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I had the privilege of meeting Professor Adelina Georgescu almost
20 years ago during a series of courses that she held at the University of
Craiova, Romania. What followed was more than a collaborative relation-
ship; it was a long friendship, during which I discovered in her a gifted
Romanian mathematician with a brilliant mind and a sharp spirit of righ-
teousness.

Born on April 25, 1942 in Turnu Severin, Romania, she lost her mother
at the age of two and was subsequently raised by her grandparents in Cas-
tranova. She began her schooling in Caracal and also graduated from an all-
girls’ high school in the same town. Between 1960 and 1965 she continued her
studies in mathematics at the University of Bucharest. Here she benefited
from the instruction of famous professors such as Victor Vâlcovici, Miron
Nicolescu, Grigore Moisil, Gheorghe Vranceanu, Solomon Marcus, and Caius
Iacob. Under the latter’s guidance she completed her degree and earned her
university diploma.

In 1965 she began working at the Institute of Applied Mechanics Traian
Vuia, which later became the Institute of Fluid Mechanics. She then pursued
a PhD at the Institute of Mathematics, studying hydrodynamic stability and
corresponding with the best world specialists in the field. In 1970 she earned
her doctorate degree in mathematics, under the supervision of academician
Caius Iacob.

Between 1970 and 1975 she worked for the Institute of Mathematics,
where she enjoyed a high-quality library, scientifically-advanced seminars,
and elaborate discussions with the elite of Romanian mathematicians. After
the closing of the Institute of Mathematics in 1975, she returned to the In-
stitute of Fluid Mechanics and Aerospatial Engineering, where she remained
until 1990. Here she worked on her first book in English, Hydrodynamic Sta-
bility Theory. The book was published by Kluwer in 1985 and has remained
a highly appreciated reference in the field. At the same time she held her
first courses at the Faculty of Mathematics from Bucharest.

The close relationship she had with her two sons, Andrei (born in 1971)
and Sergiu Moroianu (born in 1973), well-known mathematicians today, and
the relentless care for their education, enabled her to endure the difficulties
of the communist regime and the stifling atmosphere maintained by it, until
the Romanian Revolution in December 1989.
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After the Revolution, returning to the re-established Institute of Mathe-
matics of the Romanian Academy, she was often invited to hold conferences,
seminars, and courses at foreign universities and research centers.

A three-month visit to the United States in 1990 gave her the strong
conviction that mathematics needs to be more closely applied to real life
problems and related to the universe of physics, economics and biology. This
is why, after numerous complicated formalities, in 1991 she founded the Insti-
tute of Applied Mathematics (IMA), which she managed until 1995. Starting
with a group of 25 researchers and modest working conditions, she succeeded
to raise funds and to develop an institute of high scientific level, with an
elegant headquarter and a rich library.

Still in 1990 she took the lead, with professors Cabiria Andreian Cazacu
and Petre Osmatescu, to resume the organization of the Congress of the
Romanian Mathematicians from all over the world, which had not been held
since 1956. The idea finally materialized in 2003 with the organization of the
Fifth Congress of the Romanian Mathematicians at Piteşti.

Promoting a rich scientific life of Romanian mathematicians through wide
participation to conferences and constant exchange of research ideas, in 1992,
in parallel with the IMA, she established the Romanian Society of Applied
and Industrial Mathematics (ROMAI). This organization now has more than
150 members and an important branch in Basarabia. The organization has
hosted annual Conferences on Applied and Industrial Mathematics (CAIM),
the first one being held in Oradea in 1993. Professor Georgescu was involved
in the organization of these conferences and in the improved rigor of their
scientific content. Consequently, she published papers in volumes, starting
with limited editions and then publishing them in the Scientific Bulletins of
the University of Pitesti. Finally, the organization launched its own journal
in 2005: ROMAI Journal.

In 1997, after her management position at IMA was terminated due to a
controversial competition held while she was in Paris for a 6-month research
stage, she moved to the University of Pitesti. Here she was elected head of
the Department of Applied Mathematics. Following her dream to develop the
field of applied mathematics, she organized at Pitesti the Research Seminar
Victor Vâlcovici; she initiated and supported the hiring of talented young
mathematicians and she edited a series of scientific monographs, which par-
ticularly reflected the activity of the ROMAI members. The first issue of the
Applied and Industrial Mathematics Series appeared in 1999, and 29 issues
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have been published up to this day. Disciplined, honest and dedicated, she
contributed to the improved rigor and quality of education offered at the
University of Pitesti. In permanent struggle with the established academic
hierarchy, she fought tirelessly and often unsustained for a clean and high
quality university.

During her last years, she extended her collaboration with Italian math-
ematicians such as Lidia Palese and Liliana Restuccia. They published tens
of articles and attended many conferences and seminars at the universities
of Bari, Messina and Catania.

Patriotically and tirelessly, she fought tooth and nail for the rapproche-
ment of Basarabia. Thus, she collected and sent to Moldavia lots of books
written in Romanian in a period when these books could hardly be found
in that region. Additionally, with the support of a great number of Molda-
vian mathematicians, she expanded the organization of the CAIM confer-
ences to Chisinau. Well-known mathematicians such as academician Mitro-
fan Ciobanu or professors Mefodie Rata, Mihail Popa, Dumitru Botnaru
related their names to ROMAI and became regulars of CAIM conferences.
Through all her actions, Adelina Georgescu showed that, in spite of all the
existing obstacles, the idea of solidarity and spiritual unity with Moldavians
is always present in the hearts of Romanians on the left side of the Prut
River.

The main research contributions of Professor Adelina Georgescu were in
hydrodynamics and their applications to complex fluid flows, hydrodynamic
stability, turbulence, perturbative theories for differential equations, non-
linear dynamics, bifurcation theory, variational problems of mathematical
physics, and synergetics. Her notable contributions comprise more than 200
scientific papers and 19 books, published both in Romania and abroad. She
also hosted hundreds of conferences and other scientific meetings. A book of
memoirs, published post-mortem, completes in a retrospective key her rich
list of publications. With enthusiasm and persistence, she built a school
of high academic quality, mainly focussed on applications of mathematical
theories. The extraordinary personality of Professor Adelina Georgescu was
felt by all her collaborators, friends and acquaintances. Her joy of sharing
knowledge and science led her further to supervise and oversee 19 PhD theses,
finalized between 1997 and 2009.

Of a rare honesty and a remarkable intelligence and generosity, she worked
unwaveringly toward fulfilling her dream of advancing the field of applied
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mathematics. In recognition of her scientific accomplishments, she was elected
Doctor Honoris Causa of the University of Tiraspol, corresponding member
of Academia Peloritana dei Pericolanti in Messina, member of the Academy
of Nonlinear Sciences in Moscow, and member of the Academy of Romanian
Scientists.

Professor Adelina Georgescu passed away on the First of May, 2010. She
is resting near her father in the garden of a small church in her childhood
village of Castranova. In her memory, at the annual conference organized
at Iasi in October 2010, the ROMAI society awarded the first Prize Adelina
Georgescu for Applied Mathematics, established for rewarding the most gifted
young mathematicians from Romania and Republic of Moldavia.

I once heard Professor Adelina Georgescu citing her father’s words at her
graduation ceremony: ”I gave you wings, now fly away!” And she did fly,
throughout her subsequent life, higher and higher. And she gave wings to
many disciples who found in her an energetic advisor always ready to share
her knowledge and ideas. She was more than the founder of a research school:
an unforgettable model of moral integrity, dignity and patriotism.

Farewell, dear Adelina Georgescu! You will always live in our hearts!

Carmen Rocşoreanu
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ATTRACTORS OF THE PERIODICALLY
FORCED RAYLEIGH SYSTEM∗

Petre Băzăvan†

Abstract
The autonomous second order nonlinear ordinary differential equa-

tion (ODE) introduced in 1883 by Lord Rayleigh, is the equation which
appears to be the closest to the ODE of the harmonic oscillator with
dumping.

In this paper we present a numerical study of the periodic and
chaotic attractors in the dynamical system associated with the general-
ized Rayleigh equation. Transition between periodic and quasiperiodic
motion is also studied. Numerical results describe the system dynam-
ics changes (in particular bifurcations), when the forcing frequency is
varied and thus, periodic, quasiperiodic or chaotic behaviour regions
are predicted.
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and sections, Lyapunov exponents, periodic and quasiperiodic motion.

1 Introduction

The nonautonomous second order nonlinear ODE with time dependent sinu-
soidal forcing term, given by Diener [1979, 1],

ε
..
x +

.
x

3

3
− .
x +ax = g sinωt, (1)
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is a generalisation of the Rayleigh equation
..
x +

.
x
3

3 −
.
x +x = 0 [Diener, 1979,

1]. Here, x : R → R, x = x(t) is the unknown function and the dot over x
stands for the differentiation with respect to t. The control parameters are
ε, a, g (forcing amplitude) and and ω (forcing frequency).

Some aspects concerning šcanardš bifurcations are analyzed in [Diener,
1979, 1] and [Diener, 1979, 2] for the periodically forced generalization of
Rayleigh equation (1). From mathematical perspective the nonautonomous
system of nonlinear ODEs associated with this equation is one of a class of
periodically forced nonlinear oscillators, as the van der Pol (VP) and Bon-
hoeffer van der Pol (BVP) systems are. The behaviour of these systems was
much numerically investigated in [Flaherty and Hoppensteadt, 1978], [Met-
tin et al., 1993] and [Barns and Grimshaw, 1997], due to their applications
in electronics and physiology.

With (1), the two-dimensional non-linear non-autonomous system of ODEs{ .
x1= x2,
.
x2= −a

εx1 + 1
ε

(
x2 −

x3
2
3

)
+ g

ε sinωt,
(2)

and the three-dimensional nonlinear autonomous system
.
x1= x2,
.
x2= −a

εx1 + 1
ε

(
x2 −

x3
2
3

)
+ g

ε sinx3,
.
x3= ωmod2π,

(3)

are associated. A three-dimensional dynamical system with phase space R2×
S1 can be associated with (3). In [Sterpu et al., 2000], for the unforced
case g = 0, the existence of a unique limit cycle for the dynamical system
associated with the system,{ .

x1= x2,
.
x2= −a

εx1 + 1
ε

(
x2 −

x3
2
3

)
,

(4)

for the case a · ε > 0, is proved.
Therefore, the system (3) without periodic forcing (g = 0) exhibits a

natural oscillation and we consider a sinusoidal forcing imposed on it (g 6=
0). Fixing the parameters ε, a, and g, as ω increases away from zero, the
interaction between the frequencies of these two oscillations determines the
resulting dynamics. Periodic as well as chaotic motion may occur.
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Figure 1: Bifurcation diagram for parameters ε=0.1250, a=0.5, g=0.6666
and 2.7045 ≤ ω ≤ 2.9250.

The lack of equilibria and the great number of parameters make the
study of such a system difficult. Numerical methods often provide a useful
and sometimes the only tool for study.

We intend to establish ω intervals for which specific behaviour concerning
the attractors of the system (3) could be expected. By logistic reasons we
investigated a region in the four-dimensional parameter space (ε, a, g, ω)
given by 0 < ε ≤ 1, 0 < a ≤ 1, 0 < g ≤ 1, 2.7045 ≤ ω ≤ 2.9250 in case of
Sec. 3 and 0 < ε ≤ 1, 0 < a ≤ 1, 1 < ω ≤ 3, 0 < g ≤ 2 in case of Sec. 4.

The diagnostics used to establish structural changes of the system (3)
involve representations of solutions in the phase space R2 × S1, time series,
Poincaré sections at intervals of forcing period 2π

ω , bifurcation diagrams with
ω − x2 coordinates, evaluations of the eigenvalues of the linearized Poincaré
map-matrix, evaluations of the Lyapunov exponents. All the numerical com-
putations were carried out through the application of a variable step-size four
order Runge-Kutta method [Băzăvan, 1999]. The 3D-representation uses a
centre projection [Băzăvan, 1994].
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The bifurcation diagram plotted in Fig. 1, for the case ε = 0.1250,
a = 0.5, g = 0.6666 and ω in the interval 2.7045 ≤ ω ≤ 2.9250 shows the
typical system behaviour which will be interpreted in the next sections.

The mathematical model used in our numerical study is presented in Sec.
2. The Sec. 3 is concerned with the numerical study of alternating periodic
and chaotic attractors in the behaviour of the system (3). Numerical results
in Sec. 4 are concerned with the proof of the existence of the quasiperiodic
motion and the study of the transition from quasiperiodic to periodic motion
in the system (3).

2 The mathematical model

In order to present the mathematical model used in the numerical study from
Secs. 3 and 4, we shortly write (3) in the form

.
x= f (x) , (5)

where f is defined on the R2 × S1 cylinder.
We define the Poincaré map as follows. Let

∑
=
{

(x1, x2, x3) ∈ R2 × S1,x3 = 0mod
2π
ω

}
be a surface of section [Băzăvan, 2001], which is transversally crossed by the
orbits of (5). The Poincaré map P :

∑
→
∑

is defined by

P (x0) = x (t,x0) =
∫ 2π

ω

0
f (x (t,x0)) dt, (6)

where x0 ∈
∑

and x(t, x0) is the solution of the Cauchy problem x(0) = x0

for (5). We denote by Pn the n-times iterated map.
Let ξ(t, x0) be a periodic solution of (5) with period T = n · 2π

ω , lying on
a closed orbit and consider the map P of the initial point x0. Then, to this
closed orbit an n-periodic orbit of P corresponds. Numerically, the period T
(i.e. n from the expression of T ) can be determined by integrating Eq. (5)
with the initial condition x0 and sampling the orbit points xk = P (xk−1),
k ≥ 1 at discrete times tk = k · 2πω , until P k(x0) = x0. Then, n = k [Băzăvan,
2001].
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The stability discussion of the periodic orbit ξ(t, x0) is reduced to the
stability discussion of the fixed point x0 of Pn, i.e. Pn(x0) = x0. The linear
stability of the n-periodic orbit of P is determined from the linearized-map
matrix DPn of Pn. Using the Floqet theory [Reithmeier, 1991], [Glendin-
ning, 1995] the matrix DPn of Pn can be obtained by integrating the lin-
earized system (5) for a small perturbation y ∈ R2×S1. The time history of
the initial perturbation y(0) = y0 is described by the linearized ODE around
the periodic solution ξ.

The stability of the periodic solution ξ(t, x0) is determined by the eigen-
values of the matrixDPn [Reithmeier, 1991], [Glendinning, 1995], [Kuznetsov,
1998]. We note that one of the eigenvalues of this matrix always equals 1
[Glendinning, 1995], and that the remained two eigenvalues, also called the
Poincaré map multipliers, influence the stability. We denote these eigenvalues
by λ1 and λ2.

Figure 2: The largest Lyapunov exponent for (3), for parameter values
ε=0.1250, a=0.5, g=0.6666 and 2.7045 ≤ ω ≤ 2.9250.

3 Periodic and chaotic attractors

In this section, by varying the parameter ω and keeping constant ε, a and g
we study bifurcations associated with changes of stability in the periodically
forced Rayleigh system (3).
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The multipliers of the Poincaré map Pn, computed for ε = 0.1250, a =
0.5, g = 0.6666 and various ω values in the interval 2.7045 ≤ ω ≤ 2.9250,
give information about the stability changes of an n-periodic orbit of (3) for
which the map P is associated (see Sec. 2). Thus, the periodic orbit is
stable only if |λ1,2| < 1, [Reithmeier, 1991], [Glendinning, 1995], [Kuznetsov,
1998]. If, for a critical ω value, the multipliers satisfy λ1 = −1, −1 < λ2 < 0,
[Reithmeier, 1991], [Glendinning, 1995], [Kuznetsov, 1998], the periodic orbit
loses its stability through a period-doubling bifurcation. The motion becomes
chaotic if, monotonically increasing ω, for sufficiently values, this process
is repeated. This period doubling sequence leading to a chaotic state was
reported in [Mettin, et al., 1993], [Barnes and Grimshaw, 1997] and [Sang-
Yoon and Bumbi, 1998] for VP and BVP oscillators and inverted pendulum
respectively. We also note that the reverse process can occur for the case of
an unstable orbit. That is, when a multiplier λ of an unstable orbit increases
through −1 the orbit becomes stable via period-doubling bifurcations.

Figure 3: Bifurcation diagram for parameter values ε=0.1250, a=0.5,
g=0.6666 and 2.7045 ≤ ω ≤ 2.7120.
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As Fig. 1 shows, the system (3) exhibits the mentioned period-doubling
sequences. Obvious chaotic regions interrupt periodic windows and then,
chaotic attractors replace periodic attractors due to a destabilisation process
through a period-doubling sequence. The reverse process, the stabilisation
one, determines that periodic attractors replace chaotic attractors [Băzăvan,
2001].

Figure 4: Closedtrajectories, time series andPoincaré sections for system(3).

In order to ascertain these alternating regular and chaotic regions, the
largest Lyapunov exponent measuring the convergence or divergence of neigh-
bouring trajectories [Ott, 1993], [Barnes and Grimshaw, 1997] was plotted
in Fig. 2 for the same parameter values as in Fig. 1. Negative values of
this exponent correspond to periodic windows and positive values to chaotic
regions.
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In Fig. 3, which is a magnification of the bifurcation diagram in Fig.
1, for 2.7045 ≤ ω ≤ 2.7120, the typical route to chaotic state through a
period-doubling sequence is more clearly seen. For 2.7045 ≤ ω < 2.7083 two
period-3 attractors are present.

Figure 5: The points Xn+5 = P 5 (Xn) for parameter values (a) ω=2.7225,
(b) ω=2.7230, (c) ω=2.7235, (d) ω=2.7240.

The simultaneous presence of two attractors and the "jump" of the trajec-
tories from one attractor to the other are characteristic to this system. Phase
space with one of these period-3 solutions is represented on an invariant torus
in Fig. 4a for ω = 2.7045. For the solution in Fig. 4a, corresponding time
series and Poincaré section with the three intersecting points are plotted in
Figs. 4b-c. At ω ≈ 2.7083 the function curves split and the two solutions
double their period as shows Fig. 3. The doubled periodic orbit, correspond-
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ing to those from Fig. 4a, is represented in Fig. 4d for ω = 2.7090. From
the time series and the Poincaré section, plotted in Figs. 4e-f, the period six
of the limit cycle is obvious.

The first period-doubling bifurcation at ω ≈ 2.7083 is followed by many
subsequent period-doubling bifurcations. The length of the intervals of ω
between these bifurcations decreases. Using magnifications of bifurcation
diagram in Fig. 3, smaller ω step (i.e. 10−6 ) and computing the λ1,2 multi-
pliers, for this period-doubling cascade the first five terms of the Feigenbaum
progression ωi−ωi−1

ωi+1−ωi , [Kuznetsov, 1998], were estimated : 5.25, 5.18, 4.95,
4.81 and 4.72 [Băzăvan, 2001]. The convergence to the universal constant
4.6692 of this decreasing sequence is followed.

For 2.7106 < ω < 2.7240 the behaviour of the system is chaotic. The
chaotic attractor, corresponding time series and Poincaré section are repre-
sented in Figs. 4g-i for ω = 2.7120. At this ω value the largest Lyapunov
exponent was computed to be 0.1812 [Băzăvan, 2001] providing the chaotic
state of the system. As Fig. 1 shows, for ω ≈ 2.7240, the chaotic attractor
is replaced by a period-5 attractor.

In order to illustrate this change from a chaotic attractor to a periodic
attractor, the sequences of x2 coordinates of the points Xn+5 = P 5 (Xn)
are plotted in Figs. 5a-d [Băzăvan, 2001]. For ω = 2.7225 the diagonal
xn+5

2 = xn2 is intersected in three separate locations. Here xn2 represents
the x2 coordinate of the point Xn. A channel between the diagonal and
the return map curve is observed. As ω increases, the return map curve
approaches the diagonal and at ω = 2.7240 it is tangent in five distinct
locations. A saddle-node bifurcation is encountered. The chaotic attractor
is abruptly destroyed and replaced by a period-5 attractor. Note that, as the
ω parameter increases, the density of the return points grows in the regions
of the future attractor and diminishes in the other ones. This measure of
the return points changes continuously with the continuous variation in the
control parameter.

4 Transition between periodic and
quasiperiodic motion

The dynamical system associated with (3) involves the interaction between
two periodic motions, each with a different frequency. When the ratio of the
frequencies is irrational the dynamical system behaves in a manner which is
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Figure 6: Bifurcation diagram for the dynamical system (3).

neither periodic or chaotic. This motion is called quasiperiodic. More pre-
cisely, the natural periodic motion, studied in [16] for the unforced case is
modulated by a second periodic motion given by the sinusoidal term when
g > 0. The system behaves in a manner with the motion never quite re-
peating any previous motion. This behaviour is generically followed by the
system locking into a periodic motion, as the control parameter for the sys-
tem is varied [18].

In our numerical study we investigated the region

ε = 0.125, a = 0.5, ω = 2.84, 0 < g ≤ 0.75. (7)

An overview of the numerical results which typify the system is given by
the bifurcation diagram in Fig. 6.
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Figure 7: The first Lyapunov exponent for the dynamical system (3).

In the first part of the subinterval 0 < g < 0.3 we observe an apparent
regularity of the return points. This region which can indicate a quasiperiodic
or chaotic behaviour is followed by a region with clear periodic motion. This
last region is interrupted by short chaotic regions. We prove the existence of
the quasiperiodic behaviour in two ways.

The first argument is the first Lyapunov exponent value. Recall that a
leading Lyapunov exponent of zero verifies quasiperiodic behaviour [18].

Figure 7 is a graph of the control parameter (the forcing amplitude g)
against the first Lyapunov exponent for the same parameter range as the
bifurcation diagram of Fig. 6. In the interval 0 < g < 0.3 the exponent was
consistently within −0.01 of 0. This is the first numerical confirmation of
the quasiperiodic behaviour.

The intersection points of the trajectories of the system (3) with the
associated Poincaré section represent the second argument. At g1 = 0.07 the
section is represented in the Figure 8a.

The drift ring is associated with quasiperiodic motion. Integrating with
a large period, the curve does not modify the shape. The fact that the
points are situated on a closed curve and the constant shape related to the
integration time confirm the quasiperiodic behaviour [18].

In proportion as g increases in the interval 0 < g < 0.3 the return points
remain on the same curve but the density increases markedly in some loca-
tions (Fig. 8b for g2 = 0.25). At g3 = 0.3 there are only three intersection
points in the Poincaré section (Fig. 8c) and on the bifurcation diagram the
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Figure 8: Poincaré sections for the dynamical system (3).

quasiperiodic region is replaced by a periodic window. The motion changes
from quasiperiodic to periodic, with the emergence of a period-3 attractor.
This is due to the saddle-node bifurcation of the Poincaré map P 3,

xn+3 = P 3 (xn) , x0 ∈ R2 × S1, n ≥ 0.

We numerically prove this fact. We use the projection of the graph of P 3

on the plane (yn, yn+3), n ≥ 0, where we denote by y the x2 coordinate of
the point x ∈ R2 × S1.

In Figure 9a for g4 = 0.07, when the motion is quasiperiodic, there are
two intersection points of P 3 with the diagonal yn = yn+3. At the intersection
the magnitude of the slope not equals 1. As g increases the curve approaches
the diagonal in other locations (Fig. 9b for g5 = 0.28). These locations
suggest the imminent tangential intersections. At g6 = 0.2961 there are three
tangential intersections (Fig. 9c) and we have a saddle-node bifurcation of
the map P 3. When g7 = 0.3 (Fig. 9d) the graph of the map P 3 is a single
point which is situated on the diagonal. This fact confirms the existence of
the period-3 attractor.
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Figure 9: The Poincaré map P 3 associated with the dynamical system (3).

Conclusions

The numerical study in this paper shows that the periodically forced Rayleigh
system possesses a lot of phenomena encountered in many other nonlinear
systems. Some of them as period-doubling and saddle-node bifurcations, al-
ternating periodic and chaotic attractors, alternating periodic and quasiperi-
odic motion, simultaneous presence of more than one periodic attractors were
outlined here.
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THE FLOW OF A PARTICULAR CLASS
OF OLDROYD-B FLUIDS∗

Ilie Burdujan†

Abstract
This paper deals with Taylor-Couette flow formation in a parti-

cular class of Oldroyd-B fluids filling the annular region between two
infinitely long coaxial circular cylinders, due to a time-dependent axial
shear applied on the outer surface of the inner cylinder. The obtained
solution is presented as the sum of a related Newtonian solution and
the specific non-Newtonian contribution. Afterwards, it was specia-
lized to give the solution for second grade fluids and Maxwell fluids,
as well. Some exact solutions for particular classes of Oldroyd-B fluids
arise as limiting cases of our solution. These results were established
as limiting cases of the solution of an initial-boundary problem in frac-
tional derivatives which was obtained, in its turn, by using the Laplace
and Hankel transformations.
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1 Introduction

Oldroyd-B model provides a simple linear viscoelastic model for dilute poly-
mer solutions, based on the dumbbell model. A wide class of fluids, such as
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polymer solutions, petroleum products, oils, blood, etc., are non-Newtonian.
Moreover, the non-Newtonian fluids arise in a large variety of industrial ap-
plications - such as chemical processes (e.g. the processing of synthetic fibres,
foams), food industries, construction engineering and so on, what motivates
the great interest in their study. Certainly, the analysis of the behavior
of the fluid motion for non-Newtonian fluids is essentially more complex in
comparison with that of Newtonian fluids. It is well known that for a wide
class of flows of Newtonian fluids it is possible to give a closed form for their
analytical solutions, while for non-Newtonian fluids such solutions are rarely
found. On the other hand, some of the mathematical models do not fit well
with experimental data. That is why some mathematical objects, obtained
by placing some fractional derivatives instead of some time derivatives into
the rheological constitutive equations that describe the rheological proper-
ties of some classes of materials, were tested. On this line we can quote the
papers of Bagley [1], Friedrich [7], Makris and Constantinou [17], Glökle and
Nonnenmacher [9], Mainardi [15], Mainardi and Gorenflo [16], Rossikhin and
Y. A., Shitikova [19], [20] and so on; they had obtained results which are in
a good agreement with experimental data. Unfortunately, as it was already
remarked in [5], an initial-boundary problem for an equation with fractional
derivatives (shortly, IBPEFD) is not necessarily the mathematical model for
a real dynamical system, because the fractional derivatives have no always a
tensorial character. Nevertheless, some of its limiting cases are the mathe-
matical models for real phenomena. Therefore, it becomes important to solve
such an IBPEFD because its solution gives the possibility to find the solu-
tions for all its limiting cases, among them being the solutions of problems
modelling real dynamical systems. For example, this is the case of limits
for parameters which allow to avoid the presence of fractional derivative. In
fact, the mathematical models for Newtonian fluids, ordinary Maxwell fluids,
ordinary second grade fluids, ordinary Oldroyd-B fluids are limiting cases for
the before mentioned IBPEFD.

