ω);Au ∈ Lp(Ω), −∂u

∂ν
∈ β(u)}

is m - accretive and (T +λI)−1 is bounded from Lp(Ω) in W 2,p(Ω) for λ > 0
large enough, according to Brezis [4], Proposition I.13 and Remark I.22.
It yields that (T + λI)−1 is compact operator from Lp(Ω) in W 1,q(Ω).

Then for every natural number m, there is um in W 2,p(Ω) such that

λum + Tum + Smum ∋ 0. (14)

We assume that ||um||1,q > m, otherwise um satisfies (1), (2) and the
problem is solved.

Equation (14) becomes

λum + Aum + f(x,
mum

||um||1,q
,
m grad um

||um||1,q
) − λ

mum

||um||1,q
∋ 0. (15)

Multiply by um and integrate over Ω
∫

Ω

Aum · umdx +

∫

Ω

f(x,
mum

||um||1,q
,
m grad um

||um||1,q
)umdx ≤ 0.

Integrating by parts, using (8) and (2) we get

α||um||1,2 +

∫

Ω

f(x,
mum

||um||1,q
,
m grad um

||um||1,q
)umdx ≤ 0.

From (13) one obtains {um} to be bounded in H1(Ω), that is for m large
enough um verifies (1), (2) and the proof is finished.

Remark 4. Not only classical problems, but many boundary problems
can be expressed in form (2).

Example 1. Let j : R → ] − ∞, +∞] be a convex, lower semicontinuous,
proper function given by

j(s) =

{
0 if s = 0
+∞ otherwise

.
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Then β = ∂j is

β(s) =

{
R if s = 0
∅ otherwise

.

and condition (2) is the Dirichlet one.

Example 2. Let j(s) = 0 for every s. Then β(s) = 0 for every s and
condition (2) corresponds to the Neumann problem.

Example 3. Consider

j(s) =

{
0 s ≥ 0
+∞ s < 0

.

Then

β(s) =





0 s > 0
] − ∞, 0] s = 0
∅ s < 0

.

We obtain for (2) the Signorini boundary conditions.

Example 4. Consider j(s) = |s|. In this case

β(s) = sgn(s) =





1 s > 0
[−1, 1] s = 0
−1 s < 0

.

The corresponding condition (2) appears in elasticity.

4 Parabolic Problems

For the sake of simplicity we take the problem

∂u

∂t
− ∆u + f(x, u, grad u) = 0 a.e. ]0, T [×Ω (16)

u(0, x) = u0(x) a.e. Ω (17)

−∂u(t, x)

∂n
∈ β(u(t, x)) a.e. [0, T ] × Γ. (18)

We start with the following lemma
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Lemma 1 The operator B : L2(0, T ; L2(Ω)) → L2(0, T ; L2(Ω)) defined
by

Bu =
∂u

∂t
− ∆u

D(B) = {u ∈ H1(0, T ; H2(Ω)); u(0, x) = u0(x), −∂u(t, x)

∂n
∈ β(u(t, x))}

is maximal monotone and for u0 ∈ D(φ), B−1 is compact from L2(0, T ; L2(Ω))
in L2(0, T ;H1(Ω)).

Here φ : L2(Ω) → ] − ∞, +∞] is a proper, lower-semicontinuous, convex
function given by

φ(u) =





1

2

∫

Ω

|grad u|2dx +

∫

Γ

j(u)dτ if u ∈ H1(Ω), j(u) ∈ L1(Γ)

+∞ otherwise

and ∂φ = −∆ with

D(∂φ) = {u ∈ H2(Ω); −∂u

∂n
∈ β(u) a.e. Γ}.

Proof
One easily can check, using the Green formula, that operator B is mono-

tone. To obtain the maximality it suffices that problem

∂u

∂t
− ∆u + u(t, x) = f̃(t, x) a.e. Ω×]0, T [ (19)

u(0, x) = u0(x) a.e. Ω (20)

−∂u(t, x)

∂n
∈ β(u(t, x)) a.e. ]0, T [×Γ (21)

has at least one solution for every f̃ ∈ L2(0, T ; L2(Ω)).
Operator Cu = −∆u + u with

D(C) = {u ∈ H2(Ω);−∂u

∂n
∈ β(u)}

is a subdifferential (see Barbu [2], p. 63).
Therefore, we can apply the smoothing effect on initial data and problem

(10) - (12) has at least one solution u for every f ∈ L2(0, T ; L2(Ω)) and
u0 ∈ L2(Ω) (see Barbu [2], p. 189).
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If u0 ∈ D(φ) then
∂u

∂t
∈ L2(0, T ; L2(Ω)), ∆u ∈ L2(0, T ; L2(Ω)) and the

mapping f̃ → u is compact from L2(0, T ; L2(Ω)) in L2(0, T ;W 1,2(Ω)) in the
case u0 ∈ D(φ) and the proof is finished.

Assume now that f : Ω × R × RN → R satisfies the Caratheodory
conditions and operator S : L2(0, T ; H1(Ω)) → L2(0, T ; L2(Ω)) defined by

(Su)(t, x) = f(x, u(t, x), gradxu(t, x))

satisfies hypotheses (11) - (13) with p = q = 2.
One can state

Theorem 2 Under the above hypotheses, problem (16) - (18) has at least
one solution u in H1(0, T ; H2(Ω)).

Proof
According to Lemma 1, we can apply Proposition 1 with λ = 0,

X = L2(0, T ; L2(Ω)), W = L2(0, T ; H1(Ω))) and obtain the approximate
equations

∂um

∂t
− ∆um + Smum ∋ 0.

Suppose that the norm of um in L2(0, T ; H1(Ω)) denoted ||um||W strictly
exceeds m, for every natural number m.

The approximate equations become

∂um

∂t
− ∆um + f(x,

mum

∥|um||W
,
m gradxum

||um||W
) ∋ 0. (22)

Multiply by um(s, x) and integrate over [0, t]

1

2
|um(t, x)|2 − 1

2
|u0(x)|2 −

t∫

0

∆um(s, x) · um(s, x)ds+

+

t∫

0

f(x,
mum

∥|um||W
,
m gradxum

||um||W
) · umds = 0.

Integrating over Ω, using the Green formula, we get

1

2

∫

Ω

|um(t, x)|2dx +

t∫

0

∫

Ω

|gradxum(s, x)|2dxds)+ (23)
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+

t∫

0

∫

Ω

f(x,
mum

∥|um||W
,
m gradxum

||um||W
) · umdxds ≤ C.

From condition (13), when t = T it yields um to be bounded in L2(0, T ; H1(Ω))
and using again (23) we see that um is bounded in C(0, T ; H1(Ω)). Then
for large m we have ||um||W ≤ m, that is um satisfies problem (16) - (18).
The regularity is obtained as in (19) - (21).

5 Ordinary Differential Equations

We take into account the two point boundary value problem:

−u′′(t) + f(t, u(t), u′(t)) = 0 a.e. t ∈ [0, 1] (24)

u(0) = a, u(1) = b (25)

where f is Caratheodory:

- f(t, u, v) measurable in t for every u, v

- f(t, u, v) continuous in u, v a.e. t ∈ [0, 1]

and a, b are real numbers.

We assume that

|f(t, u, v)| ≤ g(t, u) + h(t, u)|v|2 (26)

with

sup
|u|≤r

|g(t, u)| ∈ L2(0, 1)

sup
|u|≤r

|h(t, u)| ∈ L∞(0, 1)

for every r > 0, and

f(t, u, v) · u ≥ K(u) · v − α|u|2 + γ, α < 1 (27)

where K is a continuous, d - homogeneous function, that is

K(λu) = λdK(u), λ > 0, d ≥ 0.

Theorem 3 Under the above hypotheses, problem (24), (25) has at least
one solution u in W 2,1(0, 1).
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Proof
Shifting the domain of f in u, v one can suppose instead of (25)

u(0) = u(1) = 0 (28)

(null Dirichlet boundary conditions).
Operator T : L2(0, 1) → L2(0, 1) defined by
Tu = −u′′

D(T ) = {u ∈ H2(0, 1);u(0) = u(1) = 0}
is maximal monotone and (I + T )−1 is compact from L2(0, 1) in W 1,4(0, 1).

Under condition (26) operator S : W 1,4(0, 1) → L2(0, 1) defined by
(Su)(t) = f(t, u(t), u′(t)) is bounded and continuous (see the Appendix).

We can use Proposition 1 with λ = 1, X = L2(0, 1), W = W 1,4(0, 1) to
derive the existence of approximating solutions

um(t) − u′′
m(t) + Smum(t) = 0.

Assume that ||um||1,4 > m for every m. Then

um(t) − u′′
m(t) + f(t,

mum(t)

∥|um||1,4
,
mu′

m(t)

||um||1,4
) − mum(t)

||um||1,4
= 0. (29)

Multiply by um(t) and integrate over [0, 1]

1∫

0

|u′
m(t)|2dt +

1∫

0

f(t,
mum(t)

∥|um||1,4
,
mu′

m(t)

||um||1,4
)um(t)dt ≤ 0.

From condition (27) one gets

1∫

0

|u′
m(t)|2dt +

1∫

0

||um||1,4

m
{K(

mum(t)

||um||1,4
) × mu′

m(t)

||um||1,4
− (30)

−α

∣∣∣∣
mum(t)

||um||1,4

∣∣∣∣
2

+ γ}dt ≤ 0

that is
1∫

0

|u′
m(t)|2dt − α

1∫

0

|um(t)|2dt+ (31)

+
md

||um||d1,4

1∫

0

K(um(t)) · u′
m(t)dt ≤ C.
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Let H be the indefinite integral of K. Then H(um(t)) is the indefinite
integral of K(um(t)) · u′

m(t) and from (28), (31) we infer

1∫

0

|u′
m(t)|2dt − α

1∫

0

|um(t)|2dt ≤ C.

From the inequality

1∫

0

|um(t)|2dt ≤
1∫

0

|u′
m(t)|2dt (32)

it yields {u′
m} to be bounded in L2(0, 1), which combined with (28) gives

{um} bounded in H1(0, 1) and in C(0, 1).

Now from (29) and (26) we get {um} to be bounded in W 2,1(0, 1) that
is, for instance, {um} is bounded in W 1,4(0, 1) too.

So for a sufficiently large m we have ||um||1,4 ≤ m and um verifies (24),
(25) which finishes the proof.

Corollary 1 Under the same hypotheses as Theorem 4, with α < 0 in
(27), the periodic problem

−u′′
m(t) + f(t, u(t), u′(t)) = 0 a.e. [0, 1]

u(0) = u(1), u′(0) = u′(1)

has at least one solution u ∈ W 2,1(0, 1).

The proof follows the same lines as in Theorem 4 because the co-
rresponding operators T and S, defined in this case, have the same properties
and the estimations can be derived in a similar way.

Remark 5 The classical result of Bernstein [7] ensures the existence of a

solution for the two point problem, provided f(t, u, v),
∂f

∂u
(t, u, v),

∂f

∂v
(t, u, v)

continuous on (0, 1) × R × R and

∂f

∂u
(t, u, v) ≥ K > 0 (33)

and (26) with g(t, u), h(t, u) continuous in (0, 1) × R.
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We use the Lagrange theorem

f(t, u, v) − f(t, 0, v) =
∂f

∂u
(t, ũ, v) · u

where ũ is some point between u and 0.
Multiply by u

f(t, u, v) · u =
∂f

∂u
(t, ũ, v) · u2 + f(t, 0, v) · u ≥ Ku2 + f(t, 0, v) · u

which may be more restrictive than (27).

Example 5 Let f(t, u, v) = a(t)u+b(t)v+c(t). Then (33) requires a(t) ≥
K > 0, while (27) with K(u) = u is fulfilled when a(t) ≥ 0 only.

Example 6 We give now an example when f has quadratic growth in v

f(t, u, v) = a(t)u2n+1 + b(t)upv + c(t)v2u + d(t).

Then f(t, u, v)u ≥ b(t)up+1 · v + d(t) · u in case a(t) ≥ 0, c(t) ≥ 0 and (27)
is fulfilled.
Condition (33) gives

(2n + 1)a(t)u2n + pb(t)up−1 · v + c(t)v2 ≥ K > 0

which fails for u = v = 0 for any a(t), b(t), c(t).

6 Appendix

We give a result concerning the Nemitsky operator in Sobolev spaces.
See also Marcus and Mizel [15] or Pascali and Sburlan [17], p. 165.

Let s, p, q be real numbers such that W 1,q(Ω) ⊂ Lp(Ω) continuously i.e.

1

s
≥ 1

q
− 1

N
.

Proposition 2 Operator S : W 1,q(Ω) → Lp(Ω) defined by

(Su)(x) = f(x, u(x), grad u(x))

where f satisfies the assumptions
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f(x, ·, ·) is continuous a.e. x ∈ Ω (34)

f(·, u, v) is measurable for. every u, v (35)

|f(x, u, v)| ≤ l(x) + h(x)|u|
s
p + K(x)|v|

q
p (36)

with l ∈ Lp(Ω), h,K ∈ L∞(Ω), is bounded and continuous.

Proof
Using an argument with simple functions we see that S maps measurable

functions in measurable functions. From condition (36) and W 1,q(Ω) ⊂
Ls(Ω) continuously it yields that operator S is well-defined and bounded.

Consider now a sequence {un} ⊂ W 1,q(Ω) such that un → u in W 1,q(Ω),
that is un → u in Ls(Ω) and grad un → grad u in Lq(Ω). To show that S
is continuous it suffices to show that there is an infinite subsequence such
that S(uj) → S(u) strongly in Lp(Ω).

We choose an infinite subsequence of {un}, which we denote {uj}, such
that

grad uj → grad u a.e. Ω.

Then, by (34) S(uj) → S(u) a.e. in Ω.
From (36) it follows that functions |f(x, uj(x), grad uj(x))|p are equi-
integrable over Ω, so the almost everywhere convergence of S(uj) to S(u)
implies that S(uj) → S(u) strongly in Lp(Ω) and the proof is finished.