Two important situations may arise in the limiting processes. A result
of such a limit can be the disappearance of all fractional derivatives. As
example, in the problem under consideration in the present paper (i.e., the
IBPEFD [(7), (9), (10), (12)]), the Newtonian solution is obtained by mak-
ing the relaxation time λ (and, necessarily, the retardation time λr) tends to
zero. The second kind of results corresponds to the case when the orders of
all fractional derivatives, here α or/and β, tend to 1; in this case the obtained
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equation contains ordinary or partial derivatives only. This time the limit-
ing process is considered in the sense of Schwartz’s distribution theory with
respect to some appropriately classes of testing functions. For example, the
solution for ordinary Maxwell fluids is obtained from the before mentioned
IBPEFD when λr → 0 and α→ 1.

These remarks will be used in what follows in order to find the exact
solution for Taylor-Couette flow of an incompressible Oldroyd-B fluid in a
circular pipe. More exactly, the main purpose of this paper is to provide
exact solutions for the velocity field and the shear stress corresponding to
the large class of unsteady flows of incompressible Oldroyd-B fluids between
two infinite coaxial circular cylinders, one of them being subject to a time-
dependent rotational shear stress. More exactly, by the suggestion given in
[13], we study the case when in the boundary condition (8) we put a = 2, so
that this paper can be considered as a continuation of paper [5].

To this end, into the governing equations, corresponding to an Oldroyd-
B fluid in the absence of body forces and a pressure gradient in the flow
direction, some time derivatives are replaced by fractional derivatives. The
obtained mathematical object was named by Tong and Liu [22] the governing
equations of an incompressible "generalized" Oldroyd-B fluid. After making
the similar replacement in the initial-boundary conditions, an IBPEFD is ob-
tained. The governing equations for an incompressible "generalized" Maxwell
fluid or for a "generalized" second grade fluid are similarly obtained. The
attribute "generalized" will be used here for designing the hypothetical fluids
that would be characterized by such IBPEFDs.

The solution of IBPEFD [(7), (9), (10), (12)] is presented as a sum of
the Newtonian solution and the corresponding non-Newtonian contribution.
It can be easily specialized to give the similar solutions for the second grade
and Maxwell fluids. As it was already remarked, the Newtonian solutions
can be also obtained as limiting cases of general solutions. Furthermore, the
non-Newtonian contributions to the general solutions have been expressed in
terms of the time derivatives of a Newtonian solution. The exact expressions
for the fluid velocity and the shear stress are obtained by the successive use
of the methods of Hankel and Laplace transforms.

In the particular cases a = 0 and a = 1, this problem was already solved
in [5]. The present paper solve this problem in case a = 2. That is why
this paper is really a continuation of [5]. We try to make its reading as
selfcontained as possible.
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2 Model and basic equations

Recall that the Oldroyd-B model is a classical model for dilute solutions
of polymers suspended in a viscous incompressible solvent. The Oldroyd-B
model can be derived from microscopic principles by assuming a linear Hook’s
Law for the restoring force under distention of immersed polymer coils. In
the recent years the Oldroyd-B fluids has gained a special place among the
fluids of rate types. They contain as special cases the classical Newtonian
fluids and the Maxwell fluids as well as the second grade fluids.

Let us consider an incompressible Oldroyd-B fluid at rest filling the an-
nular region between two infinitely long coaxial circular cylinders of radii
R1, R2 (0 < R1 < R2). The outer cylinder is always at rest, while at time
t = 0+ the inner cylinder is suddenly set in rotation around its axis by a
time-dependent shear stress.

The equations governing the unsteady motion of an incompressible fluid
are

div V = 0, ρ
dV
dt

= div T,

where V is the velocity field, ρ the density, T the Cauchy stress tensor and
d/dt the material time derivative.

The Cauchy stress tensor T for an incompressible Oldroyd-B fluid, is
given by

T = −pI + S, S + λ
DS
Dt

= µ

(
A + λr

DA
Dt

)
, (1)

where −pI is the indeterminate spherical stress (p is the isotropic pressure),
S is the extra-stress tensor, A is the first Rivlin-Ericksen tensor, µ is the
dynamic viscosity of the fluid, λ and λr(< λ) are material constants (namely,
the relaxation time and the retardation time, respectively), and the upper
convected time derivatives are defined by
DS
Dt

=
dS
dt

+(V·∇)S−LS−SLT ,
DA
Dt

=
dA
dt

+(V·∇)A−LA−ALT . (2)

Into above equation (2), ∇ is the gradient operator, L denotes the velocity
gradient and the superscript T indicates the transpose operation. This time,
the body forces have been neglected.

Since the motion is axial symmetric we shall use the cylindrical coordi-
nates (r, θ, z). That is why, for the problem under consideration, we assume
a velocity field V and an extra-stress tensor S of the form
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V = V(r, t) = ω(r, t)eθ, S = S(r, t) (3)

where eθ is the unit vector along the θ-direction of the cylindrical coordinate
system. For such flows the constraint of incompressibility is automatically
satisfied. Furthermore, if the fluid is at rest up to the moment t = 0, i.e.

V(r, t) = 0, S(r, t) = 0 for t ≤ 0, (4)

then the governing equations for an Oldroyd-B fluid, in the absence of body
forces and a pressure gradient in the flow direction, are given for r ∈ (R1, R2),
t > 0 by

λ
∂2ω(r, t)
∂t2

+
∂ω(r, t)
∂t

= ν

(
1 + λr

∂

∂t

)(
∂2

∂r2
+

1
r

∂

∂r
− 1
r2

)
ω(r, t), (5)

(
1 + λ

∂

∂t

)
τ(r, t) = µ

(
1 + λr

∂

∂t

)(
∂

∂r
− 1
r

)
ω(r, t), (6)

where τ(r, t) = Srθ(r, t) is the nonzero shear stress, ν = µ/ρ is the kinematic
viscosity, ρ is its constant density, while λ and λr are respectively the relax-
ation and retardation times. The system of equations (5)-(6) must be solved
subject to the initial and boundary conditions

ω(r, 0) =
∂ω(r, 0)
∂t

= 0, τ(r, 0) = 0, (7)

respectively,(
1 + λ

∂

∂t

)
τ(R1, t) = µ

(
1 + λr

∂

∂t

)(
∂ω(R1, t)

∂r
− 1
R1
ω(R1, t)

)
= fta,

(8)
for r ∈ (R1, R2), t > 0 and a ≥ 0.

By replacing some inner time derivatives by the fractional differential
operators Dα

t and Dβ
t (0 < β ≤ α < 1), the governing equations (5) and (6)

of an incompressible Oldroyd-B fluid become (see [22])

(1 + λDα
t )
∂ω(r, t)
∂t

= ν(1 + λrD
β
t )
(
∂2

∂r2
+

1
r

∂

∂r
− 1
r2

)
ω(r, t), (9)

(1 + λDα
t )τ(r, t) = µ(1 + λrD

β
t )
(
∂

∂r
− 1
r

)
ω(r, t), (10)
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for r ∈ (R1, R2), t > 0; here the fractional derivatives are defined by [18]

Dp
t [f(t)] =

1
Γ(1− p)

d

dt

∫ t

0

f(τ)
(t− τ)p

dτ, 0 < p < 1 (11)

(where Γ(·) is Euler’s Gamma function).
As before, by replacing in (8) the inner derivations with respect to t by

the fractional differential operators Dα
t and Dβ

t (β ≤ α), we get

(1 + λDα
t )τ(R1, t) = µ(1 + λrD

β
t )
(
∂ω(R1, t)

∂r
− 1
R1
ω(R1, t)

)
= fta (12)

for t > 0, a ≥ 0. Consequently, an IBPEFD, consisting of equations [(9), (7),
(12)], is associated with the model of the Taylor-Couette flow of an Oldroyd-
B fluid in an annulus due to a time depending couple and characterized
by simultaneously equations [(5), (7), (8)]. It will be solved by using the
integral transform techniques. More exactly, the Laplace and finite Hankel
transforms are used to change the IBPEFD [(9), (7), (12)] into an algebraic
system.

Moreover, the equations (9) and (10) contain as limiting cases the governing
equations of the so called (see [22]) "generalized" second grade and Maxwell
models (i.e. the models obtained by replacing some inner time derivatives by
some fractional differential operators in the governing equations of a second
grade or a Maxwell fluid), as well as the ordinary Oldroyd-B, Maxwell and
second grade models.

In this paper, we are especially interested in the case when the boundary
condition corresponds to a = 2; the cases a = 0 and a = 1 were already
analyzed in [5].

COMMENT. In order to ensure the dimensional consistency of equations (7)
and (8), the material constants λ and λr must have necessarily the dimen-
sions of tα and tβ , respectively. Into several papers (e.g. [13]) the authors
(correctly) used λα and λβr instead of λ and λr. However, for simplicity, we
shall keep the notations λ and λr (like [11] or [22]) having in mind their
correct significations.



The Flow of a Particular Class of Oldroyd-B Fluids 29

3 Exact solutions for the velocity field

In what follows, we shall use the modified Hankel transform, with respect to
r, defined by means of the Bessel functions of index 1

B(r, rn) = J1(rrn)Y2(R1rn)− J2(R1rn)Y1(rrn),

where J1(·), J2(·), Y1(·) and Y2(·) are Bessel functions (of index 1 and 2),
(rn)n∈N∗ is the increasing sequence of the positive roots of the transcedental
equation J1(R2x)Y2(R1x) − J2(R1x)Y1(R2x) = 0 (i.e. B(R2, rn) = 0 for all
n ∈ N∗). We shall denote by ωH(rn, t) the image of ω(r, t) by the modified
Hankel transform, defined by

ωH(rn, t) =
∫ R2

R1

r ω(r, t) B(r, rn) dr . (13)

Recall that the inverse of the modified Hankel transform (13) is defined by

f(r) =
π2

2

∞∑
n=1

r2nJ
2
1 (R2rn)B(r, rn)

J2
2 (R1rn)− J2

1 (R2rn)
fH(rn) =

π2

2

∞∑
n=1

r2nCFnfH(rn), (14)

where fH(rn) denotes the image of f(r) by Hankel transform (13) and

CFn =
J2

1 (R2rn)B(r, rn)
J2

2 (R1rn)− J2
1 (R2rn)

= DFnB(r, rn). (15)

By applying successively the Hankel transform (13) and the Laplace
transform, the following expression for the velocity field ω(r, t) was obtained
in [5]:

ω(r, t) = ωN,a(r, t)−

−πf
ρ

Γ(1 + a)
∞∑
n=1

∞∑
k=0

(
−νr

2
n
λ

)k
rnCFn

∫ t

0
Fk(s)e−νr

2
n(t−s)ds,

(16)

where

Fk(t) =
k∑

m=0

k!λmr
m!(k −m)!

[
Gα,αm−a,k+1

(
− 1
λ
, t

)
+

+νr2n
λr
λ
Gα,βm−a,k+1

(
− 1
λ
, t

)] (17)
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with (see [14])

Ga,b,c(d, t) =
∞∑
j=0

Γ(j + c)ta(j+c)−b−1

Γ(j + 1)Γ(c)Γ[a(j + c)− b]
dj = L−1

{
qb

(qa − d)c

}
, (18)

for Re (ac− b) > 0,
∣∣∣∣ dqa
∣∣∣∣ < 1, and

ωN,a(r, t) =
πf

ρ

∞∑
n=1

rnCFn

∫ t

0
sae−νr

2
n(t−s)ds, (19)

represents the velocity field corresponding to a Newtonian fluid performing
the same motion. More exactly, ωN,a(r, t) for R1 < r < R2, t > 0 is the
solution of the problem:

∂ωN,a(r, t)
∂t

= ν

[
∂2ωN,a(r, t)

∂r2
+ 1
r
∂ωN,a(r, t)

∂r
− 1
r2

ωN,a(r, t)
]
,

ωN,a(r, 0) = 0, ωN,a(R2, t) = 0,

τN,a(R1, t) = µ

[
∂ωN,a(R1, t)

∂r
− 1
R1
ωN,a(R1, t)

]
= fta;

in last boundary condition, the presence of τN,a(R1, t) can be ignored; it is
just for helping us to motivate the form of the boundary condition. A special
interest is for velocity field ωN (r, t) = ωN,0(r, t). Recall that, it was proved
in [5] that

ωN (r, t) = ωN,0(r, t) = ϕ0(r)− πf

µ

∞∑
n=1

1
rn
CFne

−νr2nt, (20)

where

ϕ0(r) = − f

2µ

(
R1

R2

)2(R2
2

r
− r
)
. (21)

Further, Eq. (20) gives

∂ωN (r, t)
∂t

=
πf

ρ

∞∑
n=1

rnCFne
−νr2nt

and consequently (19) becomes

ωN,a(r, t) = ta ∗ ∂tωN (r, t). (22)
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Then, for a = 1 we get

ωN,1(r, t) = ϕ0(r)t+ ϕ1(r) +
πf

µν

∞∑
n=1

1
r3n
CFne

−νr2nt, (23)

where
ϕ1(r) =

A

r
+Br + Cr3 + E r ln r, (24)

with

A = − fR4
1

8R2
2µν

(2R2
2 −R2

1), C = f
8µν

(
R1

R2

)2

,

B = fR2
1

8R2
2µν

[
4R4

2 ln R2 − (R2
2 −R2

1)2
]
, E = −fR

2
1

2µν .
(25)

Similarly, for a = 2, we get

ωN,2(r, t) = ϕ0(r)t2 + ϕ1(r)t+ ϕ2(r)− 2πf
µν2

∞∑
n=1

1
r5n
DFnB(r, rn)e−νr

2
nt, (26)

where ϕ2(r) is the solution of the boundary problem
ϕ
′′
2(r) + 1

r
ϕ
′
2(r)− 1

r2
ϕ2(r) = 1

ν
ϕ1(r), R1 < r < R2,

ϕ2(R2) = 0,

ϕ
′
2(R1)− 1

R1
ϕ2(R1) = 0.

The solution of this last problem is:

ϕ2(r) = C1

r
+ C2r+

+ 1
96
(
48A ln r + 12B r2 + 4C r4 + 12E r2ln r − 9E r2

)
r,

(27)

where

C1 = − fR6
1

192µν2R4
2

[
12 R4

2−

−14R2
1R

2
2 + 12R4

2 ln R1 − 12R4
2 lnR2 + 3R4

1

]
,

C2 = fR2
1

192µν2R6
2

[
15R4

1R
4
2 − 14R6

1R
2
2 + 12R4

1R
4
2 ln R1−

−24R4
1R

4
2 ln R2 + 3R8

1 − 7R8
2 + 24R2

1R
6
2 ln R2 − 6R2

1R
6
2

]
.

(28)
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Finally, having in mind the expression (20) of the Newtonian solution ωN (r, t),
it is easy to show that the general solution ω(r, t) can be written in a suitable
form in terms of its time derivatives, namely

ω(r, t) = ta ∗ ∂tωN (r, t)−

−Γ(1 + a)
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!λk

∂k+1
t ωN (r, t) ∗Gα,αm−a,k+1

(
− 1
λ
, t

)
+

+λr
λ

Γ(1 + a)
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!λk

∂k+2
t ωN (r, t) ∗Gα,βm−a,k+1

(
− 1
λ
, t

)
,

(29)
where αm = mβ + α− k − 1, βm = mβ + β − k − 2. In case a = 2, it seem
natural to express the general solution ω(r, t) in terms of ωN,2(r, t) and its
time derivatives. As

∂3ωN,2(r, t)
∂t3

= 2πf
ρ

∞∑
n=1

rnDFnB(r, rn)e−νr
2
nt =

= 2πf
ρ

∞∑
n=1

rnCFne
−νr2nt = 2∂ωN (r, t)

∂t

it results

ω(r, t) = ωN,2(r, t)−

−
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!λk

∂k+3
t ωN,2(r, t) ∗Gα,αm−2,k+1

(
− 1
λ
, t

)
+

+λr
λ

∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!λk

∂k+4
t ωN,2(r, t) ∗Gα,βm−2,k+1

(
− 1
λ
, t

)
.

(30)

4 Calculations of the shear stress

By using Eq. (29), the following form of the shear stress was already obtained
in [5]:

τ(r, t) = τN,a(r, t) + µΓ(1 + a)A
(
− 1
λ
, t

)
∗ ∂tΩN (r, t)−



The Flow of a Particular Class of Oldroyd-B Fluids 33

−µΓ(1 + a)
∞∑
k=0

[
Bk

(
− 1
λ
, t

)
∗ ∂k+1

t ΩN (r, t)−

−λr
λ
Ck

(
− 1
λ
, t

)
∗ ∂k+2

t ΩN (r, t)
] (31)

where

ΩN (r, t) =
∂ωN (r, t)

∂r
− 1
r
ωN (r, t), (32)

τN,a(r, t) = µta ∗ ∂tΩN (r, t) =

= −πfν
∞∑
k=0

r2n[J2(rrn)Y2(R1rn)− J2(R1rn)Y2(rrn)]
J2

2 (R1rn)− J2
1 (R2rn)

t∫
0

sae−νr
2
n(t−s) ds

(33)

represents the shear stress corresponding to a Newtonian fluid and

A

(
− 1
λ
, t

)
= λr

λ
Rα,β−a−1

(
− 1
λ
, t

)
−Rα,α−a−1

(
− 1
λ
, t

)
,

Rα,β(a, t) =
∞∑
k=0

akt(k+1)α−β−1

Γ((k + 1)α− β) , Re (α− β) > 0, |atα| < 1,

Bk

(
− 1
λ
, t

)
= 1
λk

k∑
m=0

k!λmr
m!(k −m)!

[
Gα,αm−a,k+1

(
− 1
λ
, t

)
+

+λr
λ
Gα,αm+β−a,k+2

(
− 1
λ
, t

)
−Gα,αm+α−a,k+2

(
− 1
λ
, t

)]
,

Ck

(
− 1
λ
, t

)
= 1
λk

k∑
m=0

k!λmr
m!(k −m)!

[
Gα,βm−a,k+1

(
− 1
λ
, t

)
+

+λr
λ
Gα,βm+β−a,k+2

(
− 1
λ
, t

)
−Gα,βm+α−a,k+2

(
− 1
λ
, t

)]
.

Starting from Eq. (16), the following equivalent form of the shear stress
is obtained
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τ(r, t) = τN,a(r, t) + µΓ(1 + a)A
(
− 1
λ
, t

)
∗ ∂tΩN (r, t)+

+πfν Γ(1 + a)
∞∑
n=1

∞∑
k=0

rnC̃Fn(−νr2n)k
[
Bk

(
− 1
λ
, t

)
+

+νr2n
λr
λ
C

(
− 1
λ
, t

)]
∗ e−νr2nt,

(34)

where

C̃Fn =
J2(rrn)Y2(R1rn)− J2(R1rn)Y2(rrn)

J2
2 (R1rn)− J2

1 (R2rn)
J2

1 (R2rn).

Making a = 0, 1 and 2 into (31) and (34), the shear stresses corresponding
to f, ft and ft2 into (7) are obtained. For instance, the shear stresses for
the corresponding Newtonian solutions are

τN (r, t) = τN,0(r, t) = τ0(r) + πf

∞∑
n=1

C̃Fn e
−νr2nt, (35)

τN,1(r, t) = tτ0(r) + τ1(r)− πf
ν

∞∑
n=1

C̃Fne
−νr2nt, (36)

τN,2(r, t) = t2τ0(r) + tτ1(r) + τ2(r)− πf
ν

∞∑
n=1

C̃Fne
−νr2nt, (37)

where

τ0(r) = fR2
1

r2
,

τ1(r) =
fR2

1

[
(R2

2 − r2)2 − (R2
2 −R2

1)2
]

8νR2
2r

2 ,

τ2(r) = µ[ϕ′2(r)− 1
r
ϕ′2(r)] =

= µ

48r2
(−96C1 + 24Ar2 + 12Br4 + 8Cr6 + 12Er4 ln r − 3Er4).
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5 Limiting cases

1. Making the limit of Eqs. (16), (29), (31) and (34) as λr → 0, we get the
similar solutions corresponding to the so-called "generalized" Maxwell fluids,
namely

ω(r, t) = ωN,2(r, t)−

−2πf
ρ

∞∑
n=1

rnCFn
∞∑
k=0

(
−νr

2
n
λ

)k t∫
0

Gα,γk−2,k+1

(
− 1
λ
, t

)
e−νr

2
n(t−s) ds =

= ωN,2(r, t)− 2
∞∑
k=0

1
λk
Gα,γk−2,k+1

(
− 1
λ
, t

)
∗ ∂k+1

t ωN,2(r, t),

(38)

τ(r, t) = τN,2(r, t)− 2µ

t∫
0

∂sΩN (r, s)Rα,α−31

(
− 1
λ
, t− s

)
ds+

+2πfν
∞∑
n=1

∞∑
k=0

rnC̃Fn

(
− νr2n
λ

)k [
Gα,γk−2,k+1

(
− 1
λ
, t

)
−

−Gα,γk+α−2,k+2

(
− 1
λ
, t

)]
∗ e−νr2nt =

= τN,2(r, t)− 2µ∂tΩN (r, t) ∗Rα,α−3

(
− 1
λ
, t

)
−

−2µ
∞∑
k=0

1
λk
∂k+1
t ΩN (r, t) ∗

[
Gα,γk−2,k+1

(
− 1
λ
, t

)
−

−Gα,γk+α−2,k+2

(
− 1
λ
, t

)]
,

(39)

where γk = α − k − 1. Furthermore, making λ → 0 in (38) and (39) and
taking into account of

lim
λ→0

1
λk
Ga,b,k(−1/λ, t) =

t−b−1

Γ(−b)
, lim

λ→0

1
λ
Ra,b(−1/λ, t) =

t−b−1

Γ(−b)
, (40)
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the Newtonian solutions

ωN,2(r, t) = t2 ∗ ∂tωN (r, t), τN,2(r, t) = µt2 ∗ ∂tΩN (r, t) (41)

are recovered.

2. By making now α → 1 into (38) and (39), the solutions for ordinary
Maxwell fluids are obtained, namely

ω(r, t) = ωN,2(r, t)−

−2πf
ρ

∞∑
n=1

∞∑
k=0

(
−νr

2
n
λ

)k
rnCFn

t∫
0

G1,−k−2,k+1

(
− 1
λ
, t

)
e−νr

2
n(t−s) ds =

= ωN,2(r, t)− 2
∞∑
k=0

1
λk
∂k+1
t ωN (r, t) ∗G1,−k−2,k+1

(
− 1
λ
, t

)
,

(42)

τ(r, t) = τN,2(r, t)− 2µ

t∫
0

∂sΩN (r, s)R1,−2

(
− 1
λ
, t− s

)
ds+

+2πfν
∞∑
n=1

∞∑
k=0

rnC̃Fn

(
− νr2n
λ

)k
×

×
t∫
0

e−νr
2
nt

[
G1,−k−2,k+1

(
− 1
λ
, t− s

)
−G1,−k−1,k+2

(
− 1
λ
, t− s

)]
ds =

= τN,2(r, t)− 2µ∂tΩN (r, t) ∗R1,−2

(
− 1
λ
, t

)
−

−2µ
∞∑
k=0

1
λk
∂k+1
t ΩN (r, t) ∗

[
G1,−k−2,k+1

(
− 1
λ
, t

)
−G1,−k−1,k+2

(
− 1
λ
, t

)]
.

(43)
Indeed, direct computations implying suitable grouping of terms and the use
of equation

∞∑
k=0

(
−νr

2
n

λ

)k
G1,−k−a,k+1

(
− 1
λ
, t

)
= λL−1

(
1

qa−1

1
λq2 + q + νr2n

)
(44)
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shows that Eq. (42) can be respectively written in the form

ω(r, t) = ωN,2(r, t)−

−4fλ
Rρ

∞∑
n=1

J1(rrn)
J1(Rrn)e

−νr2nt ∗ L−1

(
1
q
· 1
λq2 + q + νr2n

)
,

(45)

Then, by using the formula

e−νr
2
nt ∗ L−1

(
1
q

1
λq2 + q + νr2n

)
=

= 1
(νr2n)3

[
e−νr

2
nt + λ2 q

3
n2e

qn1t − q3n1e
qn2t

qn1 − qn2
− λνr2n

]
,

(46)

one obtains

ω(r, t) = ωN,2(r, t)− 4fλ
Rρ

∞∑
n=1

J1(rrn)
J1(Rrn)

{
1

(νr2n)2
− 1
νr2n(λ− λr)

[
e−νr

2
nt+

+ 1
qn1 − qn2

(
eqn1t

qn1(1− νr2nλ) + νr2n
− eqn1t

qn2(1− νr2nλ) + νr2n

)]}
,

(47)

where qn1, qn2 are the roots of equation λq2 + q + νr2n = 0. Taking into
account Eq. (20), the solution (47) can be written in the following simpler
form:

ω(r, t) = ωN,2(r, t) + fλ
µν

r3(2R2 − r2)
24R2 − 4f

Rµν2

∞∑
n=1

J1(rrn)
r6nJ1(Rrn)

[
e−νr

2
nt+

+[νr2n + (1− νr2nλ)qn2]eqn1t − [νr2n + (1− νr2nλ)qn1]eqn2t

qn1 − qn2

]
.