Corollary 2 Operator S : W 1,q(Ω) → Lp(Ω) defined by

(Su)(x) = g(x, u(x))

where g satisfies the assumptions

g(x, ·) is continuous a.e. x ∈ Ω (37)

g(·, u) is measurable for every u (38)

|g(x, u)| ≤ l(x) + h(x)|u|
S
p (39)

with l ∈ Lp(Ω), h ∈ L∞(Ω), is bounded and continuous.
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[7] S. N. Bernstein. Sur les équations du calcul des variations. Ann. Ec.
Norm. Sup., 29 (1912), 431 - 486.

[8] W. Chikouche, D. Mercier, S. Nicaise. Regularity of the solution of some
unilateral boundary value problems in polygonal and polyhedral domains.
Comm. Part. Diff. Eq., Vol. 28, No. 11-12 (2003), p. 1475 - 2001.

[9] A. Domarkas. Regularity of solution of quasilinear elliptic equations
with unilateral boundary conditions. Lithuanian Math. J., Vol. 20, No.
1 (1980), p. 8 - 13.

[10] G. Duvaut, J. L. Lions. Sur les inéquations en mécanique et en physique.
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1 Introduction

The intention of this paper is to survey some extensions (the P function
method) and applications of the classical maximum principle for elliptic
operators.

It is well-known that every subharmonic function in a bounded domain
Ω (i.e. ∆u ≥ 0 in Ω) satisfies the classical maximum principle

max
Ω

u = max
∂Ω

u.
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The subbiharmonic function u(x) = −x4
1 −|x|2 in the ball Ω = {(x1, . . . ,

xn)| |x| < R} (i.e. ∆2u ≤ 0 in Ω) shows that there are no classical maximum
principles for the biharmonic operator ∆2u (and for higher-order elliptic
operators at all). Still some results can be proven.

The first proof of a maximum principle for an elliptic equation of higher-
order that has a similar form to the classical maximum principle was given
by Miranda [33].

Miranda showed that for the biharmonic equation ∆2u = 0, where u is a
smooth function defined on a plane domain the function |∇u|2 − u∆u takes
its maximum value on the boundary of the domain. Later, in [37], Payne
uses functionals containing the square of the second gradient of the solution
to semilinear equations of the form

∆2u = f(u)

to deduce integral bounds on (∆2u)2.
Since then many authors have extended the Miranda’s result. For exam-

ple, maximum principles for fourth order equations containing nonlinearities
in u or ∆u can be found in works of Payne [37], Schaefer [57], [60], [61].
Similar results are proved by Zhang [72], Mareno [30], [31] (studied some
equations from plate theory), Danet [5], [6], [7], [9], Tseng and Lin [68], etc.
(see the references cited here).

Most recently the authors in [9] obtain maximum principles results for
the more general variable coefficient m- metaharmonic equation

∆mu − am−1(x)∆m−1u + am−2(x)∆m−2u − · · · + a0(x)u = 0 in Ω. (1)

using P functions containing terms of the form (∆iu). Here Ω is a bounded
domain in IRn.

The survey paper [8] is devoted to the P function method and gives a
presentation of research of the past years on applications of the P function
method in second order elliptic problems. Historical notes and an extensive
survey of the literature is added. The present paper intends to continue our
previous work [8] by presenting contributions to the P function method for
higher order elliptic equations.

2 Main Results

2.1 The general case (m arbitrary)

First we present a maximum principle for the general equation of order
2m.
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Theorem 2.1 ([9]) Let u be a classical solution of (1), i.e. C2m(Ω) ∩
C2m−2(Ω). We consider the function P1

P1 = (∆m−1u)2 + 2am−2(∆
m−2u)2 + (∆m−3u)2 + · · · + u2.

Suppose that am−1, am−2 > 0 and ∆(1/am−2) ≤ 0 in Ω. If

sup
Ω

{
a2

0

2am−1 + 1

}
<

4n + 4

(diamΩ)2
,

a2
0

2am−1
> max

{
1 + sup

Ω
a1, . . . , 1 + sup

Ω
am−3

}
,

a2
0

2am−1 + 1
> sup

{
|a1| + · · · + |am−3|

}
,

and

(
a2

0

2am−1
+ 1

)
am−2 > 1 in Ω

then, either there exists a constant k ∈ IR such that P1/w1 ≡ k in Ω
or P1/w1 does not attain a nonnegative maximum in Ω. Here w1(x) =
1 − α(x2

1 + · · · + x2
n) ∈ C∞(IRn), andα is a positive constant.

Remark. The coefficient a0 can be replaced by am−j , j = 4, . . . , m − 1
if there exists a j = 4, . . . , m − 1 such that

a2
m−j

2am−1
> max

k=3,...,m

{
2 + sup

Ω
ak

}
,

a2
m−j

2am−1
+ 2 > sup

Ω

{
|a0| + · · · |am−j−1| + |am−j+1| + · · · + |am−3|

}
,

and

(
a2

m−j

2am−2
+ 1

)
am−2 > 1 in Ω.

We now show that the uniqueness result and the maximum principle
holds ([9]).
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Theorem 2.2 There is at most one classical solution of the boundary value
problem

{
∆mu − am−1(x)∆m−1u + am−2(x)∆m−2u + · · · + (−1)ma0(x)u = f in Ω
u = g1, ∆u = g2, . . . , ∆m−1u = gm on ∂Ω,

(2)
provided the coefficients am−1, . . . , a0 satisfy the conditions imposed in The-
orem 2.1.

Remark. The boundary value problem

{
∆mu + 2mu = 0 in Ω = (0, π) × (0, π)
u = ∆u = · · · = ∆m−1u = 0 on ∂Ω,

has (at least) the solutions u1(x, y) ≡ 0 and u2(x, y) = sin x sin y in Ω. This
example shows that if we do not impose some restrictions on the coefficients
am−1, . . . , a0, then the uniqueness result might be violated.

In [2] the authors pose an interesting open problem: If f = 0 in Ω, g2 =
· · · = gm = 0 on ∂Ω,m ≥ 3, n ≥ 2, am−1 = · · · = a1 = 0 in Ω do all
the solutions of (2) satisfy the maximum principle (3) where C > 1 is a
constant? This problem, as it turns out, can be solved when Ω is a class C2

domain ([63]). Here we present a version for arbitrary domains ([9]).

Theorem 2.3 We consider the boundary value problem (2), where f = 0
in Ω and g2 = · · · = gm = 0 on ∂Ω.
Then

max
Ω

|u| ≤ C max
∂Ω

|u|, (3)

holds for all solutions of (2) provided the coefficients am−1, . . . , a0 are subject
to one of the conditions imposed in theorem 2.1.

Theorem 2.4 ([32])

Suppose that u ∈ C2m+1(Ω)∩C2m−1(Ω) is a solution of (1). Furthermore
for n > 4 one defines

P2 = ∇2(∆m−2u) · ∇2(∆m−2u) − ∇(∆m−2u) · ∇(∆m−1u)+

+
am−1

2
∇(∆m−2u) · ∇(∆m−2u) +

am−3

2
∇(∆m−3u) · ∇(∆m−3u)
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+ am−2

[
n − 4

n + 2

]
(∆m−2u)2 −

[
4 − n

2(n + 2)

]
(∆m−1u)2 +

m−2∑

i=0

ϕi(∆
iu)2,

where the functions ϕ0, . . . , ϕm−2 ∈ C0(Ω) ∩ C2(Ω) satisfy
∑m−2

i=0 ϕ2
i + 1 ≤

α for some positive constant α, and |∇2u|2 = u,ij u,ij . Additionally, one
imposes the conditions

m−3∑

i=0

a2
i ≤ β,

m−1∑

i=0

∇ai · ∇ai ≤ γ,

for constants γ ≥ 0, β > 0.

ϕi ≥ β

2

am−2 ≥ 1, am−1 − 1

2
≥ γ(n + 2)

2(n − 4)
,

∆ai

2
− ∇am−i · ∇am−i

am−i
≥ 0, i = 1, 3,

∆am−2 − 4
∇am−2 · ∇am−2

am−2
≥ 0,

∆ϕi ≥ 3max

{
β(n − 4)

2(n + 2)
+

γ

2
, α, 4

∇ϕi · ∇ϕi

ϕi

}
, i = 0, . . . ,m − 2.

Then, P2 is subharmonic in Ω.

We briefly indicate how theorem 2.4 can be used to obtain integral
bounds on the square of the second gradient of ∆m−2u. Suppose that the
hypotheses of theorem 2.4 are satisfied and the m conditions

∆iu = 0, i = 0, . . . , m − 5,

∆m−2u =
∆m−2u

∂n
= 0, ∆m−3u =

∆m−3u

∂n
= 0,

hold on ∂Ω. Let A denote the area of Ω. Using theorem 2.4 and integration
by parts we get
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∫

Ω
|∇2(∆m−2u)|2dx ≤ A

2
max
∂Ω

{
|∇2(∆m−2u)|2 + ϕm−4(x)(∆m−4u)2+

n − 4

2(n + 2)
(∆((∆m−2u)))2

}
.

Before treating some particular cases, we shift our attention from n di-
mensional to one dimensional case and mention the following result (Ω de-
notes an open interval (α, β)) ([5])

Theorem 2.5 There can be at most one classical solution of the problem

{
u(2m) − du(6) + c(x)u(4) − b(x)u′′ + a(x)u = f in Ω

u = g1, u′′ = g2, u′′′ = g3, . . . , u
(m) = gm on ∂Ω,

where m ≥ 6 is even, d ≥ 0 and b ≥ 0, a, c > 0, (1/a)′′, (1/c)′′ ≤ 0 in Ω.

The result follows since the function

P3 = u′′u(2m−2) − 2u′′′u(2m−3) + 3u(4)u(2m−4) − · · · + (m − 3)u(m−2)u(m+2)

−(m − 3)u(m−1)u(m+1)/2 − ((m − 3)/2 + 1)[ (u(m))2 − u(m−1)u(m+1)]

+[(u
′′′

)2 − du
′′
u(4)] + c(x)(u′′)2/2 + a(x)u2/2

assumes its maximum value on ∂Ω, where u is a solution of

u(2m) − du(6) + c(x)u(4) − b(x)u′′ + a(x)u = 0 in Ω.

Similarly, we can treat the problem

{
u(2m) + du(6) − c(x)u(4) + b(x)u′′ − a(x)u = f in Ω

u = g1, u′′ = g2, u′′′ = g3, . . . , u
(m) = gm on ∂Ω,

where m ≥ 5 is odd.
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2.2 The particular case m = 4

In this section we consider classical solutions (i.e., C8(Ω) ∩ C6(Ω)) of

∆4u − a(x)∆3u + b(x)∆2u − c(x)∆u + du = 0, (4)

in the bounded plane domain Ω, and present ([5]) a maximum principle for a
certain function defined on the solutions of (4). Then we use the maximum
principle to prove a uniqueness result for the corresponding boundary value
problem.

Theorem 2.6 Let u be a classical solution of (4). Assume that

a > 0, ∆(1/a) ≤ 0 in Ω,

b ≥ 0 in Ω,

c > 0, ∆(1/c) ≤ 0 in Ω,

and

d > 0

are satisfied. Then the functional

P4 =
c(x)

2
(∆u)2 +

a(x)

2
(∆2u)

2
+ d(|∇u|2 − u∆u) + |∇(∆2u)|2 − ∆2u∆3u

assumes its maximum value on ∂Ω. The result also holds if a and c are
nonnegative constants.

An important application of the above presented maximum principle is
the following uniqueness result:

Theorem 2.7 There is at most one classical solution of the boundary value
problem

{
∆4u − a∆3u + b(x)∆2u − c∆u + du = f in Ω,
u = g, ∆u = h, ∆2u = i, ∆3u = j on ∂Ω,

(5)

where a, c ≥ 0, b and d satisfy the hypotheses of theorem 2.6, and the cur-
vature k of ∂Ω (Ω is a smooth plane domain ) is strictly positive.
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We suppose that u1 and u2 are two solutions of (5). Defining v = u1−u2,
we see that v satisfies (4) and

v = ∆v = ∆2v = ∆3v = 0 on ∂Ω. (6)

By virtue of theorem 2.6

P4 ≤ max
∂Ω

P4 in Ω. (7)

Since v = ∆2v = 0 on ∂Ω, we have

|∇v| =
∣∣∣∂v

∂n

∣∣∣ on ∂Ω (8)

and

|∇(∆2v)| =
∣∣∣∂(∆2v)

∂n

∣∣∣ on ∂Ω, (9)

where ∂/∂n denotes the outward directed normal derivative operator.
It can be shown that (introducing a normal coordinate system)

∂v

∂n
=

∂(∆2v)

∂n
= 0 on ∂Ω. (10)

By (6), (7), (8), (9) and (10) we get

P4 ≤ 0 in Ω,

which gives
−v∆v − ∆2v∆3v ≤ 0 in Ω. (11)

Integrating (11) over Ω and using Green’s identity we obtain

∫

Ω
|∇v|2 +

∫

Ω
|∇(∆2v)|2 ≤ 0.

Hence v ≡ 0 in Ω by continuity.

It is known that once we have a maximum principle for an equation, the
nonexistence of a nontrivial solution of the zero-boundary problem will be
a consequence.
An inverse result, of establishing a maximum principle from some nonexis-
tence results was carried out by Schaefer and Walter (Theorem 2, [63]).
Using their result and our theorem 2.7, we obtain the following maximum
principle
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Corollary 2.1 Suppose that u is a classical solution of the boundary value
problem {

∆4u − a∆3u + b∆2u − c∆u + du = 0 in Ω,
∆u = 0, ∆2u = 0, ∆3u = 0 on ∂Ω,

where a, b, c ≥ 0, d satisfy the hypotheses of theorem 2.6, and the curvature
k of ∂Ω (Ω is a smooth domain ) is strictly positive. Then there exists a
constant K > 0 such that

max
Ω

|u| ≤ K max
∂Ω

|u|.

Remark.

1. Similar uniqueness results can be inferred using theorem 2.6. It can be
shown (see [5]) that there is at most one classical solution of the boundary
value problem

{
∆4u − a∆3u + b(x)∆2u − c∆u + du = f in Ω

u = g, ∆u = h, ∆2u = i, ∂(∆2u)
∂n = j on ∂Ω,

2. We note that Dunninger [11] developed a maximum principle from
which follows the uniqueness for the classical solution of the boundary value
problem

{
∆2u + cu = f in Ω ⊂ IRn,
u = g, ∆u = h on ∂Ω,

where c > 0 is a constant.