(48)

A similar procedure, applied to Eq. (43), yields

τ(r, t) = τN,2(r, t)− 2µ

λ2e
− t
λ − λ2 + λt

 ∗ ∂ΩN (r, t)+

+µ 4f
Rρ

∞∑
n=1

rnJ2(rrn)
J1(Rrn) e

− t
λ ∗ e−νr2nt ∗ L−1

(
1
q

1
λq2 + q + νr2n

)
.

(49)
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After a straightforward computation we get

τ(r, t) = τN,2(r, t)− 2µλ

λ2e
− t
λ − λ2 + λt

 ∗ ∂ΩN (r, t)+

+4f
R

∞∑
n=1

J2(rrn)
rnJ1(Rrn)

(
λ

(νr2n)2
q2n2e

qn1t − q2n1e
qn2t

qn1 − qn2
+

+ e−νr
2
nt

(νr2n)2(λνr2n − 1)
− λ2e

− t
λ

λνr1n − 1
+ λ2

νr2n

 .

(50)

3. In the special case when λ→ 0 into (16) and (29), the solutions

ω(r, t) = ωN,2(r, t)+

+2πf
ρ
λr
∞∑
n=1

∞∑
k=0

k∑
m=0

CFn
k!λmr (−νr2n)k+1

m!(k −m)!Γ(2− βm)

t∫
0

s1−βme−νr
2
n(t−s) ds =

= ωN,2(r, t) + 2λr
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!

t∫
0

∂k+2
s ωN (r, s) (t− s)1−βm

Γ(2− βm) ds

(51)

and

τ(r, t) = τN,2(r, t) + 2µλr

t∫
0

(t− s)2−β

Γ(3− β)
∂sΩN (r, t) ds−

−2πfνλr
∞∑
n=1

rnC̃Fn
∞∑
k=0

k∑
m=0

k!λmr (−νr2n)k+1

m!(k −m)! ×

×
t∫
0

[
s1−βm

Γ(2− βm)
+ λr

s2−βm−β−1

Γ(2− βm − β)

]
e−νr

2
2(t−s) ds =

= τN,2(r, t) + 2µλr

t∫
0

(t− s)2−β

Γ(3− β)
∂sΩN (r, s) ds+ 2µλr

∞∑
k=0

k∑
m=0

k!λkr
m!(k −m)!

×
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×
t∫
0

[
(t− s)1−βm

Γ(2− βm)
+ λr

(t− s)1−βm−β

Γ(2− βm − β)

]
∂k+2
s ΩN (r, s) ds

(52)

corresponding to a "generalized" second grade fluid are obtained.
Of course, making λr → 0 into Eqs. (51) and (52), we again attain to the

Newtonian solutions given by Eq. (41). Moreover, in the special case when
β → 1, Eqs. (51) and (52) reduce to the solutions for an ordinary second
grade fluid, namely

ω(r, t) = ωN,2(r, t)+

+2πfλr
ρ

λr
∞∑
n=1

∞∑
k=0

k∑
m=0

CFn
k!λmr (−νr2n)k+1

m!(k −m)!Γ(k −m+ 3)

t∫
0

sk−m+2e−νr
2
n(t−s) ds =

= ωN,2(r, t) + 2λr
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!

t∫
0

∂k+2
s ωN (r, s)

(t− s)k−m+2

Γ(k −m+ 3)
ds

(53)
and

τ(r, t) = τN,2(r, t) + 2µλr
t∫
0

(t− s)∂sΩN (r, t) ds−

−2πfνλr
∞∑
n=1

rn C̃Fn
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)! (−νr

2
2)k+1×

×
∫ t
0

[
sk−m+2

Γ(ka−m+ 3) + λr
sk−m+1

Γ(k −m+ 2)

]
e−νr

2
n(t−s) ds =

= τN,2(r, t) + 2µλrt ∗ ∂tΩN (r, t)+

+2µλr
∞∑
k=0

k∑
m=0

k!λkr
m!(k −m)!

[
tk−m+2

Γ(k −m+ 3)+

+λr
tk−m+1

Γ(k −m+ 2)

]
∗ ∂k+2

t ΩN (r, t)

(54)
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i.e.

ω(r, t) = ωN,2(r, t)− fλrr
3

µR2 t− fλr
µν

r3(r2 − 2R2)
12R2 + fλ2

rr
3

µR2 −

− 4f
µν2R

∞∑
n=1

J1(rrn)
r6nJ1(Rrn)

e− νr2nt
1 + νr2nλr − e−νr2nt

−
−8fλr
µνR

∞∑
n=1

J1(rrn)
r2nJ1(Rrn)

e
− νr2nt

1 + νr2nλr − 4fλ2
r

µR

∞∑
n=1

J1(rrn)
r2nJ1(Rrn)

e
− νr2nt

1 + νr2nλr ,

τ(r, t) = τN,2(r, t) + 2µλrt ∗ ∂tΩ(r, t)+

+2fλr
R

∞∑
n=1

r3nJ2(rrn)
rnJ1(Rrn)

(
1− 2

νr2n
−

−1 + λrνr
2
n

λrν
2r4n

e
− νr2nt

1 + λrνr
2
n + λrνr

2
n − 1

λrν
2r4n

e−νr
2
nt

 .

(55)
4. In the special case when α → 1 and β → 1 into (16), (29), (32) and

(34), the solutions for an Oldroyd-B fluid are obtained, namely:

ω(r, t) = ωN,2(r, t)−

−Γ(1 + a)
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!λk

∂k+1
t ωN (r, t) ∗G1,m−k−2,k+1

(
− 1
λ
, t

)
+

+2λr
λ

∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!λk

∂k+2
t ωN (r, t) ∗G1,m−k−3,k+1 =

= ωN,2(r, t)− 2πfρ
∞∑
n=1

rn CFn
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!

(
−νr

2
n
λ

)k
×

×
[
G1,m−k−2,k+1

(
− 1
λ
, t

)
+ νr2n

λr
λ
G1,m−k−3,k+1

(
− 1
λ
, t

)]
,

(56)
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τ(r, t) = τN,2(r, t) + 2µλr − λ
λ

R1,−2

(
− 1
λ
, t

)
∗ ∂tΩN (r, t)−

−2µ
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!λk

[G1,m−k−2,k+1 (−1/λ, t) +

+λr
λ
G1,m−k−1,k+2 (−1/λ, t)−G1,m−k−1,k+2

(
− 1
λ
, t

)]
∗ ∂k+1

t ΩN (r, t)+

+2µλr
λ

∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!λk

[G1,m−k−3,k+1 (−1/λ, t) +

+λr
λ
G1,m−k−2,k+2 (−1/λ, t)−G1,m−k−2,k+2 (−1/λ, t)

]
∗ ∂k+2

t ΩN (r, t) =

= τN,2(r, t) + 2µλr − λ
λ

R1,−2

(
− 1
λ
, t

)
∗ ∂tΩN (r, t)+

+2πfν
∞∑
n=1

rnC̃Fn
∞∑
k=0

k∑
m=0

k!λmr
m!(k −m)!

(
−νr

2
n
λ

)k
×

×
{[
G1,m−k−2,k+1

(
− 1
λ
, t

)
+ λr − λ

λ
G1,m−k−1,k+2

(
− 1
λ
, t

)]
+

νr2n
λr
λ

[
G1,m−k−3,k+1

(
− 1
λ
, t

)
+λr − λ

λ
G1,m−k−1,k+2

(
− 1
λ
, t

)]}
∗ e−νr2nt

(57)
As before we get

ω(r, t) = ωN,2(r, t)− 4fR
µ

∞∑
n=1

J1(rrn)
r2nJ1(Rrn)

[
λr
t2

2 + λ− 2λr − λ2
rνr

2
n

νr2n
t+

+λ2
r(νr

2
n)2 + (1 + λrνr

2
n)(3λr − 2λ)

(νr2n)2
+ 1

(νr2n)3
e−νr

2
nt+

λ3 q
3
n2(1+ λqn1+ λrqn2+ λrνr

2
n)eqn1t − q3n1(1+ λqn2+ λrqn1+ λrνr

2
n)eqn2t

(λ− λr)(νr2n)4(qn1 − qn2)

]

= 4fR
µ

∞∑
n=1

J1(rrn)
r2nJ1(Rrn)

[
t2

2 −
1− λrνr2n

νr2n
t+ 1 + (2λr − λ)νr2n + λ2

r(νr
2
n)2

(νr2n)2
+

+1 + (2λr − λ)νr2n
(νr2n)2

qn2e
qn1t − qn1e

qn2t

qn1 − qn2
− (1 + λrνr

2
n)e

qn1t − eqn2t

qn1 − qn2

]
,

(58)
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τ(r, t) = τN,2(r, t) + 2µ(λλr − λ)

t− λ+ λe
− t
λ

 ∗ ∂tΩN (r, t)+

+4fν
R

∞∑
n=1

rnJ2(rrn)
J1(Rrn)

[
λr
νr2n

t+ λ− 2λr − νr2nλλr
(νr2n)2

+

+ λ2

νr2n

1− νr2nλr
1− νr2nλ

e
− t
λ + λ2

(νr2n)3
1− νr2nλr
1− νr2nλ

e−νr
2
nt+

+λ(λ− λr)
qn1 − qn2

(
qn1e

qn1t

Anqn1 +Bn
− qn2e

qn2t

Anqn2 +Bn

)]
=

= 4f
∞∑
n=1

J1(rrn)
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2
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2
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+
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qn1 − qn2

]
,

(59)
where qn1 and qn12 are the real roots of λq2+(1+νr2nλr)q+νr2n = 0 (they are
real negative numbers because (1 + λrνr

2
n)2 − 4λνr2n > 0, qn1 · qn2λνr

2
n > 0

and qn1 + qn2 = −1 + νr2nλr
λ

< 0).

6 Conclusions

The main purpose of this paper is to provide exact solution for the unsteady
flow of an incompressible Oldroyd-B fluid filling the annular region between
two infinitely long co-axial cylinders subject to a particular time-dependent
shear stress. Such solutions, obtained by using the Hankel and Laplace trans-
forms, are presented as sums between the Newtonian solutions and the cor-
responding non-Newtonian contributions. Furthermore, the non-Newtonian
contributions of the general solutions are also presented in equivalent forms,
under series form in terms of the time derivative of the (simplest) Newtonian
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solution ωN and ωN,2 as well. For λ → 0 (and, consequently, λr → 0) these
contributions tend to zero, such that the general solutions become Newtonian
solutions corresponding to the given initial-boundary conditions.

It is remarkable that the general solutions can be easily specialized to
give both the similar solutions for "generalized" second grade and Maxwell
fluids and the solutions for all ordinary fluids (Oldroyd-B, Maxwell and sec-
ond grade) performing the same motions. Direct computations shows that
the solutions which have been obtained certainly satisfy both the governing
equations and all imposed initial and boundary conditions. Furthermore, the
solutions corresponding to ordinary Maxwell and second grade fluids can be
also obtained as limiting cases of those for ordinary Oldroyd-B fluids. As
regard the Newtonian solutions, given under simple forms (20), (22), and
(37), they can be obtained as limiting cases of the previous solutions.

From our general solutions, corresponding to non-Newtonian fluids, it
clearly results that the non-Newtonian contributions of these solutions ex-
ponentially decrease in time, the motion of the non-Newtonian fluids being
well approximated, for large values of t, by the motion of the corresponding
Newtonian fluid.
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MULTI-METRIC SPACES∗
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Abstract

The aim of the present article is to give some general methods in
the fixed point theory for mappings of general topological spaces. Us-
ing the notions of the multi-metric space and of the E-metric space, we
proved the analogous of several classical theorems: Banach fixed point
principle, Theorems of Edelstein, Meyers, Janos etc.
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1 Introduction

Any space is considered to be Tychonoff and non-empty. We use the termi-
nology from [12, 13].

Let R be the space of real numbers.
A pseudo-metric on a set X is a function ρ : X ×X−→R satisfying the fol-

lowing conditions: ρ(x, x)=0, ρ(x, y)=ρ(y, x) and ρ(x, z)≤ρ(x, y)+ρ(y, z) for
all x, y, z ∈ X. The number ρ(x, y) is called the ρ-distance between the points x, y.
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For any x, y ∈ X we have ρ(x, y) ≥ 0. If A ⊆ B, B ⊆ X, x ∈ X
and r ≥ 0, then ρ(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B} and B(x, ρ, r) = {y ∈
X : ρ(x, y) < r}.

The pseudo-metric ρ generates on X the canonical equivalence relation:
x ∼ y iff ρ(x, y) = 0. Let X/ρ be the quotient set with the canonical
projection πρ : X −→ X/ρ and the metric ρ̄(u, v) = ρ(π−1

ρ (u), π−1
ρ (v)).

Definition 1.1. A multi-metric space is a pair (X,P), where X is a set
and P is a non-empty family of pseudo-metrics on X satisfying the condition:
x = y if and only if ρ(x, y) = 0 for each ρ ∈ P.

Fix a multi-metric space (X,P). A subset U ⊆ X is called P-open
if for any x ∈ U there exist a number ε = ε(x, U) > 0 and a finite set
A = A(x, U) ⊆ P such that B(x,A, ε) = ∩{B(x, ρ, ε) : ρ ∈ A} ⊆ U . The
family T (P) of all P-open subsets is a completely regular Hausdorff topology
on X. If T is a completely regular Hausdorff topology on X, then T = T (P)
for some family P of pseudo-metrics on X (see [12]).

A P-number is the set λP = (λρ : ρ ∈ P), where λρ ∈ R for any ρ ∈ P.
If α, β ∈ R and λP = (λρ : ρ ∈ P) is a P-number, then λ ≤ λP � β if
λ ≤ λρ < β for any ρ ∈ P.

In [1, 2, 3] there were introduced the metric spaces over topological semi-
fields. The general conception of the metrizability of spaces is contained in
[21]. Every multi-metric space can be considered as a metric space (X, d,RP),
where d(x, y) = (ρ(x, y) : ρ ∈ P) for all x, y ∈ X, over the Tichonoff semifield
RP (see [1, 2, 3]).

The notion of a topological semifield may be generalized in the following
way. We say that E is a metric scale or, briefly, an m-scale if:

1. E is a topological algebra over the field of reals R;
2. E is a commutative ring with the unit 1 6= 0;
3. E is a vector lattice and 0 ≤ xy provided 0 ≤ x and 0 ≤ y;
4. For any neighborhood U of 0 in E there exists a neighborhood V of 0

in E such that if x ∈ V and 0 ≤ y ≤ x, then y ∈ U .
From the condition 4 it follows:
5. If 0 ≤ yn ≤ xn and limn→∞xn = 0, then limn→∞yn = 0 too.
Any topological semifield is an m-scale.
Let E be an m-scale.
Denote by E−1 = {x : x · y = 1 for some y ∈ E} the set of all invertible

elements of E.
By N(0, E) we denote some base of the space E at the point 0.
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We consider that 0 ≤ x � 1 if 0 ≤ x < 1, 1 − x is invertible and
limn→∞x

n = 0. We put E(+,1) = {x ∈ E : 0 ≤ x � 1}. If t ∈ R and
0 ≤ t < 1, then t · 1 ∈ E(+,1). We identify t with t · 1 ∈ E for each t ∈ R.

A mapping d : X × X −→ E is called a metric over m-scale E or an
E-metric if it is satisfying the following axioms of the metric:

- d(x, y) = 0 if and only if x = y;
- d(x, y) = d(y, x);
- d(x, y) ≤ d(x, z) + d(yz, y).
Every E-metric is non-negative, i.e. d(x, y) ≥ 0 for all x, y ∈ X.
The ordered triple (X, d,E) is called a metric space over m-scale E or

an E-metric space if d is an E-metric on X.
Let (X, d,E) be an E-metric space. If U ∈ N(0, E), then we put

B(x, d, U) = {y ∈ X : d(x, y) ∈ U} for any x ∈ X. The family {B(x, d, U) :
x ∈ X,U ∈ N(0, E)} is the base of the topology T (d) of the E-metric space.
The space (X, T (d)) is a Tychonoff space.

Let X be a space and f : X −→ X be a mapping. By Fix(f) = {x ∈
X : f(x) = x} we denote the set of all fixed points of the mapping f . The
excellence book [13] contains the fixed point theory for metric spaces with the
important applications in distinct domains. Several results for general topo-
logical spaces with interesting applications contain the surveys [13, 17, 23].
Distinct generalizations of the Banach fixed point principle were proposed in
[6, 11, 13, 17, 23, 26]. In [24] it was arisen the following general problem: to
find topological analogies of the Banach fixed point principle. Some solutions
of this problem were proposed in [8, 25]. This article is a continuation of the
works [8, 24, 25, 16].

Definition 1.2 (see [13]). Let X be a space andM be a class of mappings
f : X −→ X. If Fix(f) 6= ∅ for each f ∈ M, then X is called a fixed point
space relative toM.

If X is a fixed point space relative to all continuous mappings f : X −→
X, then X is called a fixed point space.

For each family γ of subsets of a set X and any x ∈ X the set St(x, γ) =
∪{U ∈ γ : x ∈ U} is the star of the point x relative to γ. We put St(A, γ) =
∪{St(x, γ) : x ∈ A}.

Theorem 1.3 (see [13], Theorem 0.4.4, for a compact metric space X).
For a compact space X the following assertions are equivalent:

1. X is a fixed point space.
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2. There exists a family P of continuous pseudo-metrics on X such that:
- for any two pseudo-metrics ρ1, ρ2 ∈ P there exists ρ ∈ P such that

sup{ρ1(x, y), ρ2(x, y)} ≤ ρ(x, y) for all x, y ∈ X;
- T (P) is the topology of the space X;
- for any ρ ∈ P and ε > 0 there exist a compact fixed point subspace

X(ρ,ε) of X and two continuous mappings α(ρ,ε) : X −→ X(ρ,ε) and β(ρ,ε) :
X(ρ,ε) −→ X such that ρ(x, β(ρ,ε)(α(ρ,ε)(x))) < ε for any x ∈ X.

3. There exists a family U of open covers of X such that:
- for any open cover ξ of X there exists a refinement γ ∈ U of ξ;
- for any γ ∈ U there exist a compact fixed point subspace Xγ of X and

two continuous mappings αγ : X −→ Xγ and βγ : Xγ −→ X such that
βγ(αγ(x)) ∈ St(x, γ) for any x ∈ X.

Proof. Since any compact space has a unique uniform structure and any
uniform structure is generated by a family of continuous pseudometrics, the
assertions 2 and 3 are equivalent.

If X is a fixed point space, then we put X = Xγ = X(ρ,ε) and consider
that αγ , βγ , α(ρ,ε), β(ρ,ε) are the identical mapping. Thus the implications
1→ 2 and 1→ 3 are obvious.

Assume that the assertion 3 is true. If ξ, γ ∈ U and γ is a refinement
of ξ, then we put ξ ≤ γ. Fix a continuous mapping f : X −→ X. We put
gγ = βγ ◦ f ◦ αγ : Xγ −→ Xγ and fγ = βγ ◦ αγ ◦ f : X −→ X for any
γ ∈ U . Since Xγ is a fixed point space, then we can fix a point zγ ∈ Xγ

such that gγ(zγ) = zγ . We put xγ = βγ(zγ). Obviously, fγ(xγ) = xγ and
f(xγ) ∈ St(xγ , γ).

The set U is directed. Thus {xγ : γ ∈ U} is a net in the space X. Since
X is a compact space, the net {xγ : γ ∈ U} has a cluster point x0, i.e. for
each neighborhood V of the point x0 in X and any ξ ∈ U there exists γ ∈ U
such that ξ ≤ γ and xγ ∈ V (see [12], Theorem 3.1.23).

We affirm that f(x0) = x0.
Assume that f(x0) 6= x0. Since f is a continuous mapping, there exist

ξ ∈ U and an open subset V of X such that St(x0, ξ) ⊆ V , St(V, ξ) ∩
St(f(x0), ξ) = ∅ and f(St(V, ξ)) ∩ St(f(x0), ξ). By construction, f(x) 6∈
St(V, ξ) for any x ∈ St(V, ξ).

There exists γ ∈ U such that ξ ≤ γ and xγ ∈ St(x0, ξ) ⊆ V . By
construction, xγ ∈ V , f(xγ) ∈ St(xγ , γ) ⊆ St(V, γ) and f(xγ) ∈ St(V, ξ), a
contradiction with the condition that f(x) 6∈ St(V, ξ) for any x ∈ St(V, ξ).
The proof is complete.
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As Theorem 0.4.5 from ([13], p. 8), using Tychonoff cube IA, one can
prove the next assertion.

Theorem 1.4. Let f ;X → X be a continuous mapping and there exist a
compact absolute retract space Y and the continuous mapping α : X −→ Y ,
β : Y −→ X such that f = β ◦ α. Then f has a fixed point.

2 Complete multi-metric spaces

Fix an m-scale E and an E-metric space (X, d,E).
A set {xµ : µ ∈ M} is a net or a generalized sequence if M is a directed

set.
A point x ∈ X is a limit of the net {xµ : µ ∈M} and we put limm∈Mxµ =

x if for any U ∈ N(0, E) there exists λ ∈ M such that d(x, xµ) ∈ U for any
µ ≥ λ.

A net {xµ : µ ∈ M} is called fundamental if for any U ∈ N(0, E) there
exists λ ∈ M such that d(xµ, xη) ∈ U for any µ, η ≥ λ. Any convergent net
is fundamental. The limit of a fundamental sequence is unique (if the limit
exists).

The space (X, d,E) is called complete if any fundamental net is convergent
(see [12, 1, 2, 3]).

The space (X, d,E) is called sequentially complete if any fundamental
sequence {xn ∈ X : n ∈ N} is convergent.

Let {xµ : µ ∈ M} be a net and U ∈ N(0, E). We assume that x ∈
L(U, {xµ : µ ∈ M}) if there exists λ ∈ M such that d(x, xµ) ∈ U for any
µ ≥ λ.

The space (X, d,E) is called conditionally complete if ∩{L(U, {xn : n ∈
N}) : U ∈ γ} 6= ∅ for any fundamental sequence {xn ∈ X : n ∈ N} and any
countable non-empty family γ ⊆ N(0, E).

Any complete metric space is sequentially complete and any sequentially
complete space is conditionally complete.

Example 2.1. Let (X, d,E) be an E-metric space. On X consider
the topology T (d). Assume that the space X is pseudocompact. Then the
metric space (X, d,E) is conditionally complete. If the space X is count-
ably compact, then the metric space (X, d,E) is sequentially complete. The
space (X, d,E) is complete if and only if the space X is compact. Thus if
X is a countably compact non-compact space, then the space (X, d,E) is
sequentially complete and non-complete.
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Example 2.2. Let A be an uncountable set. We put Iα = I = [0, 1] for
any α ∈ A. Let Y = IA = Π{Iα : α ∈ A}, 0A = (0α : α ∈ A) ∈ Y and
X = Y \ {0A}. The space E = RA is a topological field and an m-scale.
By construction, X ⊆ IA ⊆ E. We put d(x, y) = (|xα − yα| : α ∈ A) and
dα(x, y) = |xα − yα| for any pair of points x = (xα : α ∈ A) ∈ Y and
x = (xα : α ∈ A) ∈ Y . Let P = {dα : α ∈ A}. Then (X, d,E) is an E-metric
space and (X,P) is a multi-metric space.

Obviously, T (d) = T (P). The space Y is compact and the space X
is pseudocompact. Thus the spaces (X, d,E) and (X,P) are conditionally
complete. We put xn = (2−nα : α ∈ A). Then {xn : n ∈ N} is a fundamental
sequence. We have limPxn = 0A. Thus the spaces (X, d,E) and (X,P) are
not sequentially complete. In particular, the spaces (X, d,E) and (X,P) are
not complete.

Remark 2.3. Let (X, d,E) be an E-metric space and the space E be
first countable, i.e. it is metrizable in the usual sense. Then the space X
is metrizable in the usual sense too. Moreover, if the space (X, d,E) is
conditionally complete, then the space (X, d,E) is complete.

Remark 2.4. Let (X, d,E) be an E-metric space and X be an infinite
extremally disconnected countably compact space. Then each fundamental
sequence {xn : n ∈ N} is trivial, i.e. there exists m ∈ N such that xn = xm
for any n ≥ m.

Now we fix a multi-metric space (X,P).
In this case we put E = RP and d(x, y) = (ρ(x, y) : ρ ∈ P) for any

x, y ∈ X. Obviously, (X, d,E) is an E-metric space and T (d) = T (P).
A sequence {xn ∈ X : n ∈ N = {1, 2, ...}} is called ρ-fundamental, where

ρ ∈ P, if for any ε > 0 there exists m ∈ N such that ρ(xn, xk) < ε for
all n, k ≥ m. A point x ∈ X is a ρ-limit of the sequence {xn : n ∈ N} if
limρ(x, xn) = 0. Let L({xn : n ∈ N}, ρ) = {x ∈ X : limρ(x, xn) = 0}. A
sequence {xn ∈ X : n ∈ N} is fundamental if and only if it is ρ-fundamental
for any ρ ∈ P.