An uniqueness result for solutions of a more general fourth-order elliptic
equation, under the same boundary conditions follows from Corollary 1, [72].

The uniqueness question for solutions of the boundary value problem
(here a, b ≥ 0 and c > 0 in Ω)

{
∆3u − a(x)∆2u + b(x)∆u − c(x)u = f in Ω ⊂ IRn,
u = g, ∆u = h, ∆2u = i on ∂Ω,

has been settled in a satisfactory way by Schaefer [58] (the constant coeffi-
cient case with n=2) and Goyal and Goyal [17] (the constant and variable
coefficient case).

We see that our uniqueness result (theorem 2.7) is a generalization of
results of Dunninger, Goyal and Schaefer.
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2.3 The particular case m = 3.

This subsection is dedicated to maximum principles for a class of linear
equations of sixth order. As a consequence of these maximum principles we
will obtain uniqueness results for boundary value problems of sixth order.
This section is based on the paper [7].

Schaefer [58] investigated the uniqueness of the solution for the boundary
value problems

{
∆3u − a(x)∆2u + b(x)∆u − c(x)u = f in Ω ⊂ IRn

u = g, ∆u = h, ∆2u = i on ∂Ω,
(12)

where a, b, ≥ 0, c > 0 are constants, and the curvature of ∂Ω is positive.

Our aim here is to remove via the P function method dimension and
geometry conditions (convexity and smoothness) with, of course, further
conditions on the coefficients a, b and c.

We deal with classical solutions (i.e. u ∈ C6(Ω) ∩ C4(Ω)) of

∆3u − a(x)∆2u + b(x)∆u − c(x)u = 0 in Ω ⊂ IRn, n ≥ 2. (13)

The uniqueness results can be inferred from the following maximum prin-
ciples.

Theorem 2.8 Let u be a classical solution of (13) and suppose that

a(b + c)2

b2(a − 1)
<

8n + 8

(diamΩ)2
, (14)

holds, where a > 1, b, c are constants. We consider the function P5 given by

P5 = (a∆2u + bu)2 + ab(a − 1)(∆u)2 + b2(a − 1)u2.

Then, either there exists a constant k ∈ IR such that P5/w1 ≡ k in Ω or
P5/w1 does not attain a nonnegative maximum in Ω.

By computation and using equation (13) we have in Ω

∆
(
(a∆2u + bu)2

)
≥ 2(a∆2u + bu)(a∆3u + b∆u)

= 2
(
a3(∆2u)2 + abcu2 + a2(b + c)u∆2u +

ab(1 − a)∆u∆2u + b2(1 − a)u∆u
)
,

∆
(
ab(a − 1)(∆u)2

)
≥ 2ab(a − 1)∆u∆2u,



A Survey of the P Function Method for Higher Order Equations 147

∆
(
b2(a − 1)u2

)
≥ 2b2(a − 1)u∆u.

That means that

∆P5 ≥ 2a
(
a2(∆2u)2u + a(b + c)u∆2u + bcu2

)

= 2a

(
a∆2u +

b + c

2
u

)2

+ 2a

(
bc − (b + c)2

4

)
u2 (15)

≥ −a(b + c)2

2
u2.

Hence P5 satisfies the differential inequality

∆P5 +
a(b + c)2

2b2(a − 1)
P5 ≥ 0 in Ω.

Since (14) holds, we can use a version of the generalized maximum prin-
ciple (lemma 2.1, [7] ) to obtain the desired result.

Theorem 2.9 Let u be a classical solution of (13) and suppose that

sup
Ω

(a + c)2

a(b − 1)
<

8n + 8

(diamΩ)2
, (16)

b > 1 in Ω, ∆(1/(b − 1)) ≤ 0 in Ω

holds.

If

P6 = (∆2u + u)2 + (b − 1)(∆u)2 + (b − 1)u2

then, either there exists a constant k ∈ IR such that P6/w1 ≡ k in Ω or
P6/w1 does not attain a nonnegative maximum in Ω.

If a = c in Ω then, P6 attains its maximum value on ∂Ω (the restriction
(16) is not needed).

Theorem 2.10 Let u be a classical solution of (13), where a > 0 in Ω, and
c is of arbitrary sign in Ω. Suppose that

sup
Ω

c2

2a
+ 1 <

4n + 4

(diamΩ)2
,

b > 0, ∆(1/b) ≤ 0 in Ω,
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b

(
c2

2a
+ 1

)
≥ 1 in Ω

holds.

If

P7 = (∆2u)2 + b(∆u)2 + u2

then, either there exists a constant k ∈ IR such that P7/w1 ≡ k in Ω or
P7/w1 does not attain a nonnegative maximum in Ω.

Theorem 2.11 Let u be a classical solution of (13) and suppose that

sup
Ω

1

a

(
c +

(c + 1)2

4(a − 1)

)
<

2n + 2

(diamΩ)2
,

b = 0, a > 1 in Ω, ∆(1/a) ≤ 0 in Ω,

c > 0, ∆(1/c) ≤ 0 in Ω

holds.

We consider the function P8 given by

P8 = (∆2u − ∆u)2 + c(∆u − u)2 + a(∆u)2.

Then, either there exists a constant k ∈ IR such that P8/w1 ≡ k in Ω or
P8/w1 does not attain a nonnegative maximum in Ω.

Now an uniqueness result follows from the above mentioned maximum
principles.

Theorem 2.12 There is at most one classical solution of the boundary
value problem (12), where a, b and c satisfy the conditions of Theorem 2.8
or Theorem 2.9 or Theorem 2.10 or Theorem 2.11.

For various uniqueness results for sixth order boundary value problems
the reader is referred to [7].
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2.4 The particular case m = 2.

In 1971, J. Serrin [65] and H. Weinberger [71] proved that if Ω is a
bounded domain in IRn with smooth boundary





∆u = −1 in Ω,
u = 0 on ∂Ω,
∂u
∂n = c on ∂Ω,

(where c is a constant) then Ω is a ball of radius |nc| and the solution is
radially symmetric about the center.
Serrin’s proof is based on the classical maximum principle and on the method
of moving parallel planes.Weinberger’s method is more elementary. It also
uses the maximum principle but relies on Green’s theorem to establish cer-
tain identities. Unfortunately, Weinberger’s argument does not extend to
more general results.

Using the following maximum principle Benett [1] was able to show that
an analogous result holds for a fourth order problem.

Theorem 2.13 The function

P9 =

n∑

i,j=1

∂2u

∂ui∂uj
− ∇u · ∇(∆u) +

n − 4

n + 2

∫ u

0
f(y)dy +

n − 4

2(n + 2)
(∆u)2

assumes its maximum value on ∂Ω, where u is a solution of ∆2u+ f(u) = 0
in Ω ⊂ IRn, f

′ ≤ 0 in IR.

Corollary 2.2 ([1]) Let Ω be a bounded domain in IRn with C4+ε boundary,
and suppose that the following overdetermined problem has a solution in
u ∈ C4(∂Ω) 




∆2u = −1 in Ω,
∂u
∂n = 0 on ∂Ω,
∆u ≡ c on ∂Ω (c - constant).

Then Ω is an open ball of radius [|c|(n2 + 2n)]
1
2 and u is radially symetric.

The above mentioned result allows a characterization of open balls in
IRn by means of an integral identity:
Let Ω be a smooth bounded domain in IRn and suppose that there is a real
constant M so that ∫

Ω
Bdx = M

∫

∂Ω

∂B

∂n
ds
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holds for any function B in C4(Ω) satisfying
{

∆2B = 0 in Ω,
B = 0 on ∂Ω.

Then Ω is an open ball.

Finally, we state our last maximum principle for an fourth order equa-
tion.

Theorem 2.14 ([7])
Let u be a classical solution of

∆2u − a1∆u + a0(x)u = 0 in Ω ⊂ IRn, (17)

where a1 ≡ const. > 0, a0 > 0 in Ω.
Suppose that

sup
Ω

(
a1 − 1

a1

(
a0 − 1

a0

)2)
<

2n + 2

(diamΩ)2
. (18)

Let

P10 =
1

2
(∆u − au)2 +

1

2
(∆u)2 + u2.

Then, either there exists a constant k ∈ IR such that P10/w1 ≡ k in Ω or
P10/w1 does not attain a nonnegative maximum in Ω.

If

a2
1 ≥

(
a0 − 1

a0

)2

in Ω, (19)

then the function P10 attains its maximum value on ∂Ω (here the assumption
(18) is not needed).

Remark. A classical result ([2]) tells us that the boundary value prob-
lem

{
∆2u − a1(x)∆u + a0(x)u = f in Ω ⊂ IRn

u = g, ∆u = h on ∂Ω,
(20)

has a unique solution if a1, a0 > 0 and if ∆a0 < 0 or ∆(1/a0) < 0 in Ω.
Theorem 2.14 tells us that if a1 ≥ 1 and a0 > 0 then the boundary value

problem (20) has a unique solution. We see that no smoothness restrictions
are needed on the coefficient a0.
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plaques élastiques encastrées, in: Oeuvres de Jacques Hadamard, Tome
II, pp. 515-641, Centre National de la Recherche Scientifique: Paris,
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1 Functional setting

In this section, we present the class of variational problems to be considered
and recall several basic facts related to this class of problems.

Throughout the paper we use two pairs of mutually conjugate reflexive
Banach spaces. The first pair is Y and Y ∗ (with the duality pairing (y∗, y),
where y∗ ∈ Y ∗ and y ∈ Y ). The norms of Y and Y ∗ are denoted by ∥ · ∥
and ∥ · ∥∗, respectively. Another pair of spaces is V and V ∗. The product
of v ∈ V and v∗ ∈ V ∗ is denoted by << v∗, v >> . We assume that

V ⊂ V ⊂ V ∗,

where V is a Hilbert space with the norm ∥ · ∥V and scalar product (·, ·)V ,
so that << v∗, v >> = (v∗, v)V for any v∗ ∈ V.

By Λ : V → Y we denote a bounded linear operator and assume that
the conjugate operator Λ∗ : Y ∗ → V ∗ satisfies the relation

(y∗, Λw) = << Λ∗y∗, w >> , ∀w ∈ V. (1.1)

If y∗ is more regular and belongs to the set

H∗
Λ∗ := { y∗ ∈ Y ∗ | Λ∗y∗ ∈ V } ,

then (1.1) can be rewritten in the form

(y∗, Λw) = (Λ∗y∗, w)V , ∀w ∈ V. (1.2)

We consider the following class of variational problems: find u ∈ V such
that

J(u) = inf P := inf
v∈V

J(v) (Problem P), (1.3)

where

J(v) = G(Λv) + F (v), (1.4)

the functionals G : Y → R and F : V → R are convex and lower semicon-
tinuous functionals such that J(v) is a proper functional (cf. [2]) and

J(v) → +∞ as ∥v∥V → +∞. (1.5)

In addition, we assume that F is finite at zero element of V and G is coercive
on Y .
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As usual, the functionals dual to F and G are defined by the relations

F ∗(v∗) = sup
v∈V

{<< v∗, v >> −F (v)}

and

G∗(y∗) = sup
y∈Y

{ (y∗, y) − G(y) } ,

respectively.

If v∗ ∈ H∗
Λ∗ , then the first relation admits another form

F ∗(v∗) = sup
v∈V

{(v∗, v)V − F (v)} .

Existence of a minimizer u to Problem P follows from standard arguments
of the variational calculus (see, e.g., [1, 2]).

Problem P has a saddle point formulation associated with the Lagrangian

L(v, y∗) := F (v) + ( y∗, Λv) − G∗(y∗),

which is convex and lower semicontinuous with respect to the variable v and
concave and upper semicontinuous with respect to the variable y∗.

The Lagrangian yields a dual variational functional defined by the rela-
tion

I∗(y∗) = inf
v∈V

L(v, y∗) = −G∗(y∗) + inf
v∈V

((y∗, Λv) + F (v))

= −G∗(y∗) − sup
v∈V

( << −Λ∗y∗, v >> −F (v))

= −G∗(y∗) − F ∗(−Λ∗y∗)

and a new (dual) variational problem: find p∗ ∈ Y ∗ such that

I∗(p∗) = sup
y∗∈Y ∗

{− G∗(y∗) − F ∗(−Λ∗y∗)} (Problem P∗).

It is not difficult to show that under the above made assumptions

inf P = sup P∗ := sup
y∗∈Y ∗

inf
v∈V

L(v, y∗) (1.6)

and Problem P∗ also has a solution.
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2 General form of error identities for convex vari-
ational problems

Since both primal and dual problems are well posed and have solutions u∗

and p∗, respectively, the pair (u, p∗) is a saddle point of L on V × Y ∗, i.e.

L(u, y∗) ≤ L(u, p∗) ≤ L(v, p∗), ∀v ∈ V, y∗ ∈ Y ∗, (2.1)

The left–hand side of the inequality yields the relation

(y∗ − p∗, Λu) ≤ G∗(y∗) − G∗(p∗), ∀y∗ ∈ Y ∗,

which means that

Λu ∈ ∂G∗(p∗) ⇔ p∗ ∈ ∂G(Λu). (2.2)

Analogously, the right–hand side of (2.1) yields the relation

F (v) − F (u) ≥ (p∗, Λ(u − v)) = << −Λ∗p∗, v − u >> , (2.3)

which means that

−Λ∗p∗ ∈ ∂F (u) ⇔ u ∈ ∂F ∗(−Λ∗p∗). (2.4)

In general, the relations (2.2) and (2.4) present necessary conditions for the
solution pair (u, p∗) and have the form of differential inclusions. However,
there is another equivalent way to present these conditions, which is more
convenient for our purposes. It is well known (see, e.g., [2, 5]) that (2.2) and
(2.4) are equivalent to the relations

DG(Λu, p∗) := G(Λu) + G∗(p∗) − (p∗, Λu) = 0, (2.5)

and

DF (u, −Λ∗p∗) := F (u) + F ∗(−Λ∗p∗)+ << Λ∗p∗, u >> = 0, (2.6)

respectively.