Obviously, the space (X,P) is conditionally complete if and only if ∩{L({xn :
n ∈ N}, ρ) : ρ ∈ F} 6= ∅ for any countable family F ⊆ P and any funda-
mental sequence {xn : n ∈ N}.

There exists a canonical embedding eP : X −→ Π{X/ρ : ρ ∈ P}, where
eP(x) = (πρ(x) : ρ ∈ P). If (Yρ, ρ̄) is the Hausdorff completion of the metric
space (X/ρ, ρ̄) and the subspace eP(X) is closed in Π{Yρ : ρ ∈ P}, then
(X,P) is a complete multi-metric space.
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Obviously, a multi-metric space (X,P) is a complete multi-metric space
if and only if the E-metric space (X, d,E) is complete.

3 Banach fixed point theorem for E-metric spaces

Fix an m-scale E.

Let (X, d,E) be an E-metric space.

A mapping f : X −→ X is a contractive mapping if there exists an
element k ∈ E(+,1) such that d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ X. The
element k is called the Lipschitz constant of the mapping f . Every contractive
mapping is uniformly continuous.

For any mapping f : X −→ X and any point x ∈ X we put 0(x, f) = x
and n(x, f) = f((n− 1)(x, f)) for any n ∈ N. We put ω = {0, 1, 2, ...}. Then
the set T (f, x) = {n(x, f) : n ∈ ω} is the Picard orbit of the point x relative
to the mapping f .

Theorem 3.1. Let f : X −→ X be a contractive mapping with the
Lipschitz constant k ∈ E(+,1). Then for each point x ∈ X the Picard orbit
T (f, x) = {n(x, f) : n ∈ ω} is a fundamental sequence of the metric space
(X, d,E).

Proof. Fix x = x0. We put xn = f(xn−1) for any n ∈ N .

There exists b ∈ E such that b · (1− k) = 1.

Then d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ k · d(xn−1, xn) for any n ∈ N.
Hence d(xn, xn+1) ≤ kn · d(x0, x1) for any n ∈ N. Obviously, d(xn, xm) ≤
d(xn, xn+1 + ... + d(xm−1, xm) ≤ (kn + kn+1 + ... + km−1 + km) · d(x0, x1).
Therefore d(xn, xm) ≤ (kn − kn+m) · b · d(x0, x1) provided n,m ∈ N and
n ≤ m. Since limn→∞k

n = 0, the sequence {xn : n ∈ ω} is fundamental.
The proof is complete.

Corollary 3.2. Let (X, d,E) be a sequentially complete E-metric space
and f : X −→ Y be a contraction mapping with the Lipschitz constant k ∈
E(+,1). Then the mapping f admits one and only one fixed point b ∈ X.
Moreover, b = limn→∞n(x, f) for any point x ∈ X.

Remark 3.3. For a topological semifield E the assertion of Corollary
3.2 was proved by K.Iseki in [16].
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4 Banach fixed point theorem for a multi-metric
space

Let (X,P) be a multi-metric space.
A mapping f : X −→ X is a Lipschitz mapping if there exists a P-number

k = (kρ : ρ ∈ P) such that ρ(f(x), f(y)) ≤ kρ for all x, y ∈ X and ρ ∈ P.
The P-number k is called the Lipschitz constant of the mapping f . Every
Lipschitz mapping is uniformly continuous.

A mapping f : X −→ X is called a contraction mapping on (X,P) if
there exists a non-negative P-number k = (kρ : ρ ∈ P) � 1 such that
ρ(f(x), f(y)) ≤ kρρ(x, y) for all x, y ∈ X and ρ ∈ P.

Theorem 4.1. Let (X,P) be a sequentially complete multi-metric space
and f : X −→ Y be a contraction mapping on (X,P). Then the mapping f
admits one and only one fixed point b ∈ X.

Proof. Let f : X −→ X be a mapping. Then Fix(f) = {x ∈ X : f(x) =
x} is the set of all fixed points of the mapping f .

Suppose that f is a contraction mapping with the Lipschitz constant
k = (kρ : ρ ∈ P)� 1, i.e. o ≤ kρ < 1 for any ρ ∈ P.

We put E = RP and d(x, y) = (ρ(x, y) : ρ ∈ P) for any x, y ∈ X.
Obviously, (X, d,E) is a sequentially complete E-metric space and f is a
contraction mapping with the Lipschitz constant k ∈ E(+,1). Corollary 3.2
completes the proof.

5 Representations of mappings of multi-metric
spaces

Let (X,P) be a multi-metric space and the set P be non-empty.
We say that a mapping f : X −→ X admits a pointwise identification if

there exists a family of non-negative functions {ϕ(f,ρ), ψ(f,ρ) : X×X −→ R :
ρ ∈ P} such that ϕ(f,ρ)(x, y)·ρ(x, y) ≤ ρ(f(x), f(y)) ≤ ψ(f,ρ)(x, y)·ρ(x, y) for
all x, y ∈ X and ρ ∈ P. The functions {ϕ(f,ρ), ψ(f,ρ) : X ×X −→ R : ρ ∈ P}
are called the pointwise identification functions of the mapping f .

Theorem 5.1. Let (X,P) be a multi-metric space and f : X −→ X
be a mapping with the pointwise identification functions {ϕ(f,ρ), ψ(f,ρ) : X ×
X −→ R : ρ ∈ P}. Then for any ρ ∈ P there exists a mapping fρ :
X/ρ −→ X/ρ such that πρ(f(x)) = fρ(πρ(x)) and ϕ(f,ρ)(x, y) · ρ(x, y) ≤
ρ̂(fρ(πρ(x)), fρ(πρ(y))) ≤ ψ(f,ρ)(x, y) · ρ(x, y) for all x, y ∈ X and ρ ∈ P.
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Proof. Fix u, v ∈ X/ρ. Let x, y ∈ πρ−1(u). Then ρ(x, y) = 0 and
0 ≤ ρ(f(x), f(y)) ≤ ψ(f,ρ)(x, y)ρ(x, y) = 0. Hence f(π−1

ρ (u)) is a singleton
and we put fρ(u) = πρ(f(πρ−1(u))). The mapping fρ : X/ρ −→ X/ρ is well
defined. The proof is complete.

Theorem 5.2. Let (X,P) be a sequentially complete multi-metric space,
f : X −→ X be a mapping and for any ρ ∈ P there exists a non-negative
number kρ 6= 1 such that:

1. If kρ < 1, then ρ(f(x), f(y)) ≤ kρ · ρ(x, y) for all x, y ∈ X.
2. If kρ > 1, then ρ(f(x), f(y)) ≥ kρ · ρ(x, y) for all x, y ∈ X.
Then the mapping f admits one and only one fixed point b ∈ X.
Proof. By virtue of Theorem 5.1, for any ρ ∈ P there exists a mapping

fρ : X/ρ −→ X/ρ such that:
1. If kρ < 1, then ρ̄(fρ(x), fρ(y)) ≤ kρ · ρ̄(x, y) for all x, y ∈ X/ρ.
2. If kρ > 1, then ρ̄(f(x), f(y)) ≥ kρ · ρ̄(x, y) for all x, y ∈ X/ρ.
3. πρ(f(x)) = fρ(πρ(x)) for any x ∈ X.
We put qρ = kρ and C(f,ρ)(x) = fρ(x) for any x ∈ X/ρ if kρ < 1. If kρ > 1,

then for the mapping fρ there exists the inverse mapping C(f,ρ) = f−1
ρ and

we put qρ = 1/kρ. Let Cf (x) = (C(f,ρ)(πρ(x)) : ρ ∈ P) for any x ∈ X. By
construction, Cf is a contraction of the multi-metric space (X,P) with the
constant q = (qρ : ρ ∈ P) � 1. By virtue of Theorem 4.1, there exists a
unique fixed point for Cf . Since Fix(f) = Fix(Cf ), the proof is complete.

Theorem 5.3. Let (X,P) be a multi-metric space, P = {ρα : α ∈ A}
and f : X −→ Y be a contraction mapping. Then for any number q ∈ (0, 1)
there exists a family of pseudo-metrics D = {dα : α ∈ A} such that:

1. dα(f(x), f(y)) ≤ q · dα(x, y) for all α ∈ A and x, y ∈ X.
2. T (dα) = T (ρα) for any α ∈ A.
3. T (D) = T (P).
4. If the space (X,P) is complete, then the space (X,D) is complete too.
5. If the space (X,P) is sequentially complete, then the space (X,D) is

sequentially complete too.
Proof. Fix α ∈ A. Consider the projection πα : X −→ X/ρα of

(X, ρα) onto the metric space (X/ρα, ρ̄α) and the mapping fα : X/ρα −→
X/ρα, where f(πα(x)) = πα(fα(x)) and ρα(x, y) = ρ̄α(πα(x), πα(y)) for all
x, y ∈ X. Denote by (Xα, rα) the Hausdorff completion of the metric space
(X/ρα, ρ̄α). Since f is a contraction, there exist a positive number kα < 1
and a continuous extension gα : Xα −→ Xα of the mapping fα such that
rα(gα(x), gα(y)) ≤ kα · rα(x, y) for all x, y ∈ Xα. By virtue of P.R.Meyers’
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theorem [19], there exists a complete metric hα on Xα such that T (rα) =
T (hα) and hα(gα(x), gα(y)) ≤ q · hα(x, y) for all x, y ∈ Xα. Now we put
dα(x, y) = hα(πα(x), πα(y)) for all x, y ∈ X. The proof is complete.

Theorem 5.4. Let f : X −→ X be a mapping of a pseudocompact space
X into itself. The following assertions are equivalent:

1. For any positive number q < 1 there exists a family of pseudo-metrics
D such that T = T (D) is the topology of the space X and d(f(x), f(y)) <
q · d(x, y) for all ρ ∈ D and x, y ∈ X.

2. There exists a family of pseudo-metrics P such that T = T (P) is
the topology of the space X and ρ(f(x), f(y)) < ρ(x, y) for all ρ ∈ P and
x, y ∈ X.

Proof. The implication 1→ 2 is obvious.
Assume that there exists a family of pseudo-metrics P such that T =

T (P) is the topology of the space X and ρ(f(x), f(y)) < ρ(x, y) for all
ρ ∈ P and x, y ∈ X. Fix ρ ∈ P. Consider the projection πρ : X −→ X/ρ
of (X, ρ) onto the metric space (X/ρ, ρ̄) and the mapping fρ : X/ρ −→ X/ρ,
where f(πρ(x)) = πρ(fα(x)) and ρ(x, y) = ρ̄(f(x), f(y)) for all x, y ∈ X. By
construction, X/ρ is a compact metric space and ρ̄(f(x), f(y)) < ρ̄(x, y) for
all x, y ∈ X/ρ. Suppose that for any n ∈ ω there exists xn, yn ∈ X such that
ρ(f(xn), f(yn) ≥ (1− 2−n)ρ(x.y). Since X/ρ is a metrizable compact space,
there exist an infinite subset L ⊆ ω, an infinite subsetM ⊆ L and two points
x, y ∈ X such that:

- πρ(x) is the limit of the subsequence {πρ(xn) : n ∈ L} and ρ(x, xn) <
2−n for any n ∈ L;

- πρ(y) is the limit of the subsequence {πρ(yn) : n ∈ M} and ρ(y, yn) <
2−n for any n ∈M .

There exists m ∈ ω such that 2−m+2 < ρ(x, y) − ρ(f(x), f(y)). By
construction, ρ(f(x), f(y)) = limρ(f(xn), f(yn)) = limρ(xn, yn) = ρ(x, y), a
contradiction. Thus there exists a number kρ < 1 such that ρ(f(x), f(y)) ≤
ρ(x, y) for all x, y ∈ X. Theorem 5.3 completes the proof.

The next assertion for compact metric spaces was proved by V.Niemytzki
(see [22, 17]) in 1936.

Corollary 5.5. Let (X,P) be a countably compact multi-metric space,
f : X −→ X be a mapping and ρ(f(x), f(y)) < ρ(x, y) for all ρ ∈ P and
x, y ∈ X. Then the mapping f admits one and only one fixed point b ∈ X.

The next assertion for compact metric spaces was proved by L.Janos
(see [18, 17]).
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Theorem 5.6. Let f : X −→ X be a continuous mapping of a compact
space X into itself. The following assertions are equivalent:

1. If X0 = X and Xn+1 = f(Xn) for any n ∈ ω, then ∩{Xn : n ∈ ω} is
a singleton.

2. For any positive number q < 1 there exists a family of pseudo-metrics
D such that T = T (D) is the topology of the space X and d(f(x), f(y)) <
q · d(x, y) for all ρ ∈ D and x, y ∈ X.

3. There exists a family of pseudo-metrics P such that T = T (P) is
the topology of the space X and ρ(f(x), f(y)) < ρ(x, y) for all ρ ∈ P and
x, y ∈ X.

Proof. The implications 2→ 3 and 2→ 1 are obvious. The implication
3→ 2 follows from Theorem 5.4.

Claim 1. Let d be a continuous pseudo-metric on X, Yn = πd(Xn) and
d(f(x), f(y)) = 0 provided d(x, y) = 0. Then on X/d there exists a metric
h such that:

- the metrics h and d̄ are equivalent on X/d;

- h(πd(f(x)), πd(f(y))) ≤ q · h(πd(x), πd(y)) for all x, y ∈ X.

There exists a continuous mapping fd : X/d −→ X/d such that fd(πd(x)) =
πd(f(x)) for any x ∈ X. By construction, fd(Yn) = Yn+1 and Y0 = X/d. As-
sume that x, y ∈ X, πd(x) 6= πd(y) and πd(x), πd(y) ∈ ∩{Yn : n ∈ ω}. Since
∩{Yn : n ∈ ω} = {b} is a singleton, we can consider that πd(b) 6= πd(y). From
πd(y) ∈ ∩{Yn : n ∈ ω} it follows that π−1

d (πd(y)) ∩ (∩{Yn : n ∈ ω}) 6= ∅, a
contradiction. Thus ∩{Yn : n ∈ ω} is a singleton and X/d is a metrizable
compact space. The L.Janos’ theorem (see [18, 17]) completes the proof of
the Claim 1.

Claim 2. There exists a family of pseudo-metrics P such that T = T (P) is
the topology of the space X and ρ(f(x), f(y)) = 0 provided ρ ∈ P, x, y ∈ X
and ρ(x, y) = 0.

Fix a continuous function g : X → I = [0, 1]. We put g0 = g and
gn+1(x) = gn(f(x)) for all n ∈ ω and x ∈ X.

Consider the mapping πg : X −→ Yg ⊆ Iω, where πg(x) = (gn(x) : n ∈ ω)
and Yg = πg(X). On the metrizable compact space Yg fix some metric
dg. Let ρg(x, y) = dg(πg(x), πg(y)). By construction, if ρg(x, y) = 0, then
gn(x) = gn(y) for any n ∈ ω.
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Since gn+1(z) = gn(f(z)), we have that gn(f(x)) = gn(f(y)) for any n ∈ ω.
Thus ρg(f(x), f(y)) = 0 too.

If F is a family of continuous functions which separates the points of X,
then P = {ρg : g ∈ F} is the desired family of pseudo-metrics. Claim 2 is
proved. The implication 1→ 2 is proved too. The proof is complete.

The using of this construction has some obstacles.
In the first, the space (X,P) may be not sequentially complete. In the

second, the space (X,P) may be complete and each space (X/ρ, ρ̂) may be
non-complete.

Example 5.7. Let In = [0, 1] for any n ∈ N. We put X = {x = (xn ∈
In : n ∈ N) the set {n ∈ N : xn 6= 0} is finite}. Assume that X is a subspace
of the metrizable compact space IN = Π{In : n ∈ N}. If x = (xn : n ∈ N)
and y = (yn : n ∈ N), then we put ρn(x, y) =| xn − yn |. Then the pseudo-
metrics P = {ρn : n ∈ N} generates the topology of the space X. Thus
(X,P) is a metrizable multi-metric space. For any x = (xn : n ∈ N) we put
f(x) = ((1−2−n)xn : n ∈ N). Then f : X −→ X is a contraction of the multi-
metric space (X,P) with the coefficient k = (kn = 1 − 2−n : n ∈ N) � 1.
If 0 = (0 ∈ In : n ∈ N) the f(0) = 0 and 0 is the unique fixed point of
the mapping f . The space (X,P) is not sequentially complete and the space
X/ρ = In is compact for any n ∈ N.

Remark 5.8. A space X is called a sequential space if a set F ⊆ X is
closed if and only if it contains the limit of any sequence {xn ∈ F : n ∈ ω}.
In a sequential space X any countably compact subset F is closed. There-
fore, the assertions 1 - 3 from Theorem 5.6 are equivalent for any countably
compact sequential space X.

Remark 5.9. In a first countable space X any pseudocompact subset
F is closed. Therefore, the assertions 1 - 3 from Theorem 5.6 are equivalent
for any pseudocompact first countable space X and a mapping f for which
Fix(f) 6= ∅.

Example 5.10. Let Q be the space of all rational numbers. Denote
by P1 the family of all continuous pseudo-metrics on Q. Then (Q,P1) is a
complete multi-metric space and T (P1) coincides with the topology of the
space Q. Let X = R × Q. For any ρ ∈ P1 we put dρ((x1, t1), (x2, t2)) =
|x1 − x2| + |t1 − t2| + ρ(t1, t2). Then dρ is a continuous metric on X. If
P = {dρ : ρ ∈ P1}, then (X,P) is a complete multi-metric space and T (P)
coincides with the topology of the space X. The metric dρ generates on
X the topology of X. Thus X = X/dρ for any ρ ∈ P1. Hence the space
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(X/d, d̂) is not complete for any d ∈ P and (X,P) is a complete multi-metric
space. If f(x, t) = (2−1x, 0), then f : X −→ X is a contraction with the
coefficient k = (kd = 2−1 : d ∈ P) = 2−1. Moreover, any contraction of the
multi-metric space (X,P) and (Q,P1) admits one and only one fixed point.

Remark 5.11. Let (X,P) be a sequentially complete multi-metric space.
If the set P is finite, then we put d(x, y) = sup{ρ(x, y) : ρ ∈ P} for any
x, y ∈ X. The metric d generate the topology of X and (X, d) is a complete
metric space. If f : X −→ X is a contraction of the multi-metric space
(X,P) with the coefficient (kρ : ρ ∈ P) < 1, then f is a contraction of the
metric space (X, d) with the coefficient k = sup{kρ : ρ ∈ P} < 1. If the set
P = {ρn : n ∈ N} is countable and the space (X,P) is sequentially complete,
then the space X is complete metrizable.

Question 5.12. Let (X,P) be a sequentially complete multi-metric space,
the set P be countable and f : X −→ X be a contraction. Under which
conditions on X there exists a complete metric d of X such that f is a
contraction of X?

If (X,P) is a multi-metric space, f : X −→ X is a mapping and x0 ∈ X
is a unique fixed point of the mapping f , then, by virtue of the C.Besaga’s
theorem [7], on X there exists a complete metric d such that d(f(x), f(y)) <
r−1d(x, y) for all x, y ∈ X. But, the topologies T (d) and T (P) may be
distinct.

6 Dilations of multi-metric spaces

Let (X,P) be a non-empty multi-metric space.
A mapping f : X −→ X is called a dilation if there exists a P-number

k = (kρ : ρ ∈ P) > 0 such that kρ 6= 1 and ρ(f(x), f(y)) = kρρ(x, y) for all
x, y ∈ X and ρ ∈ P.

Any dilation is a uniform homeomorphism. Moreover, the inverse map-
ping f−1 : X −→ X of the dilation with the coefficient k = (kρ : ρ ∈ P) is a
dilation with the coefficient k−1 = (k−1

ρ : ρ ∈ P).
From Theorem 5.1 it follows
Corollary 6.1. Let f : X −→ X be a mapping, k = (kρ : ρ ∈ P)

be a P-number and kρ > 0, ρ(f(x), f(y)) = kρf(x, y) for all x, y ∈ X and
ρ ∈ P. Then for any ρ ∈ P there exists a mapping fρ : X/ρ −→ X/ρ such
that πρ(f(x)) = fρ(πρ(x)) and ρ̄(fρ(u), fρ(v)) = kρρ̄(u, v) for all x ∈ X and
u, v ∈ X/ρ.
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Corollary 6.1 permits to study the construction of the general dilation of
the multi-metric space. Let (X,P) be a non-empty multi-metric space and
k = (kρ : ρ ∈ P) > 0 be a positive P-number. Suppose that f : X −→ X
is a mapping and ρ(f(x), f(y)) = kρf(x, y) for all x, y ∈ X and ρ ∈ P. We
put P ′ = {ρ ∈ P : kρ < 1}, P ′′ = {ρ ∈ P : kρ > 1} and P0 = {ρ ∈ P :
kρ = 1}. If P0 6= 0, then we say that f is a general dilation. For any ρ ∈ P
consider the mapping fρ : X/ρ −→ X/ρ, where πρ(f(x)) = fρ(πρ(x)) and
ρ̄(fρ(πρ(x))), fρ(πρ(y)) = kρ · ρ(x, y) for all x, y ∈ X. If kρ = 1, then fρ is an
isometry of the metric space (X/ρ, ρ̄). If kρ 6= 1, then fρ is a dilation with
the coefficient kρ.

Fix ρ ∈ P ′. We put N(ρ,f)(u) = fρ(u), S(ρ,f)(u) = q(ρ,f)(u) = u for any
u ∈ X/ρ.

Fix ρ ∈ P0. We put N(ρ,f (u) = Q(ρ,f (u) = u. S(ρ,f) = fρ(u) for any
u ∈ X/ρ.

Now we consider the embedding eP : X −→ Π{X/ρ : ρ ∈ P} and the
mappings Nf (x) = e−1

P (N(ρ,f)(πρ(x)) : ρ ∈ P), Sf (x) = e−1
P (S(ρ,f)(πρ(x)) :

ρ ∈ P), Qf (x) = e−1
P (Q(ρ,f)(πρ(x)) : ρ ∈ P).

The mappings Nf , Sf , Qf are homeomorphisms of the space (X,P) as-
sociated with the mapping f . By construction, we have the following four
properties.

Property 1. f = Sf ·Nf ·Qf = Nf ·Sf ·Qf = Qf ·Nf ·Sf = Sf ·Qf ·Nf .
Property 2. ρ(Sf (x), Sf (y)) = ρ(x, y) for any x, y ∈ X and ρ ∈ P.
Property 3. ρ(Nf (x), Nf (y)) = kρρ(x, y) for any ρ ∈ P ′ and ρ(Nf (x),

Nf (y)) = ρ(x, y) for any ρ ∈ P \ P ′ and all x, y ∈ X.
Property 4. ρ(Qf (x), Qf (y)) = kρ(x, y) for any ρ ∈ P ′′ and ρ(Nf (x),

Nf (y)) = ρ(x, y) for any ρ ∈ P \ P ′′ and all x, y ∈ X.
We say that Sf is the isometrically component of the mapping f , Nf is

the negative component of the mapping f and Qf is the positive component
of the mapping f .

Assume that P0 = ∅, i.e. f is a dilation. In this case Df = Nf ◦ Q−1
f

is a contraction mapping. By construction, Fix(f) = Fix(Df ). Thus from
Corollary 6.1 it follows the next assertion.

Corollary 6.2. Let (X,P) be a sequentially complete multi-metric space
and f : X −→ X be a dilation. Then the mapping f admits one and only
one fixed point.
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7 Dilations of E-metric spaces

Fix an m-scale E.
Let (X, d,E) be an E-metric space.
A mapping f : X −→ X is a dilation mapping if there exist an element

q ∈ E(+,1) and an element k ≥ 0 such that q · k = 1 and d(f(x), f(y)) =
k·d(x, y) for all x, y ∈ X. Every dilation mapping f is a uniformly continuous
homeomorphism and f−1 is a contraction with the Lipschitz constant q ∈
E(+,1).

From Corollary 3.2 it follows
Corollary 7.1. Let (X, d,E) be a sequentially complete E-metric space

and f : X −→ X be a dilation mapping. Then the mapping f admits one
and only one fixed point b ∈ X. Moreover, b = limn→∞n(x, f−1) for any
point x ∈ X.

8 On M-complete multi-metric spaces

We say that the pseudo-metric d on a space X is M -complete if it is contin-
uous, the metric space (X/d, d̄) is complete and the sequence {xn : n ∈ N}
has an accumulation point provided limn→∞d(x, xn) = 0 for some x ∈ X.

Remark 8.1. The pseudo-metric d on a space X is M -complete if
and only if the metric space (X/d, d̄) is complete and the projection πd :
X −→ X/d is a continuous closed mapping with the countably compact
fibers π−1

d (u). Thus a space with a complete pseudo-metric is an M -space
[20]. The spaces related to M -spaces were studied in [4, 5, 9, 10].

A multi-metric space (X,P) is said to be an M -complete multi-metric
space if there exists someM -complete pseudo-metric d ∈ P. Denote by s(P)
the set of all M -complete pseudo-metrics d ∈ P.

Theorem 8.2. Any M -complete multi-metric space (X,P) is sequen-
tially complete.

Proof. Fix d ∈ s(P). Let L = {xn ∈ X : n ∈ N} be a fundamental
sequence. Since the metric space (X/d, d̄) is complete, there exists a point
b ∈ X such that limn→∞d(b, xn) = 0. In this case F = {x ∈ X : d(b, x) = 0}
and H = F ∪ L are countably compact closed subsets of the space X. Thus
the sequence {xn : n ∈ N} is convergent in the subspace H. The proof is
complete.
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Theorem 8.3. Let (X,P) be an M -complete multi-metric space, d ∈
s(P) and f : X −→ X be a mapping with the properties:

1. ρ(f(x), f(y)) < ρ(x, y) for all ρ ∈ P and x, y ∈ X;
2. There exists a positive number k < 1 such that d(f(x), f(y)) < k ·

d(x, y) for all x, y ∈ X.
Then the mapping f admits one and only one fixed point b ∈ X. More-

over, b = limn→∞n(x, f) for any point x ∈ X.
Proof. Fix a point x ∈ X. Then {xn = n(x, f) : n ∈ N} is a d-funda-

mental sequence and there exists a point b ∈ X such that limn→∞d(b, xn) = 0.
In this case F = {x ∈ X : d(b, x) = 0} and H = F ∪ L are countably
compact closed subsets of the space X. By construction, f(F ) ⊆ F and
f(H) ⊆ H. Thus the mapping g = f |H : H −→ H satisfies the conditions
of Corollary 5.5. The proof is complete.

9 Locally convex linear spaces

Let L be a locally convex linear topological space. Then the topology of the
space L is generated by a family N = {nα : α ∈ A} of pseudo-norms. Any
pseudo-norm nα generates the invariant pseudo-metric ρα(x, y) = nα(x− y).
Thus any locally convex space can be studied as a multi-metric space.

We say that (L,N ) is a multi-normed space. For any pseudo-norm ν ∈ N
we have the linear mapping πν : L −→ L/ν onto a normed space (L/ν, ν̄)
and ν̄(f(x)) = ν(x) for any x ∈ L.

Consider the embedding eN : L −→ Π{L/ν : ν ∈ N}.
For any ν ∈ N let gν : L/ν −→ L/ν be a dilation with the positive coef-

ficient kν 6= 1. Then the mapping g : L −→ L, where g(x) = e−1
N (gν(πν(x)) :

ν ∈ N ), is a dilation with the N -coefficient k = (kν : ν ∈ N ). If the space
(L,N ) is sequentially complete, then f admits one and only one fixed point.

If N is a finite set then L is a normed space. In this case the mapping
f : L −→ L may be a dilation for a multi-normed space (L,N ) and not a
dilation for a normed space L.

Example 9.1. Let E2 = {(x, y) : x, y ∈ R} be the Euclidean plane
with the norm ‖ (x, y) ‖= (x2 + y2)1/2. On E2 consider the pseudo-norms
N = {ν1, ν2}, where ν1(x, y) =| x | and ν2(x, y) =| y |. Now we consider the
homeomorphism f : E2 −→ E2, where f(x, y) = (k1x, k2y), 0 < k1 < 1 and
1 < k2. By construction, f is a dilation of the multi-normed space (E2,N ).
For the normed space (E2, ‖ · ‖) the mapping f may do not be a dilation.
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Let k1 = 2−1 and k2 = 2. Then:
1) f(2, 1) = (1, 2) and ‖ f(0, 0) − f(2, 1) ‖=‖ (0, 0) − (1, 2) ‖=

‖ (0, 0)− (2, 1) ‖;
2) f(2, 2) = (1, 4) and ‖ f(0, 0) − f(2, 2) ‖2=‖ (0, 0) − (1, 4) ‖2= 17 and

‖ (0, 0)− (2, 2) ‖2= 8;
3) f(1, 2−2) = (2−1, 2−1), ‖ f(0, 0) − f(1, 2−2) ‖2=‖ (2−1, 2−1) ‖2= 2−1

and ‖ (0, 0)− (1, 2−4) ‖2=‖ (1, 2−4) ‖2= 17/16.

10 Spaces with chainable pseudo-metrics

The method of construction of representations of a mapping f : X −→ X
proposed in Section 5 permits using effectively the methods of the fixed point
theory in metric spaces.

Fix an m-scale E. Assume that E as the lattice is lower reticulated, i.e.
every non-empty lower bounded subset B ⊆ E has the infimum ∧B in E.

A mapping d : X ×X −→ E is called a pseudo-metric over m-scale E or
an E-pseudo-metric if it is satisfying the following properties: d(x, x) = 0,
d(x, y) = d(y, x), d(x, y) ≤ d(x, z) + d(yz, y) for all x, y, z ∈ X. Every
E-pseudo-metric is non-negative.

Let d be an E-pseudo-metric on a space X. If a ∈ E and x ∈ X, then
B(x, d, a) = {y ∈ X : d(x, y) < a}

The pseudo-metric d is continuous on X if the set B(x, d, U) = {y ∈
X : d(x, y) ∈ U} is open for each U ∈ N(0, E) and any x ∈ X. The
pseudo-metric d generates on X the canonical equivalence relation: x ∼ y
iff d(x, y) = 0. Let X/d be the quotient set with the canonical projection
πd : X −→ X/d and metric d̄(u, v) = ρ(π−1

d (u), π−1
d (v)). Then (X/d, d,E) is

an E-metric space and the pseudo-metric d is continuous on X if and only if
the mapping πd is continuous.

Let r ∈ E. We say that the pseudo-metric d is r-chainable if for any two
distinct points x, y ∈ X there exist n ∈ N, U = U(x) ∈ N(0, E) and a chain
x0, x1, ..., xn ∈ X such that x = x0 ∈ B(x, d, U) ⊆ B(x, d, r), y = xn and
d(xi−1, xi) ≤ r for each i ≤ n. We say that x0, x1, ..., xn ∈ X is an r-chain
between x, y.

If the space X is connected, the pseudo-metric d is continuous, r ∈ E and
for any point x ∈ X there exists U = U(x) ∈ N(0, E) such that B(x, d, U) ⊆
B(x, d, r), then the pseudo-metric d is r-chainable.
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Assume that d is a continuous r-chainable E-pseudo-metric on a space
X. For any two points x, y ∈ X it is determined the element dr(x, y) =
∧{d(x0, x1) + d(x1, x2) + ... + d(xn−1, xn) : x0, x1, ..., xn ∈ X is an r-chain
between x, y}.

Property 1. d(x, y) ≤ dr(x, y) for all x, y ∈ X. Moreover, if d(x, y) ≤ r,
then d(x, y) = dr(x, y).

Proof. We have d(x, y) ≤ d(x0, x1) + d(x1, x2) + ...+ d(xn−1, xn) for any
r-cain x0, x1, ..., xn ∈ X between x, y. If d(x, y) ≤ r, then x0 = x, x1 = y is
an r-chain between x, y.

Property 2. X/d = X/dr and the E-metrics d̄ and d̄r on X/d are
equivalent, i. e. T (d̄) = T (d̄r).

Property 3. If the E-metric space (X/d, d̄, E) is complete (sequentially
complete, respectively), then the E-metric space (X/dr, d̄r, E) is complete
(sequentially complete, respectively) too.

Property 4. Let f : X −→ X be a mapping k ∈ E and d(f(x), f(y)) ≤
k · d(x, y) provided d(x, y) ≤ r. Then dr(f(x), f(y)) ≤ k · dr(x, y) for all
x, y ∈ X.

From Properties 1 - 4 and Theorems 3.1 and 4.1 it follows.
Corollary 10.1. Let f : X −→ X be a mapping, k ∈ E(+,1), r ∈ E,

(X, d,E) be an r-chainable E-metric space and d(f(x), f(y)) ≤ k · d(x, y)
provided d(x, y) ≤ r. Then for each point x ∈ X the Picard orbit T (f, x) =
{n(x, f) : n ∈ ω} is a fundamental sequence of the metric space (X, d,E).
Moreover, if the space (X, d,E) is sequentially complete, then the mapping f
admits one and only one fixed point b ∈ X.

Corollary 10.2. Let (X,P) be a sequentially complete multi-metric
space, f : X −→ X be a mapping and for any ρ ∈ P there exist two positive
numbers r(ρ) and k(ρ) < 1 such that the pseudo-metric ρ is r(ρ)-chainable
and ρ(f(x), f(y)) ≤ k(ρ) provided ρ(x, y) ≤ r(ρ). Then the mapping f ad-
mits one and only one fixed point b ∈ X.

The Corollaries 10.1 and 10.2 for metric spaces were proved by M. Edel-
stein [11, 13, 17].

Example 10.3. Let A be an uncountable set. We put Iα = I = [0, 1]
for any α ∈ A. Let Y = IA = Π{Iα : α ∈ A}, (λ)A = (λα = λ : α ∈ A) ∈ Y
and Xλ = {x = (xα : α ∈ A) ∈ Y : the set {α : xα 6= λ} is countable} for any
λ ∈ I. The subspace Xλ is countably compact and dense in Y for any λ ∈ I.
Thus X = X0 ∪ X1 is a countably compact space and X0, X1 are dense
countably compact subspaces of the spaces X and Y . The space E = RA is
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a topological semifield and an m-scale. By construction, X ⊆ IA ⊆ E. We
put d(x, y) = (|xα− yα| : α ∈ A) for any pair of points x = (xα : α ∈ A) ∈ Y
and y = (yα : α ∈ A) ∈ Y . Thus (X, d,E) is an E-metric space.

For any x = (xα : α ∈ A) ∈ Y ) we put SY (x) = (1 − xα : α ∈ A) and
SX = SY |X.

Obviously SY : Y −→ Y and SX : X −→ X are continuous involutions
and the space Y is compact. We have SY (Y ) = Y and SX(X) = X. The mapping
SY has a unique fixed point (2−1)A. The mapping SX is without fixed points.

11 Cauchy sequences of sets and mappings

A subset L ⊆ X is a bounded set if any continuous function f : X −→ R is
bounded on L. A space X is b-complete if the closure of any bounded subset
is compact. For any space X there exists the maximal b-complete extension
µX = ∪{clβXL : L is a bounded subset of X}.

For any sequence {Ln : n ∈ N} of subsets of a space X we put LimX{Ln :
n ∈ N} = ∩{clX(∪{Li : i ≥ n}) : n ∈ N}.

A sequence {Ln : n ∈ N} of subsets of a space X is called a Cauchy
sequence if for any two sets A = {xi ∈ Ani : i ∈ N, ni < ni+1} and B = {yj ∈
Anj : j ∈ N, nj < nj+1} do not exists a continuous function f : X −→ R
such that A ⊆ f−1(0) and B ⊆ f−1(1).

For a mapping g : X −→ X and n ∈ N we put g(1) = g and g(n+1) =
g ◦ g(n). Then n(x, g) = g(n)(x).

Theorem 11.1. Let X be a b-complete space, g : X −→ X be a continu-
ous mapping and {g(n)(x) : n ∈ N} is a Cauchy sequence for any point x ∈ X.
Then for any point x ∈ X there exists a unique fixed point b = b(x) ∈ Fix(g)
such that limg(n)(x) = b.

Proof. If {Fn : n ∈ N} is a Cauchy sequence of the space X, then:
- LimX{Fn : n ∈ N} is a singleton;
- any sequence {xi ∈ Ani : i ∈ N, ni < ni+1} is convergent.
This complete the proof.
For any continuous mapping g : X −→ X there exists a unique continuous

extension βg : βX −→ βX on the Stone-Čech compactification βX of the
space X. Let µg = g|µX.

Theorem 11.2. Let X be a space, g : X −→ X be a continuous maping
and {g(n)(F ) : n ∈ N} is a Cauchy sequence for any non-empty finite set
F ⊆ X. Then:
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1. There exists a unique points b ∈ µX such that Fix(µg) = {b}.
2. limn→∞g

(n)(x) = b for any x ∈ µX.
3. {g(n)(F ) : n ∈ N} is a Cauchy sequence for any non-empty finite set

F ⊆ µX.
Proof. Any continuous function f : X −→ R admits a continuous ex-

tension µf : µX −→ R.
Let x ∈ X. Since {g(n)(x) : n ∈ N} is a Cauchy sequence, there exists

a unique point b = b(x, g) such that limn→∞g
(n)(x) = b. Then b(x, g) ∈

Fix(µg).
Suppose that b, c ∈ Fix(µg) and b 6= c. There exist two open subsets V

andW of µX and two bounded subsets H and L of X such that V ∩W = ∅,
b ∈ clXH ⊆ V and c ∈ clXL ⊆ W . There exist two sequences of open
subsets {Vn : n ∈ N} and Wn : n ∈ N} of µX such that b ∈ clµXVn+1 ⊆
Vn ⊆ V , µg(Vn+1 ⊆ Vn, c ∈ clµXWn+1 ⊆ Wn ⊆ W and µg(VW+1 ⊆ Wn.
By construction, F = ∩{Vn : n ∈ N} and K = ∩{Wn : n ∈ N} are closed
Gδ-subsets of µX, µg(F ) ⊆ F and µg(K) ⊆ K. Since the sets H and L
are bounded, b ∈ F ∩ clµXH ⊆ V and c ∈ K ∩ clµXL ⊆ W , there exist two
point x1 ∈ F ∩H and y1 ∈ K ∩ L. We put xn+1 = g(n)(x1), yn+1 = g(n)(y1)
and Φn = {xn, yn}. By conditions, {Φn : n ∈ N} is a Cauchy sequence. By
constructions, b(x1, g) ∈ F and b(y1, g) ∈ K. Then there exists a continuous
function f : µX −→ R such that f(xn) = 0 and f(yn) = 1 for any n ∈ N,
a contradiction. The assertion 1 is proved and the assertion 2 is proved for
any x ∈ X.

For every point x ∈ µX and any open subset U of µX we put i(x, U) =
sup{n ∈ N : µg(n)(x) 6∈ clµXU}.

Let U be an open subset of µX and b ∈ U .
Then i(x, U) < ∞ for any x ∈ X. We affirm that i(x, U) < ∞ for any

x ∈ µX. Let x ∈ µXµ and i(x, U) = ∞. There exist an infinite subset
M ⊆ N and a sequence {Wn : n ∈ M} of open subsets of µX such that
x ∈ clXWm ⊆ Wn and U ∩ µg(m)(Wm) = ∅ for all n,m ∈ M and m < n.
Let F = ∩{Wn : n ∈ M}. Then x ∈ F , F ∩X 6= ∅ and U ∩ µg(n)(F ) = ∅
for each n ∈M , a contradiction. The assertion 2 is proved and the assertion
3 is proved for any non-empty finite subset F ⊆ µX. The proof is complete.

One of the Meyers’ theorem [19, 17] one can formulated in the following
way

Theorem 11.3. Let g :: X −→ X be a continuous mapping of a metriz-
able space X, b ∈ X and g(b) = b. The next assertions are equivalent:
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1. For each positive number k < 1 there exists a metric d on X such
that T (d) is the topology of the space X and d(g(x), g(y)) ≤ kd(x, y) for all
x, y ∈ X. Moreover, if the space X is complete metrizable, then (X, d) is a
completete metric space.

2. There exists an open subset U of X such that b ∈ U and {g(n)(U);n ∈
N} is a Cauchy sequence.

From Theorem 11.3 it follows
Corollary 11.4. Let g : X −→ X be a continuous mapping of a space

X, b ∈ X and g(b) = b. The next assertions are equivalent:
1. For each positive number k < 1 there exists a family of pseudo-metrics

P on X such that T (P) is the topology of the space X and d(g(x), g(y)) ≤
kd(x, y) for all x, y ∈ X and d ∈ P. Moreover, if the space X is complete
multi-metrizable, then (X,P) is a complete multi-metric space.

2. There exists a family of pseudo-metrics D such that:
- T (D) is the topology of the space X;
- if x, y ∈ X, d ∈ D and d(x, y) = 0, then d(g(x), g(y)) = 0;
- for any d ∈ D there exists an open subset U(d) of X for which B(b, d, r) ⊆

U(d) for some r > 0 and for each ε > 0 there exists m ∈ N such that
∪{g(n)(U(d)) : n ∈ N, n ≥ m} ⊂ B(b, d, ε).

Example 11.5. Let X = RN, 0 < k < 1 and for any point x =
(x1, x2, ...) ∈ X we put g(x) = (2−1kx1, 2−2kx2, ...). Then:

- X is a complete metrizable space, a topological ring and a linear locally
covex topological space;

- {g(n)(F ) : n ∈ N} is a Cauchy sequence for any non-empty compact set
F ⊆ X;

- for each positive number q < 1 there does not exist a metric d on X
such that T (d) is the topology of the space X and d(g(x), g(y)) ≤ qd(x, y)
for all x, y ∈ X;

- on X there exists a complete invariant metric d such that T (d) is the
topology of the space X and d(g(x), g(y)) ≤ d(x, y) for all x, y ∈ X;

- the mapping g is continuous;
- if dn(x, y) = |xn − yn| for all x = (x1, x2, ...) ∈ X and y = (y1, y2, ...) ∈

X, then P = {dn : n ∈ N} is a complete family of pseudo-metrics on X,
T (P) is the topology of the space X and dn(g(x), g(y)) ≤ 2−nkdn(x, y) for
all x, y ∈ X and n ∈ N.
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FOLDED SADDLE-NODES AND THEIR
NORMAL FORM REDUCTION IN

A NEURONAL RATE MODEL∗

Rodica Curtu†

Abstract

The paper investigates the existence of folded singularities in a dy-
namical system of two fast and two slow equations. The normal form
of the system near its fold curve is constructed. Then it is used to
determine the analytical conditions satisfied by a folded singularity.
In particular, we find that there is a parameter region where folded
saddle-nodes of type II exist. In the neighborhood of those points the
system possesses a stable folded node and an unstable true equilibrium,
and the local dynamics is complex.
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its activity. Nevertheless, she still found time to talk with me and agreed to
supervise my doctoral thesis in mathematics.

Our encounter was of incalculable value to my professional development:
she enlarged my horizon by pointing out that mathematics can be successfully
used to study biological systems; she introduced me to the exciting field of
applied dynamical systems and bifurcation theory; she even taught me with
patience and critical view how to write a scientific paper. Moreover, when
I continued my studies in the United States, she has been supportive; that
allowed me to write and finish in parallel two doctoral theses.

I have always admired and respected Professor Adelina Georgescu: she
was extremely energetic; passionate about mathematics; dedicated to her
work, her family, and her country; a wonderful mentor and collaborator.
But most of all, she was an excellent researcher and an example of human
and scientific integrity. She passed away at the beginning of May 2010 after
a long battle with cancer that she fought with courage and dignity. It was
a sad day! Romania lost an important scientist, but we, her disciples, lost
much more; we lost a very good friend.

I thank the editors of this special issue for giving me the opportunity to
express my deep respect and admiration to my mentor. This paper is written
In The Memory of Adelina Georgescu!

1 Introduction

This article is the second in a series of three papers investigating the for-
mation of mixed mode oscillations in a neuronal competition model of two
reciprocally inhibitory populations.

Previous studies [4], [8], [9] showed that the system can exhibit a large
range of dynamics such as approaching a steady state (equal level of activity)
for both populations (the fusion), anti-phase oscillations with the period
of oscillations decreasing with strength of the external stimulus (escape),
anti-phase oscillations with their period increasing with stimulus strength
(release), or a bistability regime of two distinct equilibria assimilated to a
winner-take-all situation.

In a more recent paper [2] we reported another possible behavior. This
is a more complex pattern of activity called the mixed mode oscillations
(MMOs). MMOs consist of two distinct amplitudes in a cycle; some are small
amplitude oscillations but they are followed by large exchanges of relaxation-
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type. While the formation of small amplitude oscillations can be partially
explained through the presence of a singular Hopf bifurcation point [2], the
complete mechanism of MMOs is still unclear.

We continue our work from [2] by showing here that there exists a pa-
rameter regime where the neuronal rate model possesses folded saddle-node
singularities of type II. Note that the model is a slow-fast dynamical system,
and its layer problem (or fast sub-system) has a fold curve (see Section 2).
A folded singularity is a point on the fold curve which is an equilibrium of
an associated desingularized flow [10] (see also Section 4). Obviously, it is
not an equilibrium of the full (original) system and therefore it is not easi-
ly detected. However its presence is important because it may lead to the
formation of canards, and consequently to the formation of MMOs. The ca-
nards are solutions with the peculiarity that they cross the fold curve from
the attractive slow manifold of the slow-fast system into the repelling branch
of the slow manifold, and they stay there for finite time before following a
relaxation oscillator trajectory. In the case of folded nodes the canards have
rotational properties due to the folded node funnel [10]. Therefore the rota-
tions of the trajectories in the funnel together with the fast relaxation-type
part of the trajectory form an MMO solution.

As already mentioned, we find in this paper that folded saddle-nodes sin-
gularities of type II exist. These are even more interesting points than the
commonly seen folded nodes: in their neighborhood the system has a stable
folded node and an unstable true equilibrium. Therefore the local dynamics
becomes much more complex; the canard trajectories passing through the
folded node funnel into the repelling side of the slow manifold are then in-
fluenced by the local stable and unstable manifolds of the true equilibrium.
A geometrical approach explaining this interaction and thus completing the
proof of how MMOs form in the model is the topic of a next paper [3]. In
the present manuscript we focus on preparing the ground necessary to the
geometrical approach. We construct the normal form of the system near the
fold curve and show that indeed, folded saddle-nodes of type II exist.

2 Slow-fast dynamics and its characteristics in a
neuronal rate model

The system we investigate in this paper results from an inhibitory network
of two populations of neurons. The activity (spike frequency rate) level of



72 Rodica Curtu

each population is monitored by variables uj , j = 1, 2 which, if taken in
isolated environment, would reach a steady state with exponential decay.
However since the populations are coupled through inhibitory connections
and are subject to an intrinsic slow negative feedback process (the neu-
ronal adaptation), their dynamics is much complex. Moreover, a constant
external input is applied, and it modulates the behavior as well. In sum-
mary, the system is defined by two pairs of fast-slow equations of the form
duj/dt = −uj + S(I − βuk − gaj), τdaj/dt = −aj + uj with j, k = 1, 2,
k 6= j. Inhibition has a negative impact on the population-target and is
assumed to have strength β; the input is quantified by parameter I; The
adaptation variables are aj and they evolve slowly in time, as opposed to
uj , according to a timescale τ � 1; the adaptation strength is g; the sys-
tem’s nonlinearities are defined by function S of typical sigmoid shape such
as S(x) = 1/

(
1 + e−r(x−θ)

)
(the parameters r and θ are said to control the

slope of the gain and the activation threshold ). All parameters I, β, g, τ ,
and r are considered to be positive.

From the point of view of the analysis it is important to mention that τ is
assumed to be large enough such that ε = 1/τ , 0 < ε� 1 is true. Moreover,
we need to summarize some important properties of the function S. For
consistency let us assume that S is invertible with inverse F = S−1, and that
S and F are differentiable and monotonically increasing with S(θ) = u0 ∈
(0, 1), limx→−∞ S(x) = 0, limx→∞ S(x) = 1 and so limu→0 F (u) = −∞,
limu→1 F (u) = ∞; then limu→0 F

′(u) = limu→1 F
′(u) = ∞. Moreover

we assume F ′ has a local (positive) minimum at u0 , so F ′′(u) < 0 for
u ∈ (0, u0), F ′′(u) > 0 for u ∈ (u0, 1) and F ′′(u0) = 0. Note that, in gene-
ral, these properties are satisfied by the sigmoid functions used in neuronal
applications such as the example above.

The system under analysis is thus

du1/dt = −u1 + S(I − βu2 − ga1),
du2/dt = −u2 + S(I − βu1 − ga2), (1)
da1/dt = ε(−a1 + u1),
da2/dt = ε(−a2 + u2).

In the singular limit case ε = 0, variables a1 and a2 are constant, say
a1 = ā1, a2 = ā2 and play the simple role of parameters in the uj-equations.
This is called the layer problem or the fast sub-system. The set of equilibrium
points for the layer problem is a manifold called the critical manifold ; it is
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defined by −u1 + S(I − βu2− ga1) = 0, −u2 + S(I − βu1− ga2) = 0 and, as
in most examples of slow-fast dynamical systems, it has a cubic shape [4]. In
an equivalent form, the critical manifold, say Σ can be described as follows

Σ = { (u1, u2, a1, a2) : u1, u2 ∈ (0, 1), a1, a2 ∈ IR and
F (u1, a1, a2) = I − F (u1)− βS(I − βu1 − ga2)− ga1 = 0,

u2 = S(I − βu1 − ga2) } (2)

where F = S−1. Importantly, it can be shown that the layer problem can
have either three, two or one equilibrium points depending on the values of a1

and a2 [4]. The transition from three to one equilibrium occurs at a double-
equilibrium point, that is a saddle-node (fold) bifurcation point. A short cal-
culation in (2) shows this happening at −F ′(u1) + β2S′(I − βu1 − ga2) = 0
for any constant values a1, a2. Due to the invertibility of S and since at
the equilibrium point u2 = S(I − βu1 − ga2) is true, we get −F ′(u1) +
β2S′(F (u2)) = −F ′(u1) + β2S′(S−1(u2)) = −F ′(u1) + β2/(S−1)′(u2) =
−F ′(u1) + β2/F ′(u2) = 0. So, the fold curve (or, the curve of saddle-nodes)
is defined by

L ± : F ′(u1)F ′(u2) = β2 (3)

together with (2).
Obviously, the fold condition can be also verified by looking into the

eigenvalues of the linearized problem. The partial derivatives of the uj-
equations with respect to u1 and u2 are evaluated at a critical point of the
layer problem (u∗1, u

∗
2, a
∗
1, a
∗
2) ∈ Σ and the linearization matrix becomes

A =
[

−1 −β/F ′(u∗1)
−β/F ′(u∗2) −1

]
. (4)

Clearly, A has a zero eigenvalue if and only if condition (3) is true.
The cubic shape of Σ has the following significance: its outer branches

Σ±a consist of stable nodes for the layer problem while the middle branch
Σr is a set of saddles points. That is obtained by testing the sign of the
determinant in (4), or equivalent, the sign of Fu1 . It results indeed that
Fu1(u1, a1, a2) < 0 on Σ−a and Σ+

a as opposed to Fu1(u1, a1, a2) > 0 on Σr

[4]. In the perturbed system (1) the dynamics is attracted to either of Σ±a and
repelled away from Σr. For this reason, Σ±a are called attractive manifolds
and Σr is called the repelling (critical) manifold. Thus we can decompose Σ
into several significant components like Σ = Σ−a ∪ Σ+

a ∪ Σr ∪L ±.
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From the point of view of the fast-slow analysis of (1), the critical manifold
has an additional role. Assume in (1) that we change the time according to
t̃ = εt ( ′ = d/dt̃). System (1) becomes εu′j = −uj + S(I − βuk − gaj),
a′j = −aj + uj . Setting now ε = 0 we see that Σ is in fact the manifold
where the solution of the so-called reduced system (or slow sub-system) lays.
The reduced system evolves according to equations a′1 = −a1 + u1(a1, a2),
a′2 = −a2 + u2(a1, a2) where u1, u2 are implicit functions defined by (2).
But note that the formula of u1(a1, a2) and u2(a1, a2) on Σ−a (Σ+

a ) changes
when curve L ± is reached because at L − (L +) a node and a saddle of the
layer problem collide and annihilate each other. However, another (stable)
node exists on the opposite branch Σ+

a (Σ−a ); the trajectory of the full system
will be attracted to it and the equations of the reduced system will change
accordingly. We say that a ’jump’ takes places from Σ−a (Σ+

a ) to Σ+
a (Σ−a ).