The functionals DG(y∗, y) : Y ∗ × Y → R and DF (v∗, v) : V ∗ × V → R
(in the literature, they are often called compound functionals) vanish if and
only if the arguments satisfy (2.2) and (2.4). In all other cases, they are
positive.
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Let q∗ ∈ Y ∗ and v ∈ V be the functions compared with p∗ and u. We
introduce the following nonlinear measure of the distance between {u, p∗}
and {v, y∗}:

M({u, p∗}, {v, y∗}) :=

= DF (u, −Λ∗y∗) + DG(Λu, y∗) + DF (v, −Λ∗p∗) + DG(Λv, p∗). (2.7)

It is easy to see that M({u, p∗}, {v, y∗}) is nonnegative and vanishes if and
only if

Λv ∈ ∂G∗(p∗), y∗ ∈ ∂G(Λu),

−Λ∗y∗ ∈ ∂F (u), v ∈ ∂F ∗(−Λ∗p∗).

In other words, M({u, p∗}, {v, y∗}) vanishes if and only if all the necessary
saddle point conditions are satisfied. Moreover, it was proved (see [5], Sec-
tion 7.2 and [10]) that

M({u, p∗}, {v, y∗}) = J(v) − I∗(y∗). (2.8)

We see that M{(u, p∗), (v, y∗)} = 0 if and only if J(v) = I∗(y∗) what is pos-
sible only if v is a minimizer of the problem P and y∗ is a maximizer of the
problem P∗. In view of this fact, in [11] the functional M was introduced
as the right error measure for the class of variational problems (1.3)–(1.4).
Since any numerical procedure is focused (explicitly or implicitly) on min-
imization of the duality gap J(v) − I∗(y∗), it automatically minimizes the
distance between {u, p∗} and {v, y∗} in terms of the measure M.

Now we can formulate the main result, which presents the general a
posteriori error identity for the considered class of problems.

Theorem 2.1 Let u be a minimizer of the Problem P and p∗ be a maximizer
of the Problem P∗. Then, for any v ∈ V and y∗ ∈ Y ∗ the following identity
holds:

M{(u, p∗), (v, y∗)} = DF (v, −Λ∗y∗ ) + DG(Λv, y∗). (2.9)

The statement directly follows from (2.8). Indeed,

J(v) − I∗(y∗) = G(Λv) + F (v) + G∗(y∗) + F ∗(−Λ∗y∗)

= DG(Λv, y∗) + (y∗, Λv) + DF (v, −Λ∗y∗)− < Λ∗y∗, v > .

We apply (1.1) and arrive at (2.9).
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We note that a somewhat different notation the identity (2.9) was proved
in [5] (see 7.2.14). It has a clear meaning: the distance between the pair of
exact solutions and their approximations measured in terms of the measure
M is equal to the sum of two fully computable functionals DG(Λv, y∗) and
DF (v, −Λ∗y∗) that depend only on approximate solutions and does not con-
tain unknown exact solutions. Therefore, this relation can be viewed as the
basic a posteriori error identity .

Remark 2.1 It is commonly accepted that errors should be measured in
terms of relative (normalized) quantities, which adjust absolute values of
errors to a certain measure (e.g., norm) of the exact solution. The relation
(2.8) clearly suggests a proper normalization. Since the duality gap J(v) −
I∗(y∗) is equal to the error measure M({u, p∗}, {v, y∗}) and C∗ := |J(u)| =
|I∗(p∗)| is a number inside it related to the exact values of the primal/dual
energy functionals, it is natural to use the quantity

E(v, y∗) =
1

C∗M({u, p∗}, {v, y∗})

as a normalized measure of the error (trivial solutions with zero energy
are excluded from this consideration). Since J(u) is generally unknown, in
practice it may be suggested to use the constant C̃∗ = 1

2(|J(v)| + |I∗(y∗)|)
instead of C∗. Then we recall (2.9) and introduce the quantity

Ẽ(v, y∗) =
1

C̃∗
(DF (v, −Λ∗y∗ ) + DG(Λv, y∗))

as a fully computable normalized measure that objectively quantify the ac-
curacy of (v, y∗).

A special, but important case

F (v) = << ℓ ∗, v >> , ℓ ∗ ∈ V ∗

deserves a special consideration. We have

F ∗(−Λ∗y∗) = sup
v∈V

<< −Λ∗y∗ − ℓ ∗, v >>=

{
0 if y∗ ∈ Q∗

ℓ ∗ ,
+∞ if y∗ ̸∈ Q∗

ℓ ∗ ,

where

Q∗
ℓ ∗ := {q∗ ∈ Y ∗ | (q∗, Λw) + ⟨ℓ ∗, w⟩ = 0, w ∈ V }.
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Hence,

I∗(y∗) =

{
−G∗(y∗) if y∗ ∈ Q∗

ℓ ∗ ,
−∞ if y∗ ̸∈ Q∗

ℓ ∗

Problem P∗ has the form: find p∗ ∈ Q∗
ℓ ∗ such that the functional −G∗(p∗)

attains its supremum on Q∗
ℓ ∗ .

It is easy to see that the identity (2.8) holds in the form +∞ = +∞ if
y∗ ̸∈ Q∗

ℓ ∗ and in the form

DG(Λu, y∗) + DG(Λv, p∗) = J(v) − I∗(y∗) (2.10)

for y∗ ∈ Q∗
ℓ ∗ . Therefore, we conclude that for v ∈ V and y∗ ∈ Q∗

ℓ ∗ the error
measure is defined by the relation

M{(u, p∗), (v, y∗)} = DG(Λu, y∗) + DG(Λv, p∗).

and the a posteriori error identity (2.9) holds on the affine manifold Q∗
ℓ ∗ in

the form

M{(u, p∗), (v, y∗)} = DG(Λv, y∗). (2.11)

Identities (2.10) and (2.11) have been established in [9, 10] and used for the
derivation of functional type a posteriori error estimates for a wide class of
convex variational problems.

Now we consider particular forms of (2.8)–(2.11) related to some classes
of functionals commonly used in mathematical modeling.

3 Problems with quadratic G(y∗)

Let U be a Hilbert space endowed with the scalar product (·, ·)U containing
the same elements as Y and Y ∗ and A : U → U be a bounded, linear, and
positive definite operator. The spaces Y and Y ∗ are identified by the norms

|||τ |||2 = (Aτ, τ)U and |||τ |||2∗ = (A−1τ, τ)U ,

respectively (it is clear that these norms are equivalent to the original norm
of U). We define Λ as a linear bounded operator acting from V to U . The
conjugate operator Λ∗ : U → V ∗ is defined by the relation

(y, Λv)U =< Λ∗y, v > .
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Consider first the problem

Λ∗AΛu + αu = ℓ ∗, (3.1)

where α is a positive constant and ℓ ∗ ∈ V. The corresponding generalized
solution u is defined by the relation

(AΛu,Λw)U + α(u,w)V = (ℓ ∗, w)V ∀w ∈ V. (3.2)

In this case,

G(y) =
1

2
(Ay, y)U , G∗(y∗, y∗) =

1

2
(A−1y∗, y∗)U ,

and

F (v) =
α

2
∥v∥2

V − (ℓ ∗, v)V .

We find that for any v∗ ∈ V

F ∗(v∗) = sup
v∈V

{
(v∗ + ℓ ∗, v)V − α

2
∥v∥2

V
}

=
1

2α
∥v∗ + ℓ ∗∥2

V .

For any y∗ ∈ Y ∗, we have

DG(Λu, y∗) =
1

2

(
(AΛu,Λu)U + (A−1y∗, y∗)U − 2(Λu, y∗)U

)

=
1

2
|||AΛu − y∗|||2∗ (3.3)

and

DG(Λv, p∗) =
1

2
|||AΛv − p∗|||2∗. (3.4)

Let y∗ ∈ H∗
Λ∗ . Then,

DF (u,−Λ∗y∗) =
α

2
∥u∥2

V +
1

2α
∥ℓ ∗ − Λ∗y∗∥2

V + (u,Λ∗y∗ − ℓ ∗)V

=
1

2α
∥Λ∗y∗ + αu − ℓ ∗∥2

V (3.5)

and quite analogously (note that p∗ ∈ H∗
Λ∗) we obtain

DF (v, −Λ∗p∗) =
1

2α
∥Λ∗p∗ + αv − ℓ ∗∥2

V . (3.6)
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Now we recall (2.2) and (2.4). Since the functionals G and G∗ are Gateaux
differentiable, the relations (2.2) have the form

p∗ = G′(Λu) = AΛu and Λu = (G∗)′ (p∗) = A−1p∗. (3.7)

The functionals F , and F ∗ are also differentiable. Therefore, (2.4) have the
form

u = (F ∗)′ (−Λ∗p∗) =
1

α
(ℓ ∗ − Λ∗p∗) (3.8)

and

−Λ∗p∗ = F ′(u) = αu − ℓ ∗. (3.9)

By (3.7)–(3.9) we conclude that the components of the measure M are as
follows:

DG(Λu, y∗) =
1

2
|||p∗ − y∗|||2∗, (3.10)

DG(Λv, p∗) =
1

2
|||Λ(u − v)|||2, (3.11)

DF (u,−Λ∗y∗) =
1

2α
∥Λ∗(y∗ − p∗)∥2

V , (3.12)

DF (v, −Λ∗p∗) =
α

2
∥v − u∥2

V . (3.13)

Thus, for this class of linear problems the measure M{(u, p∗), (v, y∗)} is
defined by the sum of above presented four norms of two error functions
e := u − v and η∗ := p∗ − y∗.

It is easy to see that M{(u, p∗), (v, y∗)} is equivalent to the sum of two
norms associated with the primal and dual errors:

|||e|||2α :=
1

2

(
|||Λe|||2 + α∥e∥2

V
)
. (3.14)

and

∥η∗∥2
H∗, 1

α

:=
1

2

(
|||η∗|||2∗ +

1

α
∥Λ∗η∗∥2

V

)
(3.15)

Here the first norm is the energy norm associated with the primal variational
functional J and the second one can be viewed a norm of the space H∗

Λ∗ .
We see that

M ({u, p∗}, {v, y∗}) = |||e|||2α + ∥η∗∥2
H∗, 1

α
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and the identity (2.8) reads

|||e|||2α + ∥η∗∥2
H∗, 1

α

= J(v) − I∗(y∗). (3.16)

In other words, for this class of variational problems the difference between
the primal and dual functionals measured in terms of M is equal to the sum
of specially selected norms.

Theorem 2.1 implies the following a posteriori error identity:

|||e|||2α + ∥η∗∥2
H∗, 1

α

=
1

2
|||AΛv − y∗|||2∗ +

1

2α
|||Λ∗y∗ + αv − ℓ ∗|||2V . (3.17)

The right hand side of this identity contains only known functions and van-
ishes if and only if

AΛv − y∗ = 0,

Λ∗y∗ + αv − ℓ ∗ = 0,

i.e., if v = u (cf. (3.1)) and y∗ = p∗. In all other cases the right hand
side is positive and equals to the combined primal–dual measure of the error
presented by the left hand side. We note that such type identity (both sides
of which are expressed in terms of squared norms) takes place only for this
class of linear problems.

The identity (3.17) is not valid for α = 0. In this case, then we must use
(2.10) and (2.11) and use introduce the condition

Λ∗y∗ = ℓ ∗. (3.18)

We find that

M{(u, p∗), (v, y∗)} =
1

2
|||AΛu − y∗|||2∗ +

1

2
|||AΛv − p∗|||2∗

=
1

2
|||η∗|||2 +

1

2
|||Λe |||2.

Then, (2.10) yields the identity

1

2
|||η∗|||2∗ +

1

2
|||Λe |||2 = J(v) − I∗(y∗). (3.19)

Set here y∗ = p∗. Since

I∗(p∗) = J(u) and p∗ = AΛu,
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we obtain

1

2
|||Λe |||2 = J(v) − J(u). (3.20)

This is a generalized form of the Mikhlin’s error identity (see, e.g., [4, 3]),
which was derived for variational functionals defined by quadratic forms.

By (2.11), we find that

|||AΛu − y∗|||2∗ + |||AΛv − p∗|||2∗ = |||AΛv − y∗|||2∗. (3.21)

We can rewrite it in an equivalent form

|||η∗|||2∗ + |||Λe |||2 = |||AΛv − y∗|||2∗, ∀y∗ ∈ Q∗
ℓ ∗ . (3.22)

The latter identity can be viewed as a generalization of the Prager–Synge
error relation derived in [7] for linear elasticity problems.

Remark 3.1 We see that error measures arising in the estimates are gen-
erated by nonnegative compound functionals. In the linear case (i.e., for
quadratic type functionals), they are equivalent to norms. However in gen-
eral, M consists of nonlinear terms that jointly form a proper measure of
the accuracy (see [11]).

4 Particular cases

Now we briefly discuss applications of the above presented error identities
to particular classes variational problems.

4.1 Quadratic growth problems with Λ = grad

Let V = H1
0 (Ω), where Ω is a bounded Lipschitz domain in Rd (d ≥ 1). We

set U = L2(Ω, Rd), V = L2(Ω), and identify A with a symmetric real matrix
in Md×d

sym. Then Λ∗ = −div and (3.1) is the equation

div A∇u − αu + ℓ ∗ = 0. (4.1)

In this case,

|||e|||2α =
1

2

∫

Ω

(
A∇e · ∇e + α|e|2

)
dx,

|||η∗|||2
H∗, 1

α

=
1

2

∫

Ω

(
A−1η∗ · η∗ +

1

α
|div η∗|2

)
,
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and the a posteriori error identity (3.17) has the form

|||e|||2α + |||η∗|||2
H∗, 1

α

=
1

2

∫

Ω

(
A∇v · ∇v + A−1y∗ · y∗ − y∗ · ∇v

)
dx

+
1

2α
∥div y∗ − αv + ℓ ∗∥2. (4.2)

If α = 0, then we use (3.18) and (3.19) and obtain the identities

1

2

∫

Ω

A−1η∗ · η∗ dx +
1

2

∫

Ω

A∇e · ∇e dx = J(v) − I∗(y∗) (4.3)

and the Mikhlin’s identity

1

2

∫

Ω

A∇e · ∇e dx = J(v) − J(u). (4.4)

By (3.22) we obtain a version of the Prager-Synge identity

∫

Ω

(A−1η∗ · η∗ + A∇e · ∇e)dx

=

∫

Ω

(
A∇v · ∇v + A−1y∗ · y∗ − ∇v · y∗) dx. (4.5)

4.2 Problems with the operator Λ = Sym ∇
Problems of this type arise in continuum media problems, where Λ is a
symmetric part of the tensor ∇u and u is a vector field. In this case, the error
identities are quite similar to (4.2)–(4.5). The reader can find a sistematic
discussion of them and respective error majorants in [5, 9, 10, 12]).

4.3 Generalized Stokes problem

If V coincides with the space S1,2
0 (Ω, Rd) that is the closure of smooth

solenoidal fields with respect to the norm of H1(Ω, Rd) and Λv = ∇v, where
v is the velocity vector field, then we arrive at a class of variational prob-
lems generated by incompressible media. The generalized Stokes problem
is one of the most known problems in this class. It often arises in time
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discretization of the parabolic Stokes problem. It is related to the system

−ν∆u + αu = ℓ ∗ in Ω, (4.6)

div u = 0, (4.7)

u = u0 on ∂Ω, (4.8)

where u0 is a divergence free field in H1(Ω, Rd) and ν > 0 is the viscosity.
In this case, Λ∗ = −Div (i.e., the conjugate operator is formed by the

divergence of a tensor field), U = L2(Ω, Rd),

G(Λv) =

∫

Ω

ν

2
|∇v|2dx, and G∗(y∗) =

∫

Ω

1

2ν
|y∗|2dx.

Here |y∗| denotes the Euclidean norm of the tensor y∗ ( |y∗|2 := y∗ : y∗).
Let v ∈ S1,2

0 (Ω, Rd) and y∗ ∈ L2(Ω, Md×d
sym) be approximations of the

exact velocity u and exact stress σ∗, respectively. Then the general method
exposed in Sect. 2 suggests to measure the errors e = u−v and η∗ = σ∗ −y∗

(for the velocity and stress) in terms of the integral type measures

|||e|||2α =
1

2

∫

Ω

(
ν|∇e|2 + α|e|2

)
dx

and

|||η∗|||2
H∗, 1

ν

=
1

2

∫

Ω

(
1

ν
|η∗|2 +

1

α
|Div η∗|2

)
dx,

respectively.
We conclude that the a posteriori error identity (3.17) has the form

|||e|||2α + |||η∗|||2
H∗, 1

ν
=

1

2

∫

Ω

(
ν|∇v|2 +

1

ν
|y∗|2 − y∗ : ∇v

)
dx

+
1

2α
∥Div y∗ − αv + ℓ ∗∥2. (4.9)

4.4 Nonlinear problem

Finally, we consider an example of highly nonlinear problem, where G is a
power growth functional and F has linear growth with respect to v. Let

J(v) =
1

q

∫

Ω

|∇v|q dx + α

∫

Ω

|v| dx +

∫

Ω

fvdx.
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We assume that 0 < q < +∞, α > 0, and f is a bounded real valued
function. Existence of the minimizer u is obvious because J(v) is coercive

of the reflexive space V =
◦

W 1,q(Ω). In this case, Λ = ∇, Λ∗ = −div ,

G∗(y∗) =
1

q∗

∫

Ω

|y∗|q∗
dx,

1

q
+

1

q∗ = 1,

and

DG(y, y∗) =

∫

Ω

(
1

q
|y|q +

1

q∗ |y∗|q∗ − yy∗
)

dx.

Next,

F (v) = α

∫

Ω

|v|dx +

∫

Ω

fvdx,

For any real valued function v∗ ∈ V ∗, we have

F ∗(v∗) = sup
v∈V

∫

Ω

((v∗ − f)v − α|v|)dx

=

{
0 if |v∗ − f | ≤ α,
+∞ if |v∗ − f | > α

(4.10)

and, therefore,

F ∗(−Λ∗y∗) =

{
0 if |div y∗ + f | ≤ α,
+∞ if |div y∗ + f | > α.

Hence

DF (v, −Λ∗y∗) =





∫

Ω

(α|v| + v(div y∗ + f))dx if |div y∗ + f | ≤ α,

+∞ if |div y∗ + f | > α.

We see that the measure M is finite only if

y∗ ∈ Q∗
α := {y∗ ∈ Y ∗ | |div y∗(x) + f | ≤ α for a.a. x ∈ Ω} .(4.11)

This condition plays the same role as (3.18) for variational problems with
F (v) =< ℓ ∗, v >. However, there is an essential difference. Now the error
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identities are finite not on the set Q∗
ℓ ∗ (which is an affine manifold defined by

(3.18)) but in a ”strip” Q∗
α and width of this strip depends on the parameter

α.
Note that p∗ = |∇u|q−2∇u and ∇u = |p∗|α∗−2p∗. Another duality rela-

tion reads

div p∗ + f =

{ −α u
|u| if u ̸= 0,

−αζ where |ζ| ≤ 1 if u = 0

and we conclude that p∗ ∈ Q∗
α. In view of (2.7), for any y∗ ∈ Q∗

α and v ∈ V ,
the measure M is defined by the relation

M({u, p∗}, {v, y∗})

=

∫

Ω

(α|u| + u(div y∗ + f) + α|v| + v(div p∗ + f)) dx

+

∫

Ω

(
1

q
|p∗|q +

1

q∗ |y∗|q∗ − p∗ · y∗|p∗|α∗−2

)
dx

+

∫

Ω

(
1

q
|∇v|q +

1

q∗ |∇u|q − ∇v · ∇u|∇u|q−2

)
dx. (4.12)

It is easy to see that the measure vanishes if u = v and p∗ = y∗. Now
Theorem 2.1 yields the following error identity for this variational problem:

M({u, p∗}, {v, y∗}) =

∫

Ω

(α|v| + v(div y∗ + f)) dx

+

∫

Ω

(
1

q
|∇v|q +

1

q∗ |y∗|q∗ − ∇v · y∗
)

dx. (4.13)

Finally, we note that the problem considered above generates an elliptic
variational inequality of the second kind. Analysis of suitable error measures
(and corresponding error majorants) for variational inequalities of the first
kind is presented in [13] for obstacle type problems and in [6] for problems
with nonlinear boundary conditions.
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1 Introduction

Reduced order modeling refers to the development of low-dimensional
models that represent the important characteristics of a high-dimensional
dynamical system. Typically, reduced models are constructed by project-
ing the high-fidelity model onto a suitably chosen low-dimensional subspace
([1]). While for linear models it is possible to produce input-independent
high accurate reduced models, in the case of general nonlinear systems
the transfer function approach is not applicable and input-specified semi-
empirical methods are usually employed. Most approaches for nonlinear
problems construct the reduced bases from a collection of simulations (method
of snapshots [21, 22, 23]).

Proper Orthogonal Decomposition (POD) – see [3, 5, 9, 10, 15, 25] and
the references therein – is probably the mostly used and most successful
model reduction technique, where the basis functions contain information
from the solutions of the dynamical system at pre-specified time-instances,
so-called snapshots. Due to a possible linear dependence or almost linear
dependence, the snapshots themselves are not appropriate as a basis. In-
stead two methods can be employed, singular value decomposition (SVD) for
the matrix of snapshots or eigenvalue decomposition for the correlation ma-
trix ([24]). The singular value decomposition based POD basis construction
is more computationally efficient since it decomposes the snapshots matrix
whose condition number is the square root of the correlation matrix used in
the eigenvalue decomposition.

Tensorial POD for reducing the computational complexities of the non-
linearity terms was traditionally employed in POD Galerkin by the fluid
mechanics community ([23, 15, 16]), and a matrix formulation named pre-
computing technique was introduced in [6] for calculation of quadratic non-
linearities. An extension of the tensorial based calculus to compute POD
Galerkin pth order polynomial nonlinearities has been proposed in [25].

A considerable reduction in the nonlinear terms complexity is achieved
by DEIM ([7]) – a discrete variation of Empirical Interpolation Method
(EIM), proposed by Barrault, Maday, Nguyen and Patera in [4]. According
to this method, the evaluation of the approximate nonlinear term does not
require a prolongation of the reduced state variables back to the original
high dimensional state approximation required to evaluate the nonlinearity
in the POD approximation.

Recently the use of interpolation methods relying on greedy algorithms
became attractive for computing the reduced order nonlinear terms deriva-
tives. Based on EIM, the Multi-Component Empirical Interpolation Method
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([27]) derives affine approximations for continuous vector valued functions,
while matrix DEIM (MDEIM) technique ([28]) relies on DEIM to approx-
imate the Jacobian of a nonlinear function to obtain aposteriori error esti-
mates of DEIM reduced nonlinear dynamical system. Significant progress
in the construction of implicit reduced order models is provided by the de-
velopment of the sparse matrix DEIM method ([26]) that uses samples of
the nonzero entries of the full Jacobian matrix and thus can approximate
very large matrices, unlike the current MDEIM method which is limited by
its large computational memory requirements.

In this work, we perform an application of DEIM combined with POD
to obtain dimension reduction of a model describing the interactions of the
two hosts and two parasitoids in a one-dimensional domain in the pres-
ence of a chemotaxis process. The model was introduced and analyzed
by Pearce et al. in [19, 20] with respect to the stability properties of the
steady-states. The behaviour of the parasitoids towards plant infochemicals
generated during host feeding are defined as a chemotactic response and the
plant infochemicals are viewed as chemoattractants. The model considers
a single chemoattractant produced in proportion to the total host density.
Both parasitoids play the role of biological control agents against the hosts.

The paper is organized as follows. Section 2 describes the equations
of parasitoid model under study. Section 3 describes the POD and DEIM
methods along with Galerkin projection. Results of illustrative numerical
experiments are discussed in Section 4 while conclusions are drawn in Section
5.

2 The multi-species host-parasitoid model

We describe here the parameters and the model equations introduced by
Pearce et al. in [20]. The reaction kinetics describing the interactions be-
tween hosts and parasitoids are coupled with spatial motility and chemotaxis
terms giving rise to a system of reaction-diffusion-chemotaxis equations.

In the absence of parasitism, both host species are modelled by logistic,
density-dependent growth, with growth rates r1 and r2 and carrying capac-
ities K1 and K2, respectively. Parasitism by both parasitoids is modelled
by an Ivlev functional response. C. glomerata parasitises P. brassicae at
rate α1 and P. rapae at rate α2. C. rubecula parasitises P. rapae at rate α3.
The efficiency of parasitoid discovery of hosts is denoted by a1, a2 and a3.
Each parasitised host gives rise to e1, e2 and e3 next-generation parasitoids.
The parasitoids are subject to mortality rates d1 (C. glomerata) and d2 (C.
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rubecula).

The motility coefficients D1, D2, D3 and D4 of the four species are
constants and determine the rate at which each species disperses randomly
throughout the domain. The chemoattractant K is generated proportionally
to the total host density (N + M) at the rate r3 and decays at the rate
d3. The motility coefficient of the chemoattractant, D5, is a constant and
defines the rate at which the chemoattractant diffuses through the domain.
The chemotactic response of both species of parasitoid is modelled as a
linear response and the strength of the response depends on the chemotaxis
coefficients χ1 and χ2. The model is defined by the equations ([20]):

∂N

∂t
=

random motility︷ ︸︸ ︷
D1∇2N +

logistic growth︷ ︸︸ ︷
r1N

(
1− N

K1

)
−

mortality due to parasitism︷ ︸︸ ︷
α1P (1− e−a1N ) ,

∂M

∂t
= D2∇2M + r2M

(
1− M

K2

)
− α2P (1− e−a2M )

−α3Q(1− e−a3M ) ,

∂P

∂t
= D3∇2P − χ1∇ · (P∇k) + e1α1P (1− e−a1N ) (2.1)

+e2α2P (1− e−a2M )− d1P ,

∂Q

∂t
= D4∇2Q︸ ︷︷ ︸

random motility

− χ2∇ · (Q∇k)︸ ︷︷ ︸
parasitoid chemotactic response

+ e3α3Q(1− e−a3M )︸ ︷︷ ︸
growth to the parasitism

− d2Q︸︷︷︸
mortality

,

∂K

∂t
= D5∇2K + r3(N + M)︸ ︷︷ ︸

production

−d3K ,

where N and M are the density of hosts P. brassicae and P. rapae, respec-
tively, P and Q represent the density of parasitoids C. glomerata and C.
rubecula, and K represents the concentration of the chemoattractant pro-
duced during feeding by the hosts. N = N(x, t) denotes local population
density (organisms per area) at time t and spatial coordinate x (and likewise
for M , P , and Q). k = k(x, t) denotes local chemoattractant concentration
at time t and spatial coordinate x.

Here we consider the system (2.2) in a bounded domain Ω with smooth
boundary ∂Ω and homogeneous Dirichlet boundary conditions (which cor-
respond to a hostile external habitat). The initial conditions given by
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N(x, 0) = N0(x), M(x, 0) = M0(x) P (x, 0) = P0(x),Q(x, 0) = Q0(x) and
K(x, 0) = K0(x) will be specified in Section 4.

Using the non-dimensional variables: t′ = r1t, x′ = x
L , N ′ = N

K1
, M ′ =

M
K2

, P ′ = P
K1

, Q′ = Q
K2

, K ′ = K
K0

, and dropping primes one obtains the
nondimensionalised system:

∂N

∂t
= DN∇2N + N (1−N)− s1P (1− e−ρ1N ) ,

∂M

∂t
= DM∇2M + γ1M (1−M)− s2P (1− e−ρ2M )

−s3Q(1− e−ρ3M ) ,

∂P

∂t
= DP∇2P − χP∇ · (P∇k) + c1P (1− e−ρ1N ) (2.2)

+c2P (1− e−ρ2M )− η1P ,

∂Q

∂t
= DQ∇2Q− χ2∇ · (Q∇k) + c3Q(1− e−ρ3M )− η2Q ,

∂K

∂t
= DK∇2K + γ2(N + γ3M)− η3K

where DN = D1
r1L2 , DM = D2

r1L2 , DP = D3
r1L2 , DQ = D4

r1L2 , DK = D5
r1L2 ,

χP = χ1k0

r1L2 , χQ = χ2k0

r1L2 , ρ1 = a1
K1

, ρ2 = a2
K2

, ρ3 = a3
K2

, γ1 = r1
r2

, γ2 = r3
K1

r1,

γ3 = K2
K1

, s1 = α1
r1

, s2 = α2K1
α1K2

, s3 = α3
r1

, c1 = e1α1
r1

, c2 = e2α2
r1

, c3 = e3α3
r1

,

η1 = d1
r1

, η2 = d2
r1

and η3 = d3
r1

.