The trajectory of the full system is thus a relaxation oscillator [11].

For the perturbed system (ε > 0), the dynamics have similar properties
away from the fold curve. For ε sufficiently small Fenichel theory [5] proves
the existence of a smooth locally invariant normally hyperbolic manifold
Σε; this is an O(ε) perturbation of Σ and the slow dynamics of (1) takes
place close to it. Consequently, to fully describe system (1)’s dynamics one
only needs to analyze its trajectories close to the fold curve L ±. This is
especially important if system (1) has complex trajectories such as mixed-
mode oscillations (MMOs). Indeed, MMOs were observed and reported in
[2]; they are trajectories that combine small amplitude oscillations with large
excursions of relaxation type. While the relaxation oscillator can be explain
through classical Fenichel theory and slow-fast analysis (see also [11]), the
small amplitude oscillations cannot. MMOs exist in an interval of parameter
I close to a Hopf bifurcation point but the Hopf is subcritical and MMOs
exist on the side of it where the equilibrium is unstable. Therefore there is
a need to explain how it is possible for the trajectory to stay close to the
unstable equilibrium (situated on Σr,ε) for a finite time and then jump to
the opposite attractive branch of Σa,ε, instead of directly jumping to it. The
answer is found in the theory of canards [10]. The canards are solutions that
pass from the attractive manifold Σa into the repelling branch Σr through
a particular type of point on the fold curve. Such a point, say ps ∈ L ±, is
called a folded singularity. As we will show in Section 4 folded singularities
do exist in system (1) suggesting that canards may be possible in (1). We
note that the existence of canards per se is not proven here and it is the
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topic of a future paper [3]. Instead we focus now only on the preliminary
(but necessary) step of showing the existence of folded singularities. For this,
a normal form reduction of (1) near the fold curve L ± is necessary. We take
this approach in the next section.

3 Normal form reduction of the rate model near the
fold curve

Let us consider an arbitrary point on the fold curve p ∈ L ± of coordinates
p = (u∗1, u

∗
2, a
∗
1, a
∗
2).

We translate the point p ∈ L ± into the origin with Uj := uj − u∗j ,
yj := aj − a∗j (j = 1, 2) and consider the expansion of the Uj-equations in
power series. The equation for U1 (and similar for U2) becomes dU1/dt =
−U1 − u∗1 + S(I − βU2 − gy1 − βu∗2 − ga∗1) = −U1 − u∗1 + S(F (u∗1)− [βU2 +
gy1]) = −U1−S′(F (u∗1))[βU2 +gy1]+ 1

2S
′′(F (u∗1))[βU2 +gu1]2 + . . . = −U1−

1
F (u∗1) [βU2 + gy1]− F ′′(u∗1)

2F ′(u∗1)3
[βU2 + gu1]2 + . . . (Here the lower dots stand for

the higher order terms.) Then system (1) can be written as

dU/dt = V (y) + A U + A0(y)U +
1
2
B(U,U) + . . . ,

dy1/dt = ε(u∗1 − a∗1 − y1 + U1), (5)
dy2/dt = ε(u∗2 − a∗2 − y2 + U2)

where U = (U1, U2)T , y = (y1, y2)T , A is defined by (4) and

B(U,U) =

−β2F ′′(u∗1)
F ′(u∗1)3

U2
2

−β2F ′′(u∗2)
F ′(u∗2)3

U2
1

 , V (y) =

− g
F ′(u∗1)y1 −

g2F ′′(u∗1)
2F ′(u∗1)3

y2
1 + O(y3

1)

− g
F ′(u∗2)y2 −

g2F ′′(u∗2)
2F ′(u∗2)3

y2
2 + O(y3

2)

 ,

A0(y) =

 0 −βgF ′′(u∗1)
F ′(u∗1)3

y1 + O(y2
1)

−βgF ′′(u∗2)
F ′(u∗2)3

y2 + O(y2
2) 0

 .
Here T stands for the transpose.

As mentioned in the previous section, L ± is the set of points that corre-
spond to a saddle-node (fold) bifurcation in the layer problem. Since the fold
has a one-dimensional normal form we should be able to reduce (1), or its
equivalent form (5), to a system of only three variables, two of which being
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slow and only one fast. This can be achieved by projection on the center
manifold associated with the zero eigenvalue of A .

The point U = (0, 0) is an equilibrium of the layer problem for ε = 0 and
y1 = y2 = 0. Its associated Jacobian matrix is A which has a zero (λ1 = 0)
and a negative (λ2 = −2) eigenvalue. The corresponding eigenvectors are q =
(−
√
F ′(u∗2),

√
F ′(u∗1))T such that A q = 0, and q̃ = (

√
F ′(u∗2),

√
F ′(u∗1))T

with A q̃ = −2q̃. We will use the adjoint vector n of the matrix A (A Tn = 0
with scalar product n · q = n1q1 + n2q2 = 1) to construct the projection on

the center manifold. (Note that n is defined by n = (−
√
F ′(u∗1)

2β ,

√
F ′(u∗2)

2β )T .)
The solution of the layer problem U = (U1, U2)T is decomposed into its

projection on the center manifold (σq) and a complementary component V
orthogonal to n, that is: U = σq+V [7]. Then the coordinate σ is the variable
on the center manifold that replaces u1 and u2 in system (1) according to the

relationship σ = U ·n. This is σ = −
√
F ′(u∗1)

2β (u1−u∗1)+
√
F ′(u∗2)

2β (u2−u∗2). The
component V depends on y1, y2, σy1, σy2, and ε, εσ, εy1, εy2 but includes
only σ-terms starting with quadratic order (σ2, σ3, . . .); it is defines by

V = (y1q10 + y2q01 + y2
1q20 + y1y2q11 + y2

2q02 + . . .) + (σ2h2 + σ3h3 + . . .)
+ (σy1h10 + σy2h01 + . . .) + (εh000 + εσh001 + εy1h100 + εy2h010)

+ O(εy2
1, εy

2
2, εy1y2, εσ

2, ε2σ, ε2y1, ε
2y2, ε

iσjyk1y
l
2), 4− i = j = k + l. (6)

The differential equation that σ satisfies on the center manifold is a direct
consequence of (5). However its coefficients depend in equal measure on the
coefficients of (5) and the admissible values of the vectors hj , qij , hijk . . . (all
orthogonal on n) from the definition of V .

The projection of system (5) on the center manifold is given below.

Theorem 1. Let ε be a sufficiently small positive number (0 < ε� 1), and
parameters I, β, g such that system (1) has a fold curve L ±.

Then, in the neighborhood of any point p ∈ L ±, p = (u∗1, u
∗
2, a
∗
1, a
∗
2),

system (1) is topologically equivalent to

dσ/dt = c10y1 + c01y2 + c20y
2
1 + c11y1y2 + c02y

2
2 + b00σ

2 + b10σy1

+ b01σy2 + O(ε(σ + y1 + y2), ε2, (σ + y1 + y2)3),

dy1/dt = ε

[
(u∗1 − a∗1) +

(
−1− g

4F ′(u∗1)

)
y1 +

(
− g

4β

)
y2 −

√
F ′(u∗2)σ



Folded saddle-nodes and normal form reduction 77

+ O(ε(σ + y1 + y2), ε, (σ + y1 + y2)2)
]
,

dy2/dt = ε

[
(u∗2 − a∗2) +

(
− g

4β

)
y1 +

(
−1− g

4F ′(u∗2)

)
y2 +

√
F ′(u∗1)σ

+ O(ε(σ + y1 + y2), ε, (σ + y1 + y2)2)
]

(7)

with coefficients cij, bij defined by

b00 =
1

4β2

(
F ′(u∗2)3/2F ′′(u∗1)− F ′(u∗1)3/2F ′′(u∗2)

)
(8)

and

c10 =
g

2β
√
F ′(u∗1)

, c01 = − g

2β
√
F ′(u∗2)

, c11 = − 3g2

8β3
b00,

c20 =
g2F ′′(u∗1)

8βF ′(u∗1)
5
2

+
g2

16β2F ′(u∗1)
b00, c02 = − g2F ′′(u∗2)

8βF ′(u∗2)
5
2

+
g2

16β2F ′(u∗2)
b00,

b10 =
gF ′′(u∗1)
4F ′(u∗1)2

+
g

2β
√
F ′(u∗1)

b00, b01 =
gF ′′(u∗2)
4F ′(u∗2)2

− g

2β
√
F ′(u∗2)

b00. (9)

Proof. Since (5) is a translation of the original system (1), it is obviously
topological equivalent to it. Therefore we will focus here only on the proof
of the topological equivalence between (5) and (7).

In order to simplify our calculation we will work with vector equations; for
this we consider beneficial to introduce the following notation: e1 = (1, 0)T ,
e2 = (0, 1)T and

A10 =
[
0 1
0 0

]
, A01 =

[
0 0
1 0

]
.

Then we express the yj-equations from (5) in terms of U = σq + V with
V defined by (6). It results

dy1/dt = ε(u∗1 − a∗1) + εy1(e1 · q10 − 1) + εy2(e1 · q01)− εσ
√
F ′(u∗2)

+O(ε(σ + y1 + y2)2, ε2(σ + y1 + y2), ε2), (10)

dy2/dt = ε(u∗2 − a∗2) + εy1(e2 · q10) + εy2(e2 · q01 − 1) + εσ
√
F ′(u∗1)

+O(ε(σ + y1 + y2)2, ε2(σ + y1 + y2), ε2). (11)
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A similar calculation apply to the first equation in (5) and implies

dU/dt = y1[A q10 −
g

F ′(u∗1)
e1] + y2[A q01 −

g

F ′(u∗2)
e2]

+ y2
1[A q20 −

βgF ′′(u∗1)
F ′(u∗1)3

A10q10 −
g2F ′′(u∗1)
2F ′(u∗1)3

e1 +
1
2
B(q10, q10)]

+ y2
2[A q02 −

βgF ′′(u∗2)
F ′(u∗2)3

A01q01 −
g2F ′′(u∗2)
2F ′(u∗2)3

e2 +
1
2
B(q01, q01)]

+ y1y2[A q11 −
βgF ′′(u∗1)
F ′(u∗1)3

A10q01 −
βgF ′′(u∗2)
F ′(u∗2)3

A01q10 + B(q10, q01)]

+ σ2[A h2 −
β2F ′′(u∗1)
2F ′(u∗1)2

e1 −
β2F ′′(u∗2)
2F ′(u∗2)2

e2]

+ σy1[A h10 −
βgF ′′(u∗1)
F ′(u∗1)5/2

e1 + B(q, q10)] + ε(A h000)

+ σy2[A h01 +
βgF ′′(u∗2)
F ′(u∗2)5/2

e2 + B(q, q01)] + εσ[A h001 + B(q, h000)]

+ εy1[A h100 −
βgF ′′(u∗1)
F ′(u∗1)3

A10h000 +
1
2
B(q10, h000)]

+ εy2[A h010 −
βgF ′′(u∗2)
F ′(u∗2)3

A01h000 +
1
2
B(q01, h000)] + . . . (12)

The equation of σ on the center manifold due to a fold should be at least
quadratic in order (with respect to σ) so it should take the form

dσ/dt = (c10y1 +c01y2 +c20y
2
1 +c11y1y2 +c02y

2
2)+b00σ

2 +b10σy1 +b01σy2+

ε(d0σ + d1y1 + d2y2) + O(yi1y
j
2σ

k, εyi1y
j
2, εσ

iyj1, εσ
iyj2, ε

2). (13)

Of course its coefficients cij , bij , . . . are unknown but they are specific to
the system that is projected on the center manifold. We will compute them
from equation (12).

For this, let us note that U = σq + V implies dU/dt = (dσ/dt)q +
(dV/dt), so dU/dt = (dσ/dt)q+[(dy1/dt)q10 +(dy2/dt)q01 +2y1(dy1/dt)q20 +
(dy1/dt)y2q11 + y1(dy2/dt)q11 + 2y2(dy2/dt)q02 + . . .] + [2σ(dσ/dt)h2 + . . .] +
( y1h10 + y2h01 )(dσ/dt) + σ[ (dy1/dt)h10 + (dy2/dt)h01 ] + ε(dσ/dt)h001 +
ε(dy1/dt)h100 + ε(dy2/dt)h010 + . . ..



Folded saddle-nodes and normal form reduction 79

We then replace dσ/dt, dy1/dt, dy2/dt according to (13), (10) and (11)
and obtain

dU/dt = y1(c10q) + y2(c01q) + y2
1(c20q + c10h10) + y2

2(c02q + c01h01)

+ y1y2(c11q + c01h10 + c10h01) + σ2(b00q) + σy1(b10q + 2c10h2)
+ σy2(b01q + 2c01h2) + ε[(u∗1 − a∗1)q10 + (u∗2 − a∗2)q01]

+ εσ[d0q + (u∗1 − a∗1)h10 + (u∗2 − a∗2)h01 +
√
F ′(u∗1)q01

−
√
F ′(u∗2)q10] + εy1[c10h001 + d1q + (e1 · q10 − 1)q10 + (e2 · q10)q01

+ 2(u∗1 − a∗1)q20 + (u∗2 − a∗2)q11] + εy2[c01h001 + d2q + (e1 · q01)q10

+ (e2 · q01 − 1)q01 + 2(u∗2 − a∗2)q02 + (u∗1 − a∗1)q11] + . . . (14)

The compatibility condition between (12) and (14) allows us to determine
the vectors qij , hj , hij , . . . in (6) together with coefficients cij , bij , . . . in (13).
This implies

c10q = A q10 −
g

F ′(u∗1)
e1 and c01q = A q01 −

g

F ′(u∗2)
e2,

c20q + c10h10 = A q20 −
βgF ′′(u∗1)
F ′(u∗1)3

A10q10 −
g2F ′′(u∗1)
2F ′(u∗1)3

e1 +
1
2
B(q10, q10),

c02q + c01h01 = A q02 −
βgF ′′(u∗2)
F ′(u∗2)3

A01q01 −
g2F ′′(u∗2)
2F ′(u∗2)3

e2 +
1
2
B(q01, q01),

c11q + c10h01 + c01h10 = A q11 −
βgF ′′(u∗1)
F ′(u∗1)3

A10q01 −
βgF ′′(u∗2)
F ′(u∗2)3

A01q10

+B(q10, q01),

b00q = A h2 −
β2F ′′(u∗1)
2F ′(u∗1)2

e1 −
β2F ′′(u∗2)
2F ′(u∗2)2

e2,

b10q + 2c10h2 = A h10 −
βgF ′′(u∗1)
F ′(u∗1)5/2

e1 + B(q, q10),

b01q + 2c01h2 = A h01 +
βgF ′′(u∗2)
F ′(u∗2)5/2

e2 + B(q, q01), and so forth.

The orthogonality principle n · V = 0 (equivalent to n · qij = 0, n · hj =
0, n · hij = 0, . . .) together with the property n · q = 1 implies q10 =
(− g

4F ′(u∗1) ,−
g
4β )T , q01 = (− g

4β ,−
g

4F ′(u∗2))
T and h2 = − 1

8β2 (F ′(u∗2)3/2F ′′(u∗1)+

F ′(u∗1)3/2F ′′(u∗2))q̃ and determines the coefficients from (8) and (9).
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Therefore the projection on the center manifold is successful and it sa-
tisfies (7). The topological equivalence between (5) and (7) is then a direct
consequence of the center manifold theorem [1], [7].

Remark 1. In this paper we took the Lyapunov-Schmidt projection approach
to construct (7) from (5). However, a similar result is obtained if Carr’s
center manifold reduction method is used [1]. If the latter approach is consi-
dered, the system under analysis will be system (5) together with an additional
equation for ε (dε/dt = 0). All U1, U2, y1, y2, ε are treated as variables and
the reduction is made around the point (0, 0, 0, 0; 0). It can be verified that at
(0, 0, 0, 0; 0) the linearization matrix of the 5-dimensional dynamical system
has four zero eigenvalues and one negative eigenvalue (−2), and that the
theory developed by Carr applies.

System (1) can now be reduced to its fold normal form in the neigh-
borhood of a point on the fold curve. The goal is to use the 3-dimensional
system (7) and apply transformations that change the fast equation of σ into
the fold normal form dz/dt = x+ z2 plus higher order terms.

Before we proceed let us mention that the coefficient b00 of σ2 in (7) can
take either sign. If u∗1 < u0 < u∗2 we have F ′′(u∗1) < 0 < F ′′(u∗2); so b00 is
negative. On the other hand if u∗1 > u0 > u∗2 then F ′′(u∗1) > 0 > F ′′(u∗2)
and b00 is positive. (u0 is the local minimum point of F ′; see page 72.)
For example, let us take parameter values β = 1.1, g = 0.5, I = 1.315
and function S(x) = 1/(1 + e−r(x−θ)) with r = 10, θ = 0.2. Then p− =
(0.2980253, 0.9587985, 0.2919871, 0.944903, ) ∈ L − and by symmetry p+ =
(0.9587985, 0.2980253, 0.944903, 0.2919871) ∈ L +. Since u0 = S(θ) = 0.5
we have b00(p−) < 0 and b00(p+) > 0. In fact, in this example almost all
points of L − have u∗1 < u∗2 and b00 < 0 while almost all points of L + have
u∗1 > u∗2 and b00 > 0. Only at the intersection of L − ∩L + there are two
points with b00 = 0; they satisfy u∗1 = u∗2 such that F ′(u∗1) = F ′(u∗2) = β,
and they correspond to a cusp bifurcation in the layer problem (not discussed
here).

There are three main steps of the reduction to the normal form of the 3-
dimensional fast-slow system (7): i) a timescale proportional to b00 followed
by ii) a linear transformation depending on all variables (σ, y1, y2), then iii)
a close to linear change of variables depending only on y1 and y2. They are
explained in detail in the proof of the next theorem.
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Theorem 2. Let ε be a sufficiently small positive number (0 < ε� 1), and
parameters I, β, g such that system (1) has a fold curve L ±.

Let p ∈ L ±, p = (u∗1, u
∗
2, a
∗
1, a
∗
2) be a point on the fold curve such that

b00 6= 0 where b00 is defined by (8).
Then in the neighborhood of p, system (1) is topologically equivalent to

x′ = α0 + α1y − α2z + O(ε, x, (y + z)2),
y′ = α3 + η2y + η3z + O(ε, x, (y + z)2),
εz′ = x+ z2 + O(ε, ε(x+ y + z), (x+ y + z)3) (15)

with coefficients

α0 =
g

2βb00|b00|

(
u∗1 − a∗1√
F ′(u∗1)

− u∗2 − a∗2√
F ′(u∗2)

)
, (16)

and

α1 =
g2

8β3
√
F ′(u∗1)|b00|3

[
F ′′(u∗1)

√
F ′(u∗2) + F ′′(u∗2)

√
F ′(u∗1)

− F ′′(u∗1)F ′′(u∗2)

(
u∗1 − a∗1

2
√
F ′(u∗1)

+
u∗2 − a∗2

2
√
F ′(u∗2)

)]
,

α2 =
g

2β2b200

[F ′(u∗1) + F ′(u∗2)], α3 =
u∗1 − a∗1
|b00|

,

η2 =
1
|b00|

(
gF ′′(u∗2)

4βb00

√
F ′(u∗2)

− 1

)
, η3 = −

√
F ′(u∗2)
b00

. (17)

Proof. Based on theorem 1 it is sufficient to show that system (7) is topo-
logically equivalent to (15).

Scaling the time with b00 allows us to reduce the coefficient of σ2 to the
unity in the fast equation. In order to maintain the initial orientation along
the trajectories, we make the transformation independent of the sign of b00.
That is achieved with the time change t 7→ t̃ = |b00|t and the equation for σ
in (7) becomes dσ/dt̃ = 1

|b00|(c10y1 + c01y2 + c20y
2
1 + c11y1y2 + c02y

2
2 + b00σ

2 +
b10σy1 + b01σy2 + · · · )

The next step is to group all second-order terms involving σ into a unique
term. We would like to have the coefficient of the quadratic term in the
normal form equal to 1. For this reason, if b00 < 0 we need to consider a
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reflection of the variable σ according to σ 7→ (−σ). However this issue can
be easily resolved if the coefficient of σ in the new transformation is simply
b00/|b00|; this will take care of the eventual sign change in the case of b00 < 0.

We define the linear change of variables z = b00
|b00|σ+ b10

2|b00|y1 + b01
2|b00|y2 and

use it to modify the fast equation. The new fast variable is z and it satisfies
the equation dz/dt̃ = c10

b00
y1 + c01

b00
y2 +

(
c20
b00
− b210

4b200

)
y2
1 +

(
c11
b00
− b10b01

2b200

)
y1y2 +(

c02
b00
− b201

4b200

)
y2
2 + z2 + O(ε, ε(z + y1 + y2), (z + y1 + y2)3).

The slow equations of y1, y2 change as well and they become:

ε−1dy1/dt̃ = 1
|b00|(u

∗
1−a∗1)+y1

1
|b00|

(
−1− g

4F ′(u∗1) +
b10
√
F ′(u∗2)

2b00

)
−z
√
F ′(u∗2)

b00
+

y2
1
|b00|

(
− g

4β +
b01
√
F ′(u∗2)

2b00

)
+ O(ε, ε(z + y1 + y2), (z + y1 + y2)2), and

ε−1dy2/dt̃ = 1
|b00|(u

∗
2 − a∗2) + y1

1
|b00|

(
− g

4β −
b10
√
F ′(u∗1)

2b00

)
+ z

√
F ′(u∗1)

b00

+ y2
1
|b00|

(
−1− g

4F ′(u∗2) −
b01
√
F ′(u∗1)

2b00

)
+ O(ε, ε(z + y1 + y2), (z + y1 + y2)2).

At last, we use an almost linear transformation to reduce the fast equation
to the normal form of a fold bifurcation.

The change of variables (y1, y2) 7→ (x, y) defined by x = c10
b00
y1 + c01

b00
y2 +(

c20
b00
− b210

4b200

)
y2
1 +

(
c11
b00
− b10b01

2b200

)
y1y2 +

(
c02
b00
− b201

4b200

)
y2
2 + . . . and y = y1, and

the change to slow time t̃ 7→ t̂ = εt̃ (′ = d/dt̂) leads directly to system (15).
Systems (15) and (1) are indeed topologically equivalent.

Remark 2. The theory of canards associated with folded singularities is de-
veloped from the normal form of fast-slow systems with one fast and two slow
equations [6]. Therefore this theory can be used as a tool in the study of the
system (15); the latter is now in the required normal form. Previous studies
on folded singularities and canards [6], [10] show that the first order x-terms
in the x- and y- equations play no essential role in the analysis. For this
reason we did not specifically include them here. But their coefficients can
be calculated in a similar way to those in (16) and (17). For example, the
coefficient η1 of x in the y- equation is: η1 = 1

|b00|

(
b00

√
F ′(u∗2)− βF ′′(u∗2)

4F ′(u∗2)

)
.

Similarly, the coefficients of ε-terms in all equations can be determined and

they are: ε̂x = g2

16β3b00|b00|(
√
F ′(u∗2)−

√
F ′(u∗1) )

(
u∗1−a∗1√
F ′(u∗1)

+ u∗2−a∗2√
F ′(u∗2)

)
, ε̂y =
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g

8|b00|
√
F ′(u∗1)

(
u∗1−a∗1√
F ′(u∗1)

+ u∗2−a∗2√
F ′(u∗2)

)
and ε̂z = 1

2b200
[b10(u∗1 − a∗1) + b01(u∗2 − a∗2)]

with b00 and b10, b01 defined by (8) and (9).

4 An example of folded saddle-node singularity of
type II in the neuronal model (1)

Through reduction to the normal form, the critical manifold Σ of (1) has
been transformed (up to the quadratic terms in (15) into the paraboloid
Σ̃: G (x, y, z) = x + z2 = 0. The fold curve has been projected locally
into a straight line, the y-axis. This is because the condition for fold is
G = Gz = 0 that implies x = z = 0; so the projection of the fold curve L ±

is {(0, y, 0) : |y| < δ}. The attractive branch Σ̃±a is defined by Gz < 0, i.e.
z < 0 while the repelling branch Σ̃r is defined by Gz > 0, or z > 0. The
origin (0, 0, 0) is the point on the resulting fold that corresponds to p ∈ L ±.