3 The POD and POD-DEIM reduced order sys-
tems

In this section we briefly present some details for constructing the reduced-
order system of the full-order system (2.2) applying Proper Orthogonal De-
composition (POD) and Discrete Empirical Interpolation Method (DEIM).

POD is an efficient method for extracting orthonormal basis elements
that contain characteristics of the space of expected solutions which is de-
fined as the span of the snapshots ([9, 10, 14, 15]). In this framework,
snapshots are the sampled (numerical) solutions at particular time steps or
at particular parameter values. POD gives an optimal set of basis vectors
minimizing the mean square error of a reduced basis representation.

Our reduced order modeling description uses a discrete inner product
though continuous products may be employed too. Generally, an unsteady
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model is usually governed by the following semi–discrete dynamical system

dy(t)

dt
= F(y, t), y(0) = y0 ∈ Rn, n ∈ IN, (3.1)

n being the number of space points discretizing the domain. From the
temporal-spatial flow y(t) ∈ Rn, we select an ensemble of Nt time instances
y1, ...,yNt ∈ Rn, where Nt ∈ IN, Nt > 0. If we denote by ȳ = 1

N

∑n
i=1 yi

the mean field correction, one way to compute the POD basis is to apply an
eigenvalue decomposition to the correlation matrix W = [wij ]i,j=1,..,Nt , wij =
⟨yi− ȳ,yj− ȳ⟩, where ⟨·, ·⟩ is the Euclidean dot product. The corresponding
eigenvalues are denoted by λi ≥ 0, i = 1, .., Nt and the eigenvectors are
stored in a matrix Φ = [ϕij ]i,j=1,..,Nt, Φ ∈ RNt×Nt . Then the orthonormal

POD basis vectors are computed using vi =
∑Nt

j=1 ϕij(yi − ȳ), i = 1, .., Nt.
Next, we introduce a relative information content to select a low-dimen-

sional basis of size k ≪ n, by neglecting modes corresponding to the small

eigenvalues. Define I(m) =
∑m

i=1 λi∑n
i=1 λi

and k is chosen such that k = min{I(m) :

I(m) ≥ γ} where 0 ≤ γ ≤ 1 is larger than 99% of the total kinetic energy
captured by the reduced space V = span{v1,v2, ...,vk}. The way the POD
basis is constructed ensures that the mean square error between y(ti) and
POD expansion yPOD(ti) = ȳ + V ỹ(ti), ỹ(ti) ∈ Rk, for all i = 1, .., Nt and
k = 1, .., Nt is minimized on average [14, p. 4].

By employing a Galerkin projection, the full model equations (3.1) is
projected onto the space V spanned by the POD basis elements and the
POD reduced order model is obtained

dỹ(t)

dt
= V TF

(
ȳ + V ỹ(t), t

)
, ỹ(0) = V T

(
y(0)− ȳ

)
. (3.2)

The efficiency of the POD-Galerkin technique is limited to linear or
bilinear terms, since the projected nonlinear terms still depend on all the
variables of the full model. To mitigate this inefficiency the discrete empirical
interpolation method (DEIM) [6, 7, 8, 17] and the empirical interpolation
method (EIM) [4, 13, 18] approximate the nonlinear terms via effective affine
offline-online computational decompositions.

The projected nonlinearity in the system (3.2) is approximated by DEIM
in the form that enables precomputation, so that evaluating the approximate
nonlinear terms using DEIM does not require a prolongation of the reduced
state variables back to the original high dimensional state approximation, as
it is required for nonlinearity evaluation in the original POD approximation.
Only a few entries of the original nonlinear term, corresponding to the spe-
cially selected interpolation indices from DEIM must be evaluated at each
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time step ([4, 6, 7, 11, 24]). We provide formally the DEIM approximation
in Definition 1, and the procedure for selecting DEIM indices is shown in
Algorithm DEIM. Each DEIM index is selected to limit the growth of a
global error bound for nonlinear terms using a greedy technique ([7]).

Definition 1 Let {uℓ}mℓ=1 ⊂ Rn be a linearly independent set denoted by U,
which is computed from the snapshots of the nonlinear term F in (3.1). The
DEIM approximation of order m for F in the space spanned by {uℓ}mℓ=1 is
given by

F := U(PTU)−1PTF, (3.3)

where P = [eϱ1 , . . . , eϱm ] ∈ Rn×m, and eϱi = [0, ..0, 1︸︷︷︸
ϱi

, 0, .., 0]T ∈ Rn,

i = 1, .., m. The interpolation indices {ϱ1, . . . , ϱm} are selected inductively
from the basis {ui}mi=1 by the DEIM algorithm described below.

Algorithm DEIM:
INPUT: {uℓ}mℓ=1 ⊂ Rn linearly independent
OUTPUT: ϱ⃗ = [ϱ1, . . . , ϱm]T ∈ Rm

1. [|ρ| ϱ1] = max{|u1|}

2. U = [u1], P = [eϱ1 ], ϱ⃗ = [ϱ1]

3. for ℓ = 2 to m do

4. Solve (PTU)c = PTuℓ for c

5. r = uℓ −Uc

6. [|ρ| ϱℓ] = max{|r|}

7. U← [U uℓ], P← [P eϱℓ
], ϱ⃗←

[
ϱ⃗
ϱℓ

]

8. end for

Usually, the input basis U is obtained via POD method applied to non-
linear snapshots and inside the above algorithm we use U to denote some of
its columns. This is motivated by the fact that the columns are added in-
crementally at each step, and once the algorithm reaches the finishing state,
U is consistent with the initial notation proposed in Definition 1.

In the Algorithm DEIM we denoted by “max” the built-in Matlab func-
tion max with the same significance. Thus, this function applied at Step 6
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by [|ρ| ϱℓ] = max{|r|} leads to |ρ| = |rϱℓ
| = maxi=1,...,n{|ri|}, with the small-

est index taken when the values along |r| contain more than one maximal
element. Precisely, the index of the first one is returned. According to this
algorithm, the DEIM procedure generates a set of indices inductively on the
input basis in such a way that, at each iteration, the current selected index
captures the maximum variation of the input basis vectors. The vector r
can be viewed as the error between the input basis {uℓ}mℓ=1 and its approxi-
mation Uc from interpolating the basis {uℓ}m−1

ℓ=1 at the indices ϱ1, . . . , ϱm−1.
The linear independence of the input basis {uℓ}mℓ=1 guarantees that, at each
iteration, r is a nonzero vector and the output indices ϱ1, . . . , ϱm are not
repeating.

An error result for DEIM approximation of a nonlinear vector-valued
function F is available in [7, Lemma 3.2], where the bound is obtained by
limiting the local growth of a certain magnification factor. It was proved
that PTU is always nonsingular and the greedy based DEIM selection pro-
cess can be viewed in terms of minimizing the condition number of PTU.
Moreover, it was shown in [8, Theorem 3.1] that the error bounds in 2−norm
of the difference between the solutions of a full-order general nonlinear or-
der differential equation and its corresponding POD-DEIM reduced order
version can be approximated by the sums of the singular values correspond-
ing to the neglected POD bases vectors of the state variables and nonlinear
terms.

The POD and POD-DEIM reduced order models of the system (2.2)
were developed by using a Galerkin projection and the techniques presented
in this section.

4 Numerical results

The system (2.2) was solved numerically using a finite difference dis-
cretization. Let 0 = x0 < x1 < · · · < xn < xn+1 = 1 be equally spaced
points on the x-axis for generating the grid points on the dimensionless
domain Ω = [0, 1], and take time domain [0, T ] = [0, 1]. The correspond-
ing spatial finite difference discretized system of (2.2) becomes a system of
nonlinear ODEs. The semi-implicit Euler scheme was used to solve the dis-
cretized system of full dimension and POD and POD-DEIM reduced order
systems.

The parameters were set to the following values ([20]): DN = DM =
8.e-8, DP = DQ = 7.5e-7, DK = 1.25e-6, χP = 1.5e-5, χQ = 1.5e-5,
ρ1 = 2.5, ρ2 = 0.25, ρ3 = 2.5, γ1 = 0.8, γ2 = 0.01, γ3 = 1, s1 = 0.8,
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s2 = 0.2, s3 = 0.8, c1 = 0.3, c2 = 0.004, c3 = 0.2, γ1 = 0.2, γ2 = 0.1 and
γ3 = 0.01. In our simulations we used the following initial conditions:

N0(x) = x(1− x)[0.75e−100(x−0.5)2 + 0.25e−100(x−0.15)2 ],

M0(x) = x(1− x)[0.15e−100(x−0.35)2 + 0.65e−100(x−0.5)2 ],

P0(x) = x(1− x)[0.075e−100(x−0.25)2 + 0.075e−125(x−0.75)2 ],

P0(x) = x(1− x)[0.075e−125(x−0.15)2 + 0.095e−175(x−0.65)2 ],

and K0(x) = 0. The number of spatial inner grid points on the x-axis
was successively taken as 32, 64, 128, ..., 2048. The solution components
of the problem (2.2) for a space configuration with 2048 internal nodes of
each discretized variable are depicted in Figs. 1,2. Tables 1–4 and Figs.
3–5 show a significant improvement in computational time of the POD-
DEIM reduced system compared to the POD reduced and the full-order
system. Precisely, POD-DEIM reduces the computational time by a factor
of O(102). The CPU time used in computing POD reduced system clearly
reflects the dependency on the dimension of the original full-order system.

5 Conclusions

The model reduction technique combining POD with DEIM has been
de-monstrated to be efficient for capturing the spatio-temporal dynamics of
a multi-species host-parasitoid system with substantial reduction in both
dimension and computational time by a factor of O(102). The failure to
decrease complexity with the standard POD technique was clearly demon-
strated by the comparative computational times shown in Tables 1–4 and
Figs 3–5. DEIM was shown to be very effective in overcoming the deficien-
cies of POD with respect to the nonlinearities in the model under study. In
order to increase the efficiency of the POD-DEIM approximation, a possi-
ble extension is to incorporate the POD-DEIM approach with higher-order
FD schemes to improve the overall accuracy, especially due to the spatio-
temporal heterogeneity and chemotaxis driven instability.

It is also interesting to compare the Discrete Empirical Interpolation
Method with Gappy POD and Missing Point Estimation methods in a proper
orthogonal decomposition framework applied to a higher order finite differ-
ence parasitoid model. The gappy POD procedure uses a POD basis to
reconstruct missing, or ”gappy“ data and it was developed in [12]. The
Missing Point Estimation method ([2]) relies on gappy POD technique and
the reduced order model computes the Galerkin projections over a restricted
subset of the spatial domain.
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Table 1: CPU time of full-order system, POD and POD-DEIM reduced
systems.

Internal CPU Time CPU Time CPU Time
Nodes n Full Dim POD POD–DEIM

32 5.407969e+00 5.317957e+00 1.715911e-01
64 5.254361e+00 5.347111e+00 1.680101e-01
128 5.607438e+00 5.710571e+00 1.696068e-01
256 6.847215e+00 6.614301e+00 1.809442e-01
512 8.610269e+00 7.600184e+00 2.016218e-01
1024 1.337721e+01 9.417793e+00 1.835292e-01
2048 2.653383e+01 1.312482e+01 1.812312e-01

Table 2: POD and POD-DEIM average relative errors for the components
N and M – host species.

Internal Error rel Error rel Error rel Error rel

Nodes n POD – N POD–DEIM – N POD – M POD–DEIM – M

32 3.482843e-14 3.516461e-14 1.645643e-13 1.657210e-13
64 1.388416e-14 1.414009e-14 9.331344e-14 9.348847e-14
128 1.653464e-14 1.661955e-14 7.420785e-14 7.175778e-14
256 4.718024e-15 4.669319e-15 1.590888e-14 1.634144e-14
512 2.736167e-14 2.732722e-14 1.716102e-14 2.124873e-14
1024 2.993938e-14 3.012212e-14 1.859783e-14 3.643836e-14
2048 9.590961e-15 1.042055e-14 4.956752e-14 1.216911e-13

Table 3: POD and POD-DEIM average relative errors for the components
P and Q – parasitoid species.

Internal Error rel Error rel Error rel Error rel

Nodes n POD – P POD–DEIM – P POD – Q POD–DEIM – Q

32 2.460205e-14 2.459944e-14 1.961488e-14 1.961738e-14
64 6.814060e-14 6.817415e-14 3.010484e-14 2.997920e-14
128 8.805397e-15 8.808601e-15 2.347853e-14 2.483260e-14
256 8.218387e-15 8.221235e-15 3.326519e-14 3.230054e-14
512 6.303037e-15 6.304210e-15 4.516320e-15 4.445458e-15
1024 1.758562e-14 1.720852e-14 3.067915e-15 3.980249e-15
2048 5.855724e-15 9.105957e-15 1.085525e-14 1.340351e-14
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Table 4: POD and POD-DEIM average relative errors for the component
K – chemoattractant.

Internal Error rel Error rel

Nodes n POD – K POD–DEIM – K

32 5.987349e-14 6.004292e-14
64 3.937026e-14 3.981359e-14
128 3.118464e-14 3.054254e-14
256 1.440359e-14 1.604336e-14
512 3.286988e-14 3.330396e-14
1024 1.140597e-14 1.642880e-14
2048 2.154869e-14 4.431176e-14

Figure 1: Solution plots (N, M, P, Q) of the model from the full-order system
(n = 2048).
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Figure 2: Solution plot K from the full-order system (n = 2048).

Figure 3: Solution plots (N, M) of the model from POD-DEIM reduced
system (dimPOD=dimDEIM=32), with the corresponding average relative
errors at the inner grid points (n = 2048).
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Figure 4: Solution plots (P, Q) of the model from POD-DEIM reduced
system (dimPOD=dimDEIM=32), with the corresponding average relative
errors at the inner grid points (n = 2048).