The analysis of the trajectories along the paraboloid (critical manifold)
Σ̃ in the neighborhood of (0, 0, 0) can be done though a blow-up approach
[6], [10]. Thus, starting from x = −z2 we get x′ = −2zz′ and so (15) implies
−2zz′ = α0 +α1y−α2z+O((y+ z)2) and y′ = α3 + η2y+ η3z+O((y+ z)2).

Last step clarifies why we did not particularly take into account the li-
near x-terms in the first two equations in (15); simply because they turn
into higher order (quadratic) terms when computed on the critical mani-
fold. So they do not change the system’s dynamical characteristics in the
neighborhood of (0, 0, 0) (see below).

The two-dimensional system in z and y is however singular at z = 0;
but the blow-up technique deals with it by time-rescaling t̂ 7→ s = t̂/(−2z)
(notation: · = d/ds). Therefore we obtain the so-called desingularized flow

ż = α0 + α1y − α2z + O((y + z)2),
ẏ = −2α3z + O((y + z)2). (18)

A point of the fold curve that is an equilibrium of the desingularized
system without being an equilibrium of the original (full) system is called
a folded singularity [6]. Therefore (assuming we work in the singular case
ε = 0) let us check when (0, 0, 0) satisfies this property for (15) and (18)
respectively; we conclude that (0, 0, 0) is a folded singularity if and only if
α0 = 0 and α3 6= 0. Based on equations (16) and (17) that is equivalent to
u∗1−a∗1√
F ′(u∗1)

= u∗2−a∗2√
F ′(u∗2)

with u∗1 6= a∗1, u∗2 6= a∗2.
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For example, at β = 1.1, g = 0.5, I = 1.343 and function S(x) =
1/(1 + e−r(x−θ)) with r = 10, θ = 0.2 we found at least one folded singula-
rity: pf = (0.3307008, 0.9611521, 0.3124687, 0.9167623). Interesting, in the
neighborhood of pf there exist an equilibrium of the full system (1) with
coordinates e = (0.32903, 0.95431, 0.32903, 0.95431). Obviously, e satisfies
the conditions u1 = a1 and u2 = a2 which are not true for pf .

Assume in the following that α0 = 0 (and that ε ≈ 0).
In the normal form (15), the equilibrium e corresponds to the following

point: x = −z2, z = α1
α2
y and α3 + η2y + η3z = 0, that is e maps into(

− α2
1α

2
3

(η2α2+η3α1)2
,− α2α3

η2α2+η3α1
,− α1α3

η2α2+η3α1

)
. However if α3 → 0 then e → pf

(the regular singularity collides with the folded singularity pf ). This is the
general case of the folded saddle-node singularity of type II analyzed in detail
by Krupa and Wechselberger [6].

We can identify now what conditions system (1)’s parameters need to
satisfy in order to have a folded saddle-node singularity of type II. They
are α3 = 0 (and of course α0 = 0) together with the critical manifold and
fold curve constraints. In terms of original system, these conditions become
u1 = a1, u2 = a2 with F (u1) = I − βu2 − ga1, F (u2) = I − βu1 − ga2,
and F ′(u1)F ′(u2) = β2. Consequently, we get I = F (u1) + βu2 + gu1 with
F ′(u1)F ′(u2) = β2 and F (u1)− F (u2) = (g − β)(u1 − u2). A more detailed
study of the system’s dynamics in the neighborhood of a folded saddle-node
singularity of type II can be found in [3]. Here we only show that this
particular type of points exists in (1).

Theorem 3. There exist values of parameters β, g, I and gain functions S
such that system (1) has folded saddle-node singularities of type II.

Proof. It is enough to provide an example. As above, we consider β = 1.1,
g = 0.5 and function S(x) = 1/(1 + e−r(x−θ)) with r = 10, θ = 0.2. The
value of I results after solving for appropriate u1 and u2 solutions of the
algebraic system F ′(u1)F ′(u2) = β2 and F (u1)− F (u2) = (g − β)(u1 − u2).
That happens at about u1 = 0.2841539 and u2 = 0.9575702 and implies
I = 1.303009. Therefore (independent of the value of parameter ε), at β =
1.1, g = 0.5, I = 1.303009 and r = 10, θ = 0.2 in function S(x) = 1/(1 +
e−r(x−θ)), system (1) has a type II folded saddle-node singularity.
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5 Discussion

We have investigated the existence of folded singularities in a neuronal rate
model of reciprocally inhibitory populations. In particular, we found that
folded saddle-nodes of type II exist and we constructed the normal form re-
duction of the system in their neighborhood. The importance of the folded
saddle-node of type II stays in its property to have near it (through per-
turbation of the system’s parameters) of both a stable folded node and an
unstable true equilibrium. The former generates a funnel through which
canard solutions can pass while the latter modulates the canard trajectory
through its stable/unstable manifolds (not shown). Therefore the presence
of folded saddle-nodes of type II in this model offers a hint on where to search
(in the parameter space) for more complex behaviors. Indeed, based on the
results from this paper, a detailed geometrical description of the system in
the neighborhood of a folded saddle-node of type II can be obtained. This
will be presented in a future manuscript [3].
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Abstract

In this paper the H2 type optimization problem for a class of time
varying linear stochastic systems modeled by Ito differential equations
and Markovian jumping with periodic coefficients is considered. The
main goal of such an optimization problem is to minimize the effect
of additive white noise perturbations on a suitable output of the con-
trolled system. It is assumed that only an output is available for mea-
surements. The solution of the considered optimization problem is
constructed via the stabilizing solutions of some suitable systems of
generalized Riccati differential equations with periodic coefficients.
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1 Introduction

The H2 and the linear quadratic control problems for linear stochastic sys-
tems have been widely studied in the current literature. A particular at-
tention was paid to two classes of stochastic systems, namely Markov jump
linear systems and systems subject to multiplicative white noise.When an
important and unpredictible variation causes a discrete change in the plant
characterization at isolated points in time, a Markov chain with a finite state
space is a natural model for the plant parameter processes.

Some illustrative applications of these systems can be found for example in
[2, 13, 16, 17] and their references, where stochastic stability properties and
useful results concerning controllability, observability and optimal control are
presented.

More recently, the H2 control problem for Markov jump linear systems has
been studied in [3] for the state feedback case and [11] for the output feedback
case. The stochastic systems with multiplicative white noise naturally arise
in control problems of linear uncertain systems with stochastic uncertainty
(see [12, 15, 19] and the references therein). Results concerning the H2

control problem for this type of systems are derived for instance in [4, 6].
In [8] the H2 optimal state feedback control problem is addressed for time
varying periodic linear stochastic systems subject to both Markov jumps and
multiplicative white noise. The afore mentioned paper extends to the time
varying periodic case a part of the results from [7].

In the present paper we extend the results of [8] to the case when only an
output is available for measurements. Lately, there is an increasing interest
in the consideration of control problems for systems modeled by differential
equations with periodic coefficients. For the reader’s convenience we refer
to [1].

The outline of the paper is: Section 2 contains the description of the math-
ematical model of the considered controlled systems. Also the H2 optimiza-
tion problems are stated. Section 3 collects several auxiliary results which
are required for the proof of the main result. Formulae for the computa-
tion of H2-norms of a linear stochastic system with periodic coefficients are
provided. The main result of the paper is given in Section 4.
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2 The problem formulation

Consider the controlled system (G) modeled by a system of the Ito differential
equations perturbed by a Markov process of the form:

dx(t) = (A0(t, ηt)x(t) +B0(t, ηt)u(t))dt

+
r∑

k=1

(Ak(t, ηt)x(t) +Bk(t, ηt)u(t))dwk(t) +Bv(t, ηt)dv(t)

dy(t) = C0(t, ηt)x(t)dt+
r∑

k=1

Ck(t, ηt)x(t)dwk(t) +Dv(t, ηt)dv(t) (2.1)

z(t) = Cz(t, ηt)x(t) +Dz(t, ηt)u(t)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm are the control parameters,
y(t) ∈ Rny are the measurements, while z(t) ∈ Rnz is the controlled output.
In (2.1) {ηt}t≥0 is an homogeneous right continuous Markov process on a
given probability space (Ω,F ,P) with the set of the states S = {1, 2, ..., N}
and the transition probability matrix P (t) = eQt, t ≥ 0, where Q ∈ RN×N is

a matrix whose elements have the properties: qij ≥ 0, if i 6= j and
N∑
j=1

qij = 0

for all 1 ≤ i ≤ N . Also, the existence of limt→∞ P (t) is valid. For details see
for example [5]. Here, (wT (t), vT (t))T is an (r + mv)-dimensional standard
Wiener process. w(t) = (w1(t), ..., wr(t))T , v(t) = (v1(t), ..., vmv(t))T (see
[14, 18]).

Throughout this paper, we make the following assumptions:

H1: {w(t)}t≥0, {v(t)}t≥0, {ηt}t≥0 are independent stochastic processes and
P{η0 = i} > 0, 1 ≤ i ≤ N .

H2: Ak(·, i) : R → Rn×n, Bk(·, i) : R → Rn×m, Ck(·, i) : R → Rny×n, 0 ≤
k ≤ r, Bv(·, i) : R→ Rn×mv , Dv(·, i) : R→ Rny×mv , Cz(·, i) : R→ Rnz×n,
Dz(·, i) : R → Rnz×m, 1 ≤ i ≤ N , are continuous matrix valued functions
which are periodic with the period θ > 0.
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To control the system (2.1) we consider the following admissible controllers
(Gc) having the following state space representation:

dxc(t)= Ac0(t, ηt)xc(t)dt+
r∑

k=1

Ack(t, ηt)xc(t)dwk(t)+Bc(t, ηt)duc(t)(2.2)

yc(t)= Cc(t, ηt)xc(t)

where xc(t) ∈ Rnc is the vector of the state parameters of the controller,
uc(t) ∈ Rny is the vector of the inputs of the controller and yc ∈ Rm is the
output of the controller, Ack(·, i), 0 ≤ k ≤ r, Bc(·, i), Cc(·, i) are continuous
matrix valued functions which are periodic with period θ. As in the time
invariant case, (see [7],[10]), the order nc of an admissible controller is not
prefixed. It will be determined in the process of the construction of the
solution of the optimization problems. The closed-loop system obtained when
coupling an admissible controller (2.2) to the system (2.1) by taking uc(t) =
y(t) and u(t) = yc(t) has the state space representation given by:

(Gcl) :


dxcl(t) = A0cl(t, ηt)xcl(t)dt+

r∑
k=1

Akcl(t, ηt)xcl(t)dwk(t)+

+Bvcl(t, ηt)dv(t),
zcl(t) = Ccl(t, ηt)xcl(t).

(2.3)

where,

xcl(t) =
(
xT (t) xTc (t)

)T
, Akcl(t, i) =

(
Ak(t, i) Bk(t, i)Cc(t, i)

Bc(t, i)Ck(t, i) Ack(t, i)

)
,

0 ≤ k ≤ r, Bvcl(t, i) =
(

Bv(t, i)
Bc(t, i)Dv(t, i)

)
, (2.4)

Ccl(t, i) =
(
Cz(t, i) Dz(t, i)Cc(t, i)

)
for all t ∈ R, 1 ≤ i ≤ N .

Definition 2.1. An admissible controller (Gc) of the form (2.2) is a stabilizing
controller for the systems (G) if the zero state equilibrium of the linear system

dxcl(t) = A0cl(t, ηt)xcl(t)dt+
r∑

k=1

Akcl(t, ηt)xcldwk(t) (2.5)

is exponentially stable in mean square (ESMS).
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We denote Ks(G) the set of all stabilizing controllers of type (2.2).

Now, we construct the following two cost functionals associated to the system
(G):
Jl : Ks(G)→ R+, l ∈ {1, 2} by

J1(Gc) = lim
τ→∞

1
τ

t0+τ∫
t0

E[|zcl(t)|2]dt (2.6)

and

J2(Gc) = lim
τ→∞

1
τ

t0+τ∫
t0

N∑
i=1

E[|zcl(t)|2/ηt0 = i]dt (2.7)

In this paper we shall solve the following optimization problems, which will
be called stochastic H2 optimal control problems:

OP1 : Construct a stabilizing controller G1
c ∈ Ks(G) with the property that

J1(G1
c) = min{J1(Gc)|Gc ∈ Ks(G)} (2.8)

OP2 : Construct an admissible controller (G2
c) ∈ Ks(G) with the property

that

J2(G2
c) = min{J2(Gc)|Gc ∈ Ks(G)}. (2.9)

Remark 2.1. a) In the next section we shall see that both J1(Gc) and
J2(Gc) do not depend upon the initial time t0 and the initial state xcl(t0).
The values of these cost functionals are expressed in terms of bounded so-
lutions of some suitable affine differential equations which extend to this
framework the differential equations of the controllability Gramian and ob-
servability Gramian.

b) Also in Section 3 we shall see that the value of the cost functional J1(Gc)
depends upon the initial distribution π0 = (π0(1), ..., π0(N)), (π0(i) = P{η0 =
i}) of the Markov process, while in the case of the second optimization prob-
lem, the value of the cost functional J2(Gc) does not depend upon the initial
distribution of the Markov process.
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3 Several preliminary results

Let Sn ⊂ Rn×n be the linear subspace of the real symmetric matrices. Define
SNn by SNn = Sn ⊕ Sn ⊕ ... ⊕ Sn. We recall that SNn is a real Hilbert space
with respect to the inner product

< X,Y >=
N∑
i=1

Tr[X(i)Y (i)] (3.1)

for all X = (X(1), ..., X(N)), Y = (Y (1), ..., Y (N)) ∈ SNn .

Additionally, SNn is the ordered linear space, via the ordering induced by the
cone

SN+
n = {X ∈ SNn |X = (X(1), X(2), ..., X(N)), X(i) ≥ 0, 1 ≤ i ≤ N}. (3.2)

Here X(i) ≥ 0 means that X(i) is positive semidefinite. For more details
concerning the properties of the cone SN+

n we refer to [9].

Based on the coefficients of the linear system (2.5) we construct the following
operator valued function t→ Lcl(t) by Lcl(t)X = ((Lcl(t)X)(1), (Lcl(t)X)(2),

..., (Lcl(t)X)(N)) where

(Lcl(t)X)(i) = A0cl(t, i)X(i) +X(i)AT0cl(t, i) +

+
r∑

k=1

Akcl(t, i)X(i)ATkcl(t, i) +
N∑
j=1

qjiX(j) (3.3)

for all X = (X(1), ..., X(N)) ∈ SNn+nc
. By direct calculation one obtains that

the adjoint operator of Lcl(t) with respect to the inner product (3.1) is given
by
L∗cl(t)X = ((L∗cl(t)X)(1), ..., (L∗cl(t)X)(N)),

(L∗clX)(i) = AT0cl(t, i)X(i) +X(i)A0cl(t, i) +

+
r∑

k=1

ATkcl(t, i)X(i)Akcl(t, i) +
N∑
j=1

qijX(j) (3.4)

for all X ∈ SNn+nc
.
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In our developments an important role is played by the following affine dif-
ferential equations on SNn+nc

:

d

dt
Y (t) = Lcl(t)Y (t) + Bε(t) (3.5)

d

dt
X(t) + L∗cl(t)X(t) + C(t) = 0 (3.6)

where Bε(t) = (Bε(t, 1),Bε(t, 2), ...,Bε(t,N)),

Bε(t, i) = ε(i)Bvcl(t, i)BT
vcl(t, i) (3.7)

and C(t) = (C(t, 1), C(t, 2), ..., C(t,N)),

C(t, i) = CTcl(t, i)Ccl(t, i) (3.8)

In (3.7) ε(i) are given nonnegative scalars. Applying Theorem 4.9 and The-
orem 4.7 in [9] in the case of the equations (3.5) and (3.6), respectively, we
obtain:

Corollary 3.1. Under the considered assumptions, if the zero state equi-
librium of the linear system (2.5) is (ESMS), each of the affine differential
equations (3.5) and (3.6), has a unique bounded on R solution Yεcl(t) and
Xcl(t), respectively. Additionally, these solutions have the properties:

(i) Yεcl(t) ∈ S
N+
n+nc

, Xcl(t) ∈ SN+
n+nc

for all t ∈ R.

(ii) Yεcl(t+ θ) = Yεcl(t), Xcl(t+ θ) = Xcl(t),∀t ∈ R.

Remark 3.1. In the special case of N = 1, Ak(t, 1) = 0, 1 ≤ k ≤ r the
differential equations (3.5) and (3.6) reduce to the well known differential
equations of the controllability Gramian and observability Gramian, respec-
tively from the deterministic case.

The following result provides values of the cost functionals (2.6), (2.7) respec-
tively, in terms of the bounded solutions of the affine differential equations
(3.5) and (3.6).

Theorem 3.2. Under the assumptions H1 and H2 for each stabilizing con-
troller Gc) the following equalities hold:
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(i)

J1(Gc) =
1
θ

θ∫
0

N∑
j=1

πj∞Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds (3.9)

=
1
θ

θ∫
0

N∑
j=1

Tr[Ccl(s, j)Yπ∞cl (s, j)CTcl(s, j)]ds

(ii)

J2(Gc) =
1
θ

θ∫
0

N∑
j=1

δ(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds (3.10)

=
1
θ

θ∫
0

N∑
j=1

Tr[Ccl(s, j)Yδcl(s, j)CTcl(s, j)]ds

where Xcl(t) = (Xcl(t, 1), ...,Xcl(t,N)) is the unique bounded solution of the
affine differential equation(3.6),(3.8),while Yπ∞cl (t)=(Yπ∞cl (t, 1), ...,Yπ∞cl (t,N))
is the unique bounded on R solution of affine differential equation (3.5), (3.7)
with ε(j) = πj∞ and Yδcl(t) = (Yδcl(t, 1), ...,Yδcl(t,N)) is the unique bounded
on R solution of the affine differential equation (3.5), (3.7) for ε(j) = δ(j).
The scalars πj∞ and δ(j) are defined by

πj∞ =
N∑
i=1

p̃ijP{η0 = i}, δ(j) =
N∑
i=1

p̃ij (3.11)

where p̃ij are the elements of the matrix P̃ = lim
t→∞

P (t).

Proof. The first equalities of (3.9) and (3.10), respectively, are obtained
directly applying Theorem 4.2 and Theorem 4.3, respectively in [8].

We rewrite the second part of (3.9) and (3.10) in an unified manner, as
follows:

1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds (3.12)

=
1
θ

θ∫
0

N∑
j=1

Tr[Ccl(s, j)Yεcl(s, j)CTcl(s, j)]ds
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So, to complete the proof of the theorem it is sufficient to show that (3.12)
is true for some given nonnegative scalars ε(j).

Using (3.7) together with (3.1) we obtain

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)] =< Xcl(s),Bε(s) > .

Using successively equations (3.5) and (3.6) we deduce

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]=

d

ds
<Xcl(s),Yεcl(s)>+<C(s),Yεcl(s)>.

Integrating the last equality from s = 0 to s = θ we obtain via Corollary 3.1.
(ii) that

θ∫
0

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds =

θ∫
0

< C(s),Yεcl(s) > ds =

=

θ∫
0

N∑
j=1

Tr[Ccl(s, j)Yεcl(s, j)CTcl(s, j)].

For the last equality we used (3.1) together with (3.8). Thus the proof is
complete.

Remark 3.2. From (3.9) and (3.10) one sees that the values of the cost
functionals (2.6) and (2.7), respectively, do not depend upon the initial con-
ditions (t0, xcl(t0)) of the trajectories of the closed loop system (Gcl). These
values may be seen as measures of the effect of the additional white noise
on an output of the closed-loop system. So, the optimization problems we
want to solve in this work minimize the effect of the additive white noise
perturbations on a suitable output of the closed-loop system.

To construct the optimal controllers of the two optimization problems stated
before, we need the stabilizing solution of the following systems of Riccati
equations:
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a) System of generalized Riccati differential equations of control SGRDE-C

d

dt
X(t, i)+AT0 (t, i)X(t, i)+X(t, i)A0(t, i)+

r∑
k=1

ATk (t, i)X(t, i)Ak(t, i)+

+
N∑
j=1

qijX(t, j)− (X(t, i)B0(t, i) +
r∑

k=1

ATk (t, i)X(t, i)Bk(t, i) +

+CTz (t, i)Dz(t, i))(DT
z (t, i)Dz(t, i) +

+
r∑

k=1

BT
k (t, i)X(t, i)Bk(t, i))−1(BT

0 (t, i)X(t, i) + (3.13)

+
r∑

k=1

BT
k (t, i)X(t, i)Ak(t, i) +DT

z (t, i)Cz(t, i)) +

+CTz (t, i)Cz(t, i) = 0, 1 ≤ i ≤ N.

b) System of generalized Riccati differential equations of filtering SGRDE-F

d

dt
Y (t, i)=A0(t, i)Y (t, i)+Y (t, i)AT0 (t, i)+

r∑
k=1

Ak(t, i)Y (t, i)ATk (t, i)+

+
N∑
j=1

qjiY (t, j)− (Y (t, i)CT0 (t, i) +
r∑

k=1

Ak(t, i)Y (t, i)CTk (t, i) +

ε(i)Bv(t, i)DT
v (t, i))(ε(i)Dv(t, i)DT

v (t, i) (3.14)

+
r∑

k=1

Ck(t, i)Y (t, i)CTk (t, i))−1(C0(t, i)Y (t, i)

+
r∑

k=1

Ck(t, i)Y (t, i)ATk (t, i) + ε(i)Dv(t, i)BT
v (t, i)) +

+ε(i)Bv(t, i)BT
v (t, i), 1 ≤ i ≤ N.

We recall that a global solution Xs : R → SNn of SGRDE-C (3.13) is called
stabilizing solution if the zero state equilibrium of the following closed-loop
system

dx(t) = (A0(t, ηt) +B0(t, ηt)Fs(t, ηt))x(t)dt (3.15)

+
r∑

k=1

(Ak(t, ηt) +Bk(t, ηt)Fs(t, ηt))x(t)dwk(t)
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is ESMS, where

Fs(t, i) = −(DT
z (t, i)Dz(t, i)+

r∑
k=1

BT
k (t, i)Xs(t, i)Bk(t, i))−1(BT

0 (t, i)Xs(t, i)

+
r∑

k=1

BT
k (t, i)Xs(t, i)Ak(t, i)+DT

z (t, i)Cz(t, i)), 1≤ i≤ N. (3.16)

Also, a global solution Ys : R→ SNn of SGRDE-F (3.14) is called stabilizing
solution if the zero state equilibrium of the closed-loop system

dx(t) = (A0(t, ηt) +Ks(t, ηt)C0(t, ηt))x(t)dt (3.17)

+
r∑

k=1

(Ak(t, ηt) +Ks(t, ηt)Ck(t, ηt))x(t)dwk(t)

is ESMS, where

Ks(t, i) = −(Ys(t, i)CT0 (t, i)+
r∑

k=1

Ak(t, i)Ys(t, i)CTk (t, i) + (3.18)

+ε(i)Bv(t, i)DT
v (t, i))(

r∑
k=1

Ck(t, i)Ys(t, i)CTk (t, i)+ε(i)Dv(t, i)DT
v (t, i))−1,

1 ≤ i ≤ N.

It must be remarked that in (3.14) and (3.18), ε(i) is replaced by πi∞ in the
case of OP1 and by δ(i), in the case of OP2, respectively.

Applying Theorem 7 from Chapter 4 in [10] one obtains a set of necessary and
sufficient conditions for the existence of the bounded on R and stabilizing so-
lution
Xs(t) = (Xs(t, 1), ..., Xs(t,N)) of SGRDE-C (3.13) which satisfies the con-
dition

DT
z (t, i)Dz(t, i) +

r∑
k=1

BT
k (t, i)Xs(t, i)Bk(t, i)>0, 0 ≤ t ≤ θ, 1 ≤ i ≤N.(3.19)

Moreover, Xs(t+ θ, i) = Xs(t, i) ∀t ∈ R, 1 ≤ i ≤ N .

Also, applying Theorem 7 from Chapter 4 in [10] to a suitable dual equation
one obtains a set of necessary and sufficient conditions for the existence of a
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bounded on R and stabilizing solution Ys(t) = (Ys(t, 1), ..., Ys(t,N)) of the
SGRDE-F (3.14) which satisfies the following sign condition:

ε(i)Dv(t, i)DT
v (t, i)+

r∑
k=1

Ck(t, i)Ys(t, i)CTk (t, i)>0, 0≤ t≤θ, 1≤ i≤N.(3.20)

Additionally, we have Ys(t+ θ, i) = Ys(t, i) (∀)t ∈ R, i ∈ S.

Several aspects concerning the numerical computation of the stabilizing so-
lutions of (3.13) and (3.14), respectively, via some Lyapunov iterations can
be found in [8] or [10] Chapter 4.

4 The main result

Let us introduce the following performance index Wε : Ks(G)→ R+ defined
by:

Wε(Gc) =
1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
vcl(s, j)Xcl(s, j)Bvcl(s, j)]ds (4.1)

where ε(i) ≥ 0 are given and Xcl(t) = (Xcl(t, 1), ...,Xcl(t,N)) is the unique
bounded on R solution of the affine differential equation on SNn+nc

(3.6),
(3.8).

From Theorem 3.2 we deduce that if ε(i) = πi∞ then Wε(Gc) coincides with
J1(Gc) while if ε(i) = δ(i) then Wε(Gc) recovers J2(Gc). Therefore, the
finding of a controller which minimizes (4.1) allows us to obtain in an unified
manner the solutions of the two optimization problems stated in Section 2.