Figure 5: Solution plots K of the model from POD-DEIM reduced system
(dimPOD=dimDEIM=32), with the corresponding average relative errors
at the inner grid points (n = 2048).
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Dedicated to the memory of Prof. Dr. Viorel Arnăutu
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1 Introduction

Consider the following nonlinear parabolic boundary value problem with
respect to the unknown function φ:





αξ
∂

∂t
φ− ξ∆φ =

1

2ξ
(φ− φ3) in Q = [0, T ] × Ω

ξ
∂

∂ν
φ+ αξ

∂

∂t
φ− ∆Γφ+ c0φ = w(t, x) on Σ = [0, T ] × ∂Ω

φ(0, x) = φ0(x) on Ω,

(1.1)

where:

• Ω is a bounded domain in IR with boundary ∂Ω = Γ and T > 0 stands
for some final time;

• φ(t, x) is the phase function (used to distinguish between the states
(phases) of a material which occupies the region Ω at every time t ∈
[0, T ]);

• α (the relaxation time), ξ (the measure of the interface thickness) and
c0 are positive constants;

• ∆Γ is the Laplace-Beltrami operator;

• w(t, x) ∈ W
1− 1

2p
,2− 1

p
p (Σ) is a given function and p satisfies

p ≥ 3

2
; (1.2)

• φ0 ∈ W
2− 2

p
∞ (Ω) verifying ξ ∂

∂νφ0 − ∆Γφ0 + c0φ0 = w(0, x) on Γ.

Equation (1.1)1 was introduced initially by Allen and Cahn (see [1]) to
describe the motion of anti-phase boundaries in crystalline solids. Actually,
the Allen-Cahn model is widely applied to moving interface problems, such
as the mixture of two incompressible fluids, the nucleation of solids, vesicle
membranes, etc. Also, the nonlinear parabolic equation (1.1)1 appears in the
Caginalp’s phase-field transition system (see [4]) describing the transition
between the solid and liquid phases in the solidification process of a material
occupying a region Ω (see [6]).
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Following the strategy used in [5] and [9], the nonlinear parabolic bound-
ary value problem (1.1) can be rewritten suitably in the following form:





αξ ∂∂tφ− ξ∆φ = 1
2ξ (φ− φ3) in Q

φ = ψ on Σ

ξ ∂
∂νφ+ αξ ∂∂tψ − ∆Γψ + c0ψ = w(t, x) on Σ

φ(0, x) = φ0(x) x ∈ Ω

ψ(0, x) = ψ0(x) x ∈ Γ,

(1.3)

where the new variable ψ = φ, ψ(0, x) = φ0 on Γ, is introduced in order
to treat the dynamic boundary conditions (1.1)2 as a parabolic equation

for ψ on the boundary Γ, with ψ0 ∈ W
2− 2

p
∞ (Γ), φ0 = ψ0 on Γ and, for the

remaining data in (1.1), we keep the meanings already formulated.
As regards the existence in (1.3), it is known that under appropriate

conditions on φ0 and w, there exists a unique solution (φ,ψ) ∈ W 1,2
p (Q) ×

W 1,2
p (Σ), p ≥ 3

2 (see [5, Theorem 2.1]). Here we have used the standard
notation for Sobolev spaces, namely, given a positive integer k and 1 ≤ p ≤
∞, we denote by W k,2k

p (Q) the usual Sobolev space on Q:

W k,2k
p (Q) =

{
y ∈ Lp(Q) :

∂r

∂tr
∂s

∂xs
y ∈ Lp(Q), for 2r + s ≤ k

}
,

i.e., the space of functions whose t-derivatives and x-derivatives up to the or-
der k and 2k, respectively, belong to Lp(Q). Also, we have used the Sobolev

spaces W l
p(Ω), W

l
2
,l

p (Σ) with nonintegral l for the initial and boundary con-
ditions, respectively (see [7, Chapter 1] and references therein).

Numerical investigation of the nonlinear parabolic problem (1.1), sub-
ject to various other types of boundary conditions, have been made in [2],
[3], [7] and [8]. The main novelty of this work is the presence of the non-
homogeneous dynamic boundary conditions (1.1)2, untreated numerically
until now (to our knowledge) in the mathematical literature and which
makes the present nonlinear parabolic problem (1.1) to be more accurate in
describing many important phenomena of two-phase systems: superheating,
supercooling, the effects of surface tension, separating zones, etc; in parti-
cular, the interactions with the walls in confined systems. Consequently, a
wide variety of industrial applications are covered.
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In order to approximate the solution of the nonlinear boundary value
problem (1.3) (in fact, the solution of problem (1.1)), a scheme of fractional
steps type was introduced and analyzed in [9], namely, for every ε > 0, it
was associated to problem (1.3) the following approximating scheme (see
also [2-3], [6-8]):





αξ ∂∂tφ
ε − ξ∆φε = 1

2ξφ
ε in Qεi

ξ ∂
∂νφ

ε + αξ ∂∂tψ
ε − ∆Γψ

ε + c0ψ
ε = w(t, x) on Σε

i

φε(iε, x) = z(ε, φε−(iε, x)) on Ω

ψε(iε, x) = φε(iε, x) on Γ,

(1.4)

where Qεi = [iε, (i+1)ε] × Ω, Σε
i = [iε, (i+1)ε] × Γ and z(ε, φε−(iε, x)) is the

solution of the Cauchy problem:





z′(s) + 1
2ξz

3(s) = 0 s ∈ [0, ε]

z(0) = φε−(iε, x) on Ω

φε−(0, x) = φ0(x) on Ω

φε−(0, x) = ψ0(x) on Γ,

(1.5)

for i = 0, 1, · · · ,Mε − 1, with Mε =
[
T
ε

]
, QεMε−1 = [(Mε − 1)ε, T ] × Ω,

Σε
Mε−1 = [(Mε − 1)ε, T ] × Γ and φε− stands for the left-hand limit of φε.

In other words, the fractional steps method consists in decoupling the
nonlinear problem (1.3) in a linear parabolic boundary value problem, ex-
pressed on a partition of the time interval [0, T ] (composed from Mε subin-
tervals, the first Mε−1 having the same length ε) and a nonlinear ordinary
differential equation containing the nonlinearity φ3. Accordingly, the ad-
vantage of this approach consists in simplifying the numerical computation
of the process of approximation for the solution of nonlinear problem (1.1).

Invoking again the Theorem 2.1 in [5], we have that there is a unique
solution to (1.4)-(1.5), namely: (φε, ψε) ∈ W 1,2

p (Qεi )×W 1,2
p (Σε

i ), with p ≥ 3
2

and i = 0, 1, · · · ,Mε − 1.
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Owing to the Lions and Peetre embedding theorem, we know that
W 1,2
p (Q) ⊂ L∞(Q) if p ≥ 3

2 (see [7, Chapter 1] and references therein) and
thus, for later use, we will introduce the sets:

WQ = L2([0, T ];H1(Ω)) ∩ L∞(Q) and WΣ = L2([0, T ];H1(Γ)) ∩ L∞(Σ).

Definition 1 By a weak solution of the nonlinear problem (1.3) we mean a
pair of functions (φ,ψ) ∈ WQ × WΣ, φ = ψ on Σ, which satisfies (1.3) in
the following sense:

αξ

∫

Q

(
∂

∂t
φ, ϕ1

)
dt dx+ ξ

∫

Q

∇φ∇ϕ1 dt dx (1.6)

+αξ

∫

Σ

(
∂

∂t
ψ, ϕ2

)
dt dγ +

∫

Σ

∇ψ∇ϕ2 dt dγ + c0

∫

Σ

ψϕ2 dtdγ

=
1

2ξ

∫

Q

(φ− φ3)ϕ1 dt dx+

∫

Σ

wϕ2 dtdγ

∀(ϕ1, ϕ2) ∈ L2([0, T ];H1(Ω)) × L2([0, T ];H1(Γ)), and φ(0, x) = φ0(x) in Ω.

The symbols
∫
Q

and
∫
Σ

above denote the duality between L2([0, T ];H1(Ω))

and L2([0, T ];H1(Ω)′), as well as L2([0, T ];H1(Γ)) and L2([0, T ];H1(Γ)′),
respectively.

The following result (see [3], [7]) establishes the relationship between the
solution (φ,ψ) in (1.3) and the solution (φϵ, ψϵ) in (1.4)-(1.5).

Theorem 1 Assume that φ0(x) ∈ W
2− 2

q
∞ (Ω), satisfying ξ ∂

∂νφ0 − ∆Γφ0 +

c0φ0 = w(0, x) on Γ, and w(t, x) ∈ W
1− 1

2p
,2− 1

p
p (Σ). Let (φε, ψε) be the

solution of the approximating scheme (1.4)-(1.5). Then for ε → 0, one has

(φε, ψε) → (φ⋆, ψ⋆) strongly in L2(Ω)×L2(Γ) for any t ∈ (0, T ], (1.8)

where (φ⋆, ψ⋆) ∈ WQ × WΣ is the weak solution of the nonlinear equation
(1.3).

The outline of the paper is as follows: in Section 2 we have introduced the
discrete equations corresponding to (1.4)-(1.5); consequently, a conceptual
numerical algorithm has been formulated: Alg 1-IMBDF dbc. A stability
result for this approach is stated and proved in the next Section. Some
numerical experiments are reported in the last Section.
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2 Numerical method

In this section we are concerned with the numerical approximation of
the solution (φε, ψε) to (1.4)-(1.5). As already stated, we will work in one
dimension and then ∆φε = φεxx, ∆Γψ

ε = ψεxx and ∂
∂νφ

ε = ∂
∂xφ

ε · ν = ∓φεx
(i.e., (see [7, Chapter 1, p. 27]), the directional derivative of φε in the
direction of the outward pointing unit normal vector ν).

Let Ω = (0, b) ⊂ IR+ and we introduce over it the grid withN equidistant
nodes

xj = (j − 1)dx j = 1, 2, . . . , N, dx =
b

N − 1
.

Accordingly, the boundary Γ is given by the set of points {x1 =0, xN =b}.
Considering M ≡ Mε as the number of equidistant nodes in which is

divided the time interval [0, T ], we set

ti = (i− 1)ε i = 1, 2, . . . ,M, ε =
T

M − 1
.

We denote by φij the approximate values in the point (ti, xj) of the
unknown function φε. More precisely

φij = φε(ti, xj) i = 1, 2, . . . ,M, j = 1, 2, . . . , N,

i.e., for the later use

φi
not
=

(
φi1, φ

i
2, . . . , φ

i
N

)T
i = 1, 2, . . . ,M. (2.1)

We continue by explaining how we will treat each term from (1.4)-(1.5).
Owing to the relation (1.4)4 and knowing that Γ = {x1, xN}, we can put





ψi1 = ψε(ti, x1) = φε(ti, x1) = φi1
i = 1, 2, . . . ,M.

ψiN = ψε(ti, xN ) = φε(ti, xN ) = φiN

(2.2)

The Laplace operator in (1.4)1 will be approximated by a second order cen-
tred finite differences, that is, for i = 1, 2, ...,M :

φεxx(ti, xj) = ∆dxφ
i
j ≈

φij−1 − 2φij + φij+1

dx2
j = 1, 2, ..., N, (2.3)

where ∆dx is the discrete Laplace operator, depending on the step-size dx.
Corresponding to the Laplace-Beltrami operator in (1.4)2, we will use the
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same approximating scheme as above, which, correlated with (1.4)4 and
(2.2), gives us





ψεxx(ti, x1) = ∆dxψ
i
1 ≈ φi

0−2φi
1+φi

2
dx2

i = 1, 2, ...,M,

ψεxx(ti, xN ) = ∆dxψ
i
N ≈ φi

N−1−2φi
N+φi

N+1

dx2

(2.4)

where φi0 and φiN+1 are dummy variables.

Involving the separation of variables method to solve the Cauchy problem
(1.5) (see [2], [6], [7], [8]), we obtain





z(ε, φε−(t1, x))=z(ε, φ0(x))=φ0(x)
√

ξ
ξ+εφ0(x) ,

i = 2, ...,M − 1.

z(ε, φε−(ti, x))=φε−(ti, x)
√

ξ
ξ+εφε

−(ti,x)

(2.5)

Remembering that ∂Ω = Γ = {x1, xN}, the boundary conditions (1.4)2
can be rewritten as follows





−ξφεx(x1)+αξ
∂
∂tψ

ε(ti, x1)−ψεxx(ti, x1)+c0ψ
ε(ti, x1)=w(ti, x1)

ξφεx(xN )+αξ ∂∂tψ
ε(ti, xN )−ψεxx(ti, xN )+c0ψ

ε(ti, xN )=w(ti, xN ),

(2.6)

for i = 1, 2, . . . ,M , where the sign in the front of ∂
∂νφ

ε = φεx · ν is −
(+) because the normal to [0 = x1, b = xN ] at x1 (xN ) point is in the
negative (positive) direction (i.e. the unit normal vector ν = ∓1 at 0 and b,
respectively).

Now, using in (2.6) a forward (backward) finite differences to approxi-
mate φεx(x1) (φεx(xN )) and, taking into account the relations (2.2) and (2.4),
we get





−ξ φ
i
2−φi

1
dx + αξ ∂∂tψ

ε(ti, x1) − ∆dxψ
i
1 + c0ψ

i
1 = wi1

ξ
φi

N−φi
N−1

dx + αξ ∂∂tψ
ε(ti, xN ) − ∆dxψ

i
N + c0ψ

i
N = wiN ,

(2.7)

where wi1 = w(ti, x1), w
i
N = w(ti, xN ), i = 1, 2, ...,M .

For approximating the partial derivative with respect to time, we em-
ployed a first-order scheme, namely:
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



∂
∂tφ

ε(ti, xj) ≈ φi
j−φi−1

j

ε i = 2, 3, . . . ,M, j = 1, 2, . . . , N

∂
∂tψ

ε(ti, xj) ≈ ψi
j−ψi−1

j

ε i = 2, 3, . . . ,M, j ∈ {1, N}.
(2.8)

Finally we refer to the right hand in (1.4)1 that is 1
2ξφ

ε(ti, xj). To approx-
imate this quantity (the reaction term), we will involve an implicit formula
(see [8]), i.e.:

1

2ξ
φε(ti, xj) ≈ 1

2ξ
φij i = 1, 2, . . . ,M, j = 1, 2, . . . , N. (2.9)

We are now ready to build the 1-IMBDF approximating scheme. To
do this, we begin by replacing in (1.4)1 the approximations stated in (2.3),
(2.8)1 and (2.9). We deduce

αξ
φij − φi−1

j

ε
− ξ∆dxφ

i
j =

1

2ξ
φij , i = 2,M, j = 1, N. (2.10)

We continue by replacing in (1.4)2 the approximations stated in (2.4), (2.7)
and (2.8)2 which leads to





αξ
ψi

1−ψi−1
1

ε − ξ
φi

2−φi
1

dx − ∆dxψ
i
1 + c0ψ

i
1 = wi1,

αξ
ψi

N−ψi−1
N

ε +ξ
φi

N−φi
N−1

dx −∆dxψ
i
N+c0ψ

i
N =wiN , i = 2,M.

(2.11)

Substituting in (2.10) and (2.11) the approximations of ∆dxφ
i
j , ∆dxψ

i
1 and

∆dxψ
i
N , expressed by (2.3) and (2.4), respectively, using (2.2) and arranging

convenient, we obtain that (1.4) is discretized as follows





−c2φij−1 +
[
c1 + 2c2 − 1

2ξ

]
φij − c2φ

i
j+1 = c1φ

i−1
j j = 1, N,

[c1 + c3 + 2 + c0]φ
i
1 − (1 + c3)φ

i
2 = wi1 + c1φ

i−1
1 + φi0,

−(1+c3)φ
i
N−1+[c1+c3+2+c0]φ

i
N =wiN+c1φ

i−1
N +φiN+1,

(2.12)

for i = 2, 3, . . . ,M , where

c1 = αξ
ε , c2 = ξ

dx2 and c3 = ξ
dx .



THE NONLINEAR PHASE-FIELD EQUATION 197

In order to compute the matrix
(
φij

)
i=2,M, j=1,N

, the linear system

(2.12) will be solved ascending with respect to the time levels. For the
first time level (i = 1), the values of φ1

j are computed using (1.4)3 and
(2.5). For more details on implementing this computation process which
involves the variable z, see the cycle ”For i = 2 to M do” in the algorithm
”Alg 1-IMBDF dbc” listed below.

Moreover, let us point out from (2.12) that we have N unknowns for
each time-level i, i = 2, 3, ...,M (see and (2.1)).

If, corresponding to j = 1 and j = N we take φi0 = φi1 and φiN+1 = φiN ,
than the system (2.12) can be rewritten in matrix form as

Aφi = Bφi−1 + di i = 2, 3, ...,M, (2.13)

where

A =




a1 −(1 + c2 + c3) 0 · · · 0 0 0
−c2 c1 + 2c2 − 1

2ξ −c2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −c2 c1 + 2c2 − 1
2ξ −c2

0 0 0 · · · 0 −(1 + c2 + c3) a1




a1 = c1 + 2c2 + c3 + c0 + 1 − 1
2ξ ,

B =




2c1 0 · · · 0 0
0 c1 · · · 0 0
...

...
. . .

...
...

0 0 · · · c1 0
0 0 · · · 0 2c1




di =




wi1
0
...
0
wiN



.

Therefore, the general design of the algorithm to calculate the approxi-
mate solution to the nonlinear system (1.4)-(1.5), via fractional steps method
and 1-IMBDF, is the following one

Begin Alg 1-IMBDF dbc

Choose T > 0, b > 0;

Choose M > 0, N > 0; compute ε and dx;

Choose φ0 and w;

Set ψ0(x1) = φ0(x1) and ψ0(xN ) = φ0(xN );

Compute φ1
1 = φϵ−(0, x1) = ψ0(x1) from (1.5)4;

For j = 2 to N − 1 do

Compute φ1
j = φϵ−(0, xj) = φ0(xj) from (1.5)3;
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End-for;

Compute φ1
N = φϵ−(0, xN ) = ψ0(xN ) from (1.5)4;

For i = 2 to M do

Compute wi−1
1 and wi−1

N ;

Compute φi−1 = z(ε, φε−(ti−1, ·)) using (2.5);

Compute φi solving the linear system (2.13);

End-for;

End.

As it is well known, most initial value problems reduce to solving large
sparse linear systems of the form (2.13). For later use regarding the numer-
ical implementation of the conceptual algorithms Alg 1-IMBDF dbc, we
proof the following

Lemma 1. If

c1 + 2c2 + c3 + c0 + 1 − 1

2ξ
̸= 0 and c1 + 2c2 − 1

2ξ
̸= 0, (2.14)

then the matrix coefficients in linear system (2.13) can be factored into the
product of a lower-triangular matrix and an upper-triangular matrix (LU -
factorization).

Proof. Let denote by amn, m,n = 1, 2, · · · , N , the elements of matrix co-
efficients in linear system (2.13). Analyzing the main diagonal elements of
block matrices A, we first find that, owing to the hypothesis expressed by
(2.14), second part, the coefficients ann, n = 2, 3, · · · , N − 1 ̸= 0. Observing
now that a1 ̸= 0 reflect the assumptions expressed in (2.14), first part, we
find easily that ann ̸= 0 ∀n = 1, 2, · · · , N . So Gaussian elimination can be
performed on the system (2.13) without interchanges; consequently A has
an LU factorization.

Remark 1. As we can easily deduce from the proof of Lemma 1, the
hypothesis (2.14) expresses the requirement that all diagonal elements of
the matrix coefficients A in (2.13) to be non-zero, which guarantees the
existence of LU decomposition.

3 Stability conditions

To establish conditions of stability for the linear difference equations ex-
pressed by (2.13), we will use in our analysis the Lax-Richtmyer definition of
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stability, expressed in terms of norm ∥·∥∞ (see [7, Chapter 5] and references
therein). Equation (2.13) may be rewritten in a more convenient form as

φi = A-1Bφi−1 +A-1di i = 2, 3, ...,M (3.1)

(the existence of A-1 will be proved in the proof of Proposition 1 below).
Moreover, the matrix A can be written in the form

A = D(I +D-1G) (3.2)

where D = diag(a1, c1 + 2c2 − 1
2ξ , · · · , c1 + 2c2 − 1

2ξ , a1) and G = A − D.

Thus, noting a2 = c1 + 2c2 − 1
2ξ , we have

D-1G =




0 -1+c2+c3
a1

0 · · · 0 0 0

- c2a2
0 - c2a2

· · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · - c2a2
0 - c2a2

0 0 0 · · · 0 -1+c2+c3
a1

0



.

The sum of each line in matrix D-1G is written in the vector v below
(recall that a1 = c1 + 2c2 + c3 + c0 + 1 − 1

2ξ and a2 = c1 + 2c2 − 1
2ξ )

v =

[
-
1 + c2 + c3

a1
, -2

c2
a2
, · · · , -2 c2

a2
, -

1 + c2 + c3
a1

]
. (3.3)

Let’s denote by

vmax = max{|-(1 + c2 + c3)|, |-2c2|} and vmin = min{|a1|, |a2|}.

Now we are able to prove the following result with respect to the stability
in matrix equation (3.1).

Proposition 1. Suppose that vmin − vmax > 0. If

αξ

vmin − vmax
<
ε

2
(3.4)

then the equation (3.1) is stable. Otherwise, it is unstable.

Proof. The proof is reduced to check the inequality ∥A−1B∥∞ < 1. We begin
by determining an estimate for ∥D−1G∥∞ = max |v|, wherefrom we easily
derive the estimate

∥D−1G∥∞ <
vmax
vmin

. (3.5)

The estimate (3.5) allows now to prove the existence of A-1. Indeed, since
by hypothesis we have assumed that vmax < vmin than ∥D−1G∥∞ < 1 which
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guarantees that there exist (I + D-1G)−1. Moreover, there exist A-1 and
A-1 = (I+D-1G)-1D-1. Using the well known inequality: ∥(I+D-1G)-1∥∞ <

1
1−∥D−1G∥∞

and making use of (3.2), it follows that

∥A−1∥∞ ≤ ∥(I +D-1G)-1∥∞∥D−1∥∞ <
1

1 − ∥D−1G∥∞
∥D−1∥∞. (3.6)

How the inequality ∥D−1G∥∞ < 1 imply that 1−∥D−1G∥∞ > 1− vmax
vmin

> 0,
we easily deduce now that

0 <
1

1 − ∥D−1G∥∞
<

vmin
vmin − vmax

.

Since ∥D−1∥∞ ≤ 1
vmin

and involving the above estimate, from (3.6) we finally
obtain

∥A−1∥∞ <
1

vmin − vmax
. (3.7)

Now we turn our attention to matrix B. Analyzing the matrix B lines, it
follows that

∥B∥∞ = max {2c1, c1} = 2
αξ

ε
. (3.8)

Summing up and making use of (3.7)-(3.8) we derive the following estimate

∥A−1B∥∞ ≤ ∥A−1∥∞∥B∥∞ <
1

vmin − vmax
∥B∥∞,

which, owing to (3.4), leads us to the estimate ∥A−1B∥∞ < 1 as we claimed
at beginning of proof.

Remark 2. The hypothesis vmin > vmax in Proposition 1 derives from the
necessity to have a strict sub-unitary estimation for max |v| (see relation
(3.3)). A large part of numerical experiments presented in the next section
are designed to support this theoretical aspect.

4 Numerical experiments

The aim of this Section is to present numerical experiments implementing
the conceptual algorithm Alg 1-IMBDF dbc. Corresponding to input
data T , b, M , N , we have used several different values, while, for the model’s
parameters, we have started with the values: ξ = .5, α = 1.0e + 1 and
c0 = 1.0e− 3.
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Figure 1: The initial conditions φ0
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Figure 2: The approximate solution z(ε, ·) of the Cauchy problem (1.5)

The initial values φ0(xj), j = 1, 2, ..., N , plotted in Figure 1, were com-
puted via Matlab function csapi(fi0) - cubic spline interpolant, corre-
sponding to the following input data:

fi0=[-1.4 -1.4 -1.44 -1.42 -1.42 -1.44 -1.43 -1.43 -1.42 -1.42 -1.4 -1.4 -1.25 ...

-1.2 -1.17 -1.15 -1.1 -1.08 -1.0 -.95 -.9 -.85 -.88 -.6 .0 .5 -.92 -.25 .8 -.7 ...

.58 .75 .58 -.63 -.59 .69 -.72 .7 -.59 -.5 .7 -.79 -.87 -.88 .0 .72 -.8 .81 ...

.0 -.89 .0 .7 .55 .68 -.49 .79 .0 -.1 -.8 -.78 -.83 .69 .8 .68 .5 .7 .59 1. ...

1.08 1.1 1.15 1.17 1.2 1.25 1.3 1.3 1.25 1.24 1.3 1.31 1.3 1.32 1.3 1.3];

Now (see (2.5)) we are able to calculate the vector (z (ε, φ0(xj)))j=1,N , plot-

ted in Figure 2, and the vector φ1 =
(
φ1
j

)
j=1,N

(see (1.4)3).

We will present now some numerical experiments regarding the stability
of the matrix equation (3.1), established by Proposition 1. For the first
tests, we have set: T = 1, b = 2, M = 100, N = 100 and the values at
boundary given by: w(ti, 0) = −725, w(ti, b) = 0, i = 1, 2, ...,M . We can
verify that vmin − vmax = 1.69e+ 3 > 0 and αξ

vmin−vmax
− ε

2 = −0.0021 < 0.
Consequently, all hypothesis in Proposition 1 are satisfied and then we are
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Figure 3: Example of numerical stability: φi at different levels of time
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Figure 4: Example of numerical stability: φi at different levels of time

in a stability case. The shape of the graphs plotted in Figures 3 shows
that it really is. Changing in the above settings only the value of M , again
we are in a stable case. Analyzing the graph in Figure 4 we find a slight
improvement of stability in the boundary point x1 = 0.

Taking now T = 2, b = 2, M = 50, N = 50 and α = 1.0e + 2, one can
check that αξ

vmin−vmax
− ε

2 = 0.00224 > 0 which means that the hypothesis
(3.4) in not verified, i.e., the numerical scheme (3.1) is unstable (see Figure
5). Changing ξ = 0.75 and c0 = 1.0e+3, we get αξ

vmin−vmax
− ε

2 = 0.0054 > 0.
So, again we are in a unstable case (see Figure 6). Let’s remark that the
instability of the solution occurred after a slight change for α, ξ and c0.
This highlights the strong dependence of approximation scheme regarding
physical parameters.

We turn to numerical stability conditions changing w(ti, 0) = 72.5 and
w(ti, b) = −72.5, i = 1, 2, ...,M . We get again a stable case and the nu-
merical results, obtained by algorithms Alg 1-IMBDF dbc were plotted
in Figure 7. Analyzing the approximations near 0 and b, we observe a good
stability which makes it suitable to be used in the numerical analysis of the
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Figure 5: Example of a numerical instability
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Figure 6: Example of a slight numerical instability
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Figure 7: Example of numerical stability: φi at different levels of time



204 C. Moroşanu

boundary optimal control problems governed by (1.1).

5 Conclusions

Analyzing the numerical results in terms of physical phenomena (see fig-
ures 3-7), we find that the phase function distribution say that the instability
of the portion of material will disappear. Moreover, the numerical experi-
ments depicted in figure 7, for example, highlight the theoretical meaning
assigned to the unknown function φ and the zone of separation between
material phases.

The numerical solution obtained by this way can be considered as an
admissible one for the appropriate boundary optimal control problem (from
this perspective, compare figures 4, 5 and 7 in terms of stability). Gen-
erally, the numerical method considered here can be used to approximate
the solution of a nonlinear parabolic phase-field system containing a general
nonlinear part. Not the least, let’s remark that conditions of stability are
sustained by both theory and numerical experiment and that are signifi-
cantly dependent on the physical parameters.
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[3] T. Benincasa, C. Moroşanu. Fractional steps scheme to approximate the
phase-field transition system with non-homogeneous Cauchy-Neumann
boundary conditions. Numer. Funct. Anal. & Optimiz. 30:199-213,
2009.

[4] G. Caginalp, X. Chen. Convergence of the phase field model to its sharp
interface limits. Euro. Jnl of Applied Mathematics 9:417-445, 1998.
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[8] C. Moroşanu, Ana-Maria Moşneagu. On the numerical approxima-
tion of the phase-field system with non-homogeneous Cauchy-Neumann
boundary conditions. Case 1D. ROMAI J. 9:91-110, 2013.
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