Theorem 4.1. Assume: a) the assumptions H1) and H2) are fulfilled.

b) The SGRDE-C (3.13) has a θ periodic and stabilizing solution Xs(·) which
verifies condition (3.19).

c) The SGRDE-F (3.14) has a θ-periodic and stabilizing solution Ys(·) which
verifies condition (3.20).
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Consider the controller G̃ε
c having the state space representation

dx̃c(t) = Ãc0(t, ηt)x̃c(t)dt+
r∑

k=1

Ãck(t, ηt)x̃c(t)dwk(t) + B̃c(t, ηt)duc(t)

dyc(t) = C̃c(t, ηt)x̃c(t) (4.2)

where

Ãck(t, i) = Ak(t, i) +Bk(t, i)Fs(t, i) +Ks(t, i)Ck(t, i), 0 ≤ k ≤ r
B̃c(t, i) = −Ks(t, i), C̃c(t, i) = Fs(t, i). (4.3)

Fs(t, i) and Ks(t, i) being constructed as in (3.16), (3.18) respectively. Under
the considered assumptions G̃ε

c ∈ Ks(G) and Wε(G̃ε
c) ≤ Wε(Gc), for all

Gc ∈ Ks(G).

The minimal value achieved by the cost (4.1) is

Wε(G̃ε
c) =

1
θ

θ∫
0

N∑
j=1

{ε(j)Tr[BT
v (s, j)Xs(s, j)Bv(s, j)] (4.4)

+Tr[V (s, j)Fs(s, j)Ys(s, j)F Ts (s, j)V (s, j)]}ds

where

V (s, j) = (DT
z (s, j)Dz(s, j) +

r∑
k=1

BT
k (s, j)Xs(s, j)Bk(s, j))

1
2 . (4.5)

Proof. From (4.3) one sees that G̃ε
c depends upon ε, via Ks(t, i). In the

sequel we do not write explicitly the dependence of G̃c upon the parameter
ε.

To show that G̃c ∈ Ks(G) we consider the linear system of type (2.5) ob-
tained when coupling (4.2), (4.3) to (2.1), taking uc(t) = y(t) and u(t) =
yc(t).

If x̃cl(t) = (x̃(t), x̃Tc (t))T is the state vector of this system, we perform the
change of the state variables as:

ẽ(t) = x̃(t)− x̃c(t).
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Thus, we obtain the system of stochastic differential equations:

dx̃(t) = [(A0(t, ηt) +B0(t, ηt)Fs(t, ηt))x̃(t)−B0(t, ηt)Fs(t, ηt)ẽ(t)]dt

+
r∑

k=1

[(Ak(t, ηt) +Bk(t, ηt)Fs(t, ηt))x̃(t)

−Bk(t, ηt)Fs(t, ηt)ẽ(t)]dwk(t) (4.6)
dẽ(t) = [A0(t, ηt) +Ks(t, ηt)C0(t, ηt)]ẽ(t)dt

+
r∑

k=1

[Ak(t, ηt) +Ks(t, ηt)Ck(t, ηt)]ẽ(t)dwk(t)

The exponential stability in mean square of the closed loop systems (3.15)
and (3.17), respectively, together with Theorem 32, (iii) Chapter 2 in [10]
allows us to deduce that the trajectories of (4.6) satisfy:

lim
t→∞

E[|x̃(t)|2 + |ẽ(t)|2|η0 = i] = 0

or equivalently,

lim
t→∞

E[|x̃cl(t)|2|η0 = i] = 0 (4.7)

for all 1 ≤ i ≤ N and all x̃cl(0) ∈ R2n.

Further (4.7) together with Theorem 23 in Chapter 2 in [10] lead to

E[|x̃cl(t)|2|ηt0 = i] ≤ βe−α(t−t0)|x̃cl(t0)|2

for all t ≥ t0 ≥ 0, x̃cl(t0) ∈ R2n, for some β > 0 and α > 0.

This shows that the controller (4.2), (4.3) is stabilizing. It remains to prove
that the controller G̃c minimizes the cost (4.1). First we rewrite (4.1) in the
form

Wε(Gc) =
1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
v (s, j)Xs(s, j)Bv(s, j)]ds (4.8)

+
1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
vcl(s, j)X̂(s, j)Bvcl(s, j)]ds
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for all Gc ∈ Ks(G), where X̂(t, j) = Xcl(t, j) − diag(Xs(t, j), 0). By direct
calculations one obtains that t → X̂(t) = (X̂(t, ·), ..., X̂(t,N)) verifies the
affine differential equation

d

dt
X̂(t) + L∗cl(t)X̂(t) + Θ(t) = 0 (4.9)

where Θ(t) = (Θ(t, 1), ...,Θ(t,N)) with

Θ(t, i) = (ΘT (t, i)Θ(t, i))
Θ(t, i) = V (t, i)

(
Fs(t, i) −Cc(t, i)

)
. (4.10)

So X̂(t, i) ≥ 0, (∀) t ∈ R, 1 ≤ i ≤ N . Reasoning as in the proof of the
equality (3.12), one gets

N∑
j=1

ε(j)Tr[BT
vcl(s, j)X̂(s, j)Bvcl(s, j)] =

N∑
j=1

Tr[Θ(s, j)Yεcl(s, j)ΘT (s, j)].

This allows us to transform (4.8) as follows:

Wε(Gc) =
1
θ

θ∫
0

N∑
j=1

ε(j)Tr[BT
v (s, j)Xs(s, j)Bv(s, j)]ds

+
1
θ

θ∫
0

N∑
j=1

Tr[Θ(s, j)Yεcl(s, j)ΘT (s, j)]ds.

Further, we write

Wε(Gc) = µ̃+
1
θ

θ∫
0

N∑
j=1

Tr[Θ(s, j)Ŷ(s, j)ΘT (s, j)]ds (4.11)

where we denote by

µ̃ =
1
θ

θ∫
0

N∑
j=1

{ε(j)Tr[BT
v (s, j)Xs(s, j)Bv(s, j)] (4.12)

+Tr[V (s, j)Fs(s, j)Ys(s, j)F Ts (s, j)V (s, j)]}ds

and Ŷ (s, j) = Yεcl(s, j)− diag(Ys(s, j), 0).
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By direct calculations one obtains that t→ Ŷ(t) = (Ŷ (t, 1), ..., Ŷ (t,N)) is a
bounded solution of the affine differential equation on SNn+nc

:

d

dt
Ŷ(t) = Lcl(t)Ŷ(t) + Ψ(t) (4.13)

where Ψ(t) = (Ψ(t, 1), ...,Ψ(t,N)) with

Ψ(t, i) = Ψ(t, i)ΨT (t, i)

Ψ(t, i) =
(

Ks(t, i)
−Bc(t, i)

)
V̂ (t, i) (4.14)

V̂ (t, i) = (ε(i)Dv(t, i)DT
v (t, i) +

r∑
k=1

Ck(t, i)Ys(t, i)CTk (t, i))
1
2 .

Applying Theorem 4.9 in [9] to the equation (4.13), (4.14) we deduce that

Ŷ (t, i) ≥ 0 (4.15)

for all t ∈ R, 1 ≤ i ≤ N and for all Gc ∈ Ks(G).

From (4.12) one sees that µ̃ does not depend upon the controller Gc. More-
over, from (4.11) and (4.15) we deduce that

Wε(Gc) ≥ µ̃ (4.16)

for all Gc ∈ Ks(G). To complete the proof we have to show that in (4.16)
the equality takes place if Gc = G̃c. To this end let us remark that in the
case of the controller G̃c we have

Θ(s, j)Ŷ (s, j)ΘT (s, j) = V (s, j)Fs(s, j)J Ŷ (s, j)J TF Ts (s, j)V (s, j) =
= V (s, j)Fs(s, j)Z11(s, j)F Ts (s, j)V (s, j)(4.17)

where J =
(
In −In

)
and Z11(s, j) is the 11-block of the matrix Z(t, j) =

T Ŷ(s, j)T T , with T =
(
In −In
0 In

)
. One obtains the equation

d

dt
Z(t, i) = Â0(t, i)Z(t, i) + Z(t, i)ÂT0 (t, i) +

r∑
k=1

Âk(t, i)Z(t, i)ÂTk (t, i)(4.18)

+
N∑
j=1

qjiZ(t, j) + T Ψ(t, i)ΨT (t, i)T T
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where Âk(t, i) ∈ R2n×2n, Âk(t, i) = T Ãkcl(t, i)T −1, Ãkcl(t, i) being con-
structed via (2.4) using (4.3). Taking the (1,1)-block of (4.18) one obtains
that t → (Z11(t, 1), ..., Z11(t,N)) is a bounded solution of the differential
equation on SNn :

d

dt
Z11(t, i) = (A0(t, i)+Ks(t, i)C0(t, i))Z11(t, i)

+Z11(t, i)(A0(t, i)+Ks(t, i)C0(t, i))T

+
r∑

k=1

(Ak(t, i) +Ks(t, i)Ck(t, i))Z11(t, i)(Ak(t, i) (4.19)

+Ks(t, i)Ck(t, i))T +
N∑
j=1

qjiZ11(t, j), 1 ≤ i ≤ N

Having in mind the fact that Ks(t, i) is the stabilizing injection associated
to the stabilizing solution Ys(·) of SGRDE-F (3.14) we conclude that (4.19)
admits a unique bounded on R solution. Hence Z11(t, i) = 0 for all t ∈ R,
1 ≤ i ≤ N . So, we deduce that in (4.16) we have equality if Gc = G̃c. This
completes the proof.

Remark 4.1. In the special case N = 1, Ak(t, 1) = 0, Bk(t, 1) = 0,
Ck(t, 1) = 0, 1 ≤ k ≤ r, t ∈ R the optimal controller (4.2), (4.3) reduces to
the well known Kalman filter (see e.g. [20]).
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Abstract

In this work we consider the non linear stability of a chemical
equilibrium of a thermally conducting two component reactive vis-
cous mixture which is situated in a horizontal layer heated from below
and experiencing a catalyzed chemical reaction at the bottom plate.
The evolution equation for the perturbation energy is deduced with
an approach which generalizes the Joseph’s parametric differentiation
method. Moreover, the nonlinear stability bound for the chemical equi-
librium of the fluid mixture is derived in terms of thermal and concen-
trational non dimensional numbers.
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have been studied and present a well known interesting problem in several
fields of fluid mechanics. More recently, [1]-[4] have considered reactive fluids
of technological interest for whose chemical reactions can give temperature
and concentration gradients which influence the transport process, for exam-
ple, the dissociation of nitrogen, oxygen or hydrogen gas near the gas-solid
interface of a space vehicle when returning to the earth’s atmosphere, (see
Bdzil and Frisch [1], [2] and Loper and Roberts [5],) and can alter hydrody-
namic stabilities.

In the present paper, begun in 2009 when the first Author was still alive
and then finished by the second author also developing some A. Georgescu’s
ideas and suggestions, we consider a fluid mixture composed of the dimer A2

and the monomer A in a horizontal layer heated from below, the bottom plate
being catalytic. We evaluate the effects of heterogeneous surface catalyzed
reactions on the hidrodynamic stability of the chemical equilibrium.

The model adopted is that of Bdzil and Frisch.
We consider a Newtonian fluid model and derive the evolution equation

for the perturbation energy with the approach from [6], [7],[8], which gener-
alizes the Joseph’s parametric differentiation method reported in [9], [10].

A non linear stability bound is derived in terms of all involved physical
parameters.

2 The initial/boundary value problem for pertur-
bation

We consider the mixture (A2, A) described by a Newtonian model to which we
apply the Boussinesq approximation in the layer bounded by the surfaces z =
0 and z = 1 with the lower surface being catalytic, that is, the interconversion
(A2 
 A) occurs via the surface z = 0. However, the conditions that must
be satisfied at the catalyzed boundary z = 0, are [3]:

~J · ~k = 0 ~Q · ~k = 0

where ~J is the mass flux, ~k is the unit vector in the vertical upward direction,
and Q is the heat flux. The chemical equilibrium S0 is characterized by
the following temperature (T ) and degree of dissociation (fraction of pure
monomers present) (C) fields [2], [3]:

T (z) = T1 + β(1− z), C(z) = C1 + γ(1− z), (1)
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where C1 and T1 are the values of C and T at z = 1 and the constants β and
γ are given in [1], [3].

Let us now perturb S0 up to a cellular motion (convection-diffusion)
characterized by a velocity ~u = ~0 + ~u, a pressure p = P̄ + p′ a tempera-
ture T = T̄ + θ and a concentration C = C̄ + γ fields, where ~u, p′, θ, γ are
the corresponding perturbation fields and ~0, P̄ , T̄ , C̄ represent the basic state
S0 (the expression of P̄ follows from the momentum equation for S0). The
perturbation fields satisfy the following equations which express the conserva-
tion of the momentum, energy and concentration, written in nondimensional
coordinates [4], [11]

∂

∂t
~u+ (~u · ∇)~u = −∇p′ + ∆~u+ (Rθ + Cγ)~k, , (2)

Pr(
∂

∂t
θ + ~u · ∇θ) = ∆θ −Rw, (t, ~x) ∈ (0,∞)× V (3)

Sc(
∂

∂t
γ + ~u · ∇γ) = ∆γ + Cw, (4)

in a subset of L2, namely ,

N = {(~u, p, θ, γ) ∈ L2 | div~u = 0;
∂u

∂z
=
∂v

∂z
= w = 0 on ∂V2, (5)

~u = 0 on ∂V1 θ = γ = 0 on ∂V2
∂θ

∂z
= −sγ,

∂γ

∂z
= rγ on ∂V1}.

where ~u = (u, v, w), V is a periodicity cell in the x, y-directions, ∂V
is the boundary of V , ∂V1 = ∂V ∩ {z = 0}, ∂V2 = ∂V ∩ {z = 1}. The
perturbation fields depend on the time t and space ~x = (x, y, z) andR2, C2, Pr
and Sc are the thermal and concentrational numbers of Rayleigh, Prandtl
and Schmidt, respectively. In addition, r, s > 0 are dimensionless surface
reactions numbers.

The basic state S0 corresponds to the zero solution of the initial-boundary
value problem for (2)-(4) in the class N . This state is called non linearly
stable if a Liapunov function E(t), called energy, remains bounded when
t→∞ in the sense of limt→∞

∫ t
0 E(t′)dt′ <∞ [9], [10]. It is asymptotically

nonlinearly stable if E(t)→ 0 when t→∞. The stability or instability of S0

depends on six physical parameters occurring in (2)-(5): Pr, Sc = τPr,R, C, r
and s.
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3 The evolution equation for the perturbation
energy

Integrating over V the sum of the equation (4) multiplied by P−1
r γ and the

equation (3) multiplied by S−1
c θ we obtained:

d

dt
<θγ>= −τRS−1

c <γw>+CS−1
c <θw>−(1 + τ)S−1

c <∇θ ·∇γ>+ (6)

S−1
c

∫
V
∇ · (θ∇γ)dV + P−1

r

∫
V
∇ · (γ∇θ)dV.

Multyplying (2) by u, (3) by θ, (4) by γ and integrating the resulted equations
over V and taking into account the boundary conditions from (5) we have
respectively

1
2
d

dt
< |u|2 >= − < |∇u|2 > +R < θw > +C < γw >, (7)

1
2
d

dt
< Prθ

2 >= −R < θw > − < |∇θ|2 > +
∫
V
∇ · (θ∇θ)dV, (8)

1
2
d

dt
< Scγ

2 >= C < γw > − < |∇γ|2 > +
∫
V
∇ · (γ∇γ)dV. (9)

We perform the sum of (7) to (8) multiplied by a > 0, (9) multiplied by b > 0
and (6) multiplied by c > 0, and introducing the functions

E2(t) =< |u|2 + d1φ
2
1 + d2φ1φ2 > /2, Ψ(t) =< d3φ

2
2 > /2, (10)

we obtain

dE2

dt
+
dΨ
dt

= − < |∇u|2 + (a2
1d4 + b21d5 + a1b1d6)|∇φ1|2+

(a2
2d4+b22d5+a2b2d6)|∇φ2|2+

[
2a1a2d4+2b1b2d5+(a1b2+a2b1)d6

]
|∇φ1·∇φ2| >

+R < (a1d7 + b1d8)φ1w > +R < (a2d7 + b2d8)φ2w > +

(aa2
1 + bb21 + cS−1

c a1b1 + cP−1
r a1b1)

∫
V
∇ · (φ1∇φ1)dV+

(aa2
2 + bb22 + cS−1

c a2b2 + cP−1
r a2b2)

∫
V
∇ · (φ2∇φ2)dV+
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(aa1a2 + bb1b2 + cS−1
c a1b2 + cP−1

r a2b1)
∫
V
∇ · (φ1∇φ2)dV+

(aa1a2 + bb1b2 + cS−1
c a2b1 + cP−1

r a1b2)
∫
V
∇ · (φ2∇φ1)dV, (11)

where
θ = a1φ1 + a2φ2, γ = b1φ1 + b2φ2. (12)

Here a1, a2, b1 and b2 are unknown parameters and di, i = 1 · · · 8 are functions
of a, b, c and the physical parameters, defined by

d1 = aPra
2
1 + bScb

2
1 + 2ca1b1; d2 = aPra1a2 + bScb1b2 + c(a1b2 + a2b1),

d3 = aPra
2
2 + bScb

2
2 + 2ca2b2; d4 = a,

d5 = b; d6 = cS−1
c (1 + τ),

d7 = 1− a+ cαS−1
c ; d8 = bα+ α− cτS−1

c ,

where α = C
R .

The seven constants a, b, c, a1, b1, a2 and b2 shall be determined from the
requirement that (11) assumes the form [6], [7], [8]

dE2

dt
+
dΨ
dt

= − < |∇u|2 + |∇φ1|2 > +R < (a1d7 + b1d8)φ1w >, (13)

where the energy E2 has the form

E2(t) =< |u|2 + d1|φ1|2 > /2. (14)

In the case τ = 1 the right-hand side of (11) assumes the form from (13) and
instead of (10) the energy E2 assumes the form (14) if

d2 = 0,
a2

1d4 + b21d5 + a1b1d6 = 1,
a2

2d4 + b22d5 + a2b2d6 = 0,
2a1a2d4 + 2b1b2d5 + (a1b2 + a2b1)d6 = 0,
a2d7 + b2d8 = 0,
sb2 + ra2 = 0.

(15)

φ1 and φ2 as linear combinations of θ and γ are given by

φ1 = a′1θ + a′2γ, φ2 = b′1θ + b′2γ, (16)
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where
a′1 = b2/M, a′2 = a2/M, b′1 = −b1/M, b′2 = a1/M,

a1 = b′2/M
′, a2 = −a′2/M ′, b1 = −b′1/M ′, b2 = a′1/M

′, (17)

and M = a1b2 − a2b1 and M ′ = a′1b
′
2 − a′2b′1.

It follows

φ1 = (b2θ − a2γ)/M and φ2 = (−b1θ + a1γ)/M. (18)

The system (15) can be considered as yielding a1, b1, a2/b2, b, c as func-
tions of a, (15)3 follows from (15)1 and (15)2, so, another relationship between
these parameters is necessary.

In order to find it we followed the Joseph’s generalized method of para-
metric differentiation [6], [7], [8].

Denoting
2A = R|a1d7 + b1d8|, (19)

relation (13) implies

dE2

dt
≤ −ξ2

(
1−A/

√
Ra∗

)
E2(t), (20)

where [12], [13], [14], [15]

ξ2 = minu,φ1

2 < |∇u|2 + |∇φ1|2 >
< |u|2 + |φ1|2 >

,
1√
Ra∗

= maxu,φ1

2 < φ1w >

< |∇u|2 + |∇φ1|2 >
.

(21)
Therefore, the stability criterion reads

R < 2
√
Ra∗/|a1d7 + b1d8|. (22)

As a consequence R will be maximal if |a1d7 + b1d8| will be minimal. Since
|a1d7+b1d8| is a function of the parameter a this requirement will be fullfilled
iff

d(a1d7 + b1d8)
da

= 0. (23)

This equation represents the equation determining a.
In this way, the stability bound

RE = 2
√
Ra∗/|a1d7 + b1d8| (24)
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will be obtained once the system (15), (23), admits real solutions and it can
be solved explicitly in terms of the physical parameters.

Of course, all values of the physical parameters ensuring the negativity
of a1d7 + b1d8 are in the stability domain.

In this section we applied a Joseph’s generalized method [6], [7], [8] to
derive the evolution equation for E2.

The Joseph’s idea of using (6) was generalized by us in the following way
[6], [7], [8]:

We used from the beginning an integral relation, i.e. the equation (6)
(already followed by suitable multiplications, addition and integration over
V of the balance equations for temperature and concentration (2)-(4)), in [7]
we proved that (6) is nothing else but the projection of a system, equivalent to
(2)-(4), including the equations which generate (6) and with a symmetrizable
linear part, for a suitable choice of the constants [7].

As a consequence, the initial equations (2)-(4) were replaced by some
others in which the equations which generated (6) were present. In this way
drastically changed the linear part of the initial equations allowing a much
more advantageous symmetrization. By contrast, the symmetric operator for
(2)-(4) does not contain the effect of terms in u from (2) and those of terms
in θ from (3) because they are opposite.

4 Nonlinear stability bound

From (15) we deduce the relations

d2
6 = 4d4d5, (25)

d2
8d4 = d2

7d5, (26)
s

r
= α, (27)

Then we determine explicit expression for a1, b1 and a2/b2in terms of
d8/d7, d6/d4 and d4, or, taking into account (25) and (26), in terms of

√
d5/d4

and d4.This implies
a1d7 + b1d8 = d7/

√
d4. (28)

On the other hand, (23) was written as an equation of the form

d

da

1 + a( srα− 1)
√
a

= 0. (29)
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If srα > 1, the solution

a =
1

s
rα− 1

(30)

of (29) gives, in terms of the physical quantities, the non linear stability
bound (24)

RE =
√
Ra∗

(√
(
s

r
)2 − 1

)−1
(31)

Theorem. For physical parameters R, C = αR, s
r = α, ( sr )2 > 1, the

zero solution of (2)-(4), corresponding to the basic conduction state, is non
linearly asymptotically stable if R < RE , where RE is given by (31). Or,
equivalently, if

C2 −R2 < Ra∗

where Ra∗ is given by (21).

5 Conclusions

We treated the problem of the non linear stability of an equilibrium for a
binary mixture in a horizontal layer heated from below and experiencing
a catalyzed chemical reaction at bottom plate, using the energy method,
improved as in [6] by taking into account an idea from [9] [10] . The given
problem governing the perturbation evolution was changed in order to obtain
an optimum energy inequation. Then the non linear stability bound was
obtained with the aid of some appropriately chosen multiplication constants.

The presence of derivatives in the boundary conditions heavily influences
the possibility to relate linear and non linear bounds because of the lack of
corresponding maximum principle for the Laplace equation. However, the
generalized method, as in [6], [7], [8] gives us the possibility to drastically
change the linear problem derived by the evolution equations, so that allows
us an easier handling of the linear problem to determine a generalized lin-
earization principle (in the sense of the coincidence of linear and nonlinear
stability bounds) [16].
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In previous papers we sketched out the general use of the double-
scale method to nonlinear hyperbolic partial differential equations
(PDEs) in order to study the asymptotic waves and as an example
the model governing the motion of a rheological medium (Maxwell
medium) with one mechanical internal variable was studied. In this
paper the double scale method is applied to investigate non-linear dis-
sipative waves in viscoanelastic media without memory of order one
(Jeffreys media), that were studied by one of the authors (L. R.) in
more classical way. For these media the equations of motion include
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Introduction

The mathematical aspects involved into the study of asymptotic waves
belong to singular perturbation theory, namely the double-scale method ([1,
10, 14, 16, 24, 30, 31, 35, 36, 40, 42, 43]. The multiple-scale method, and,
in particular, the double-scale approach, is appropriate to phenomena which
possess qualitatively distinct aspects at various scales. For instance, at some
well-determined times or space coordinates, the characteristics of the motion
vary steeply, while at larger scale the characteristics are slow and describe
another type of motion. In addition, the scales are defined by some small
parameters.

The theoretical interest in nonlinear waves was manifest as early as the
years ’50 and ’60 of the last century and a lot of applications to various
branches of physics were worked out [2, 3, 4, 12, 13, 19, 20, 21, 22, 23, 32, 33].

In the context of rheological media studies on non-linear waves were car-
ried out in [7]-[9]. In previous papers (see [17] and [39]) we sketched out
the general use of the double-scale method to nonlinear hyperbolic partial
differential equations (PDEs) in order to study the asymptotic waves and as
an application the model governing the motion of anelastic media without
shape and bulk memory (Maxwell media) was studied.

In this paper the double scale method (see [16]) is applied to investigate
non-linear dissipative waves in isotropic viscoanelastic media without memo-
ry of order one in which a viscous flow phenomenon occurs (Jeffreys media),
that were studied in [8] by one of the authors (L. R.) in more classical way,
following the methodologies developed in [3] and generalized in [15]. Only
shear phenomena are taken into consideration and the hydrostatic pressure is
assumed constant and uniform. Furthermore, the isothermal case is conside-
red. For these media the equations of motion include second order derivative
terms multiplied by a very small parameter, that play a very important role
because they usually have a balancing effect on the non-linear steepening of
waves. In Section 1 the various steps in applying the double scale method are
introduced and the asymptotic approximations of first and second order are
obtained. In Section 2 the propagation into an uniform unperturbed state is
discussed and in Section 3 the first approximation of wavefront and of U are
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derived. In Section 4 the equations governing the motion of Jeffreys media
are treated and the mechanical relaxation equation valid for these media is
described in the framework of classical irreversible thermodynamics (TIP)
with internal variables [5, 11, 25, 26, 27, 28, 29, 34, 37, 38]. In Section 5 an
one-dimensional application is carried out containing original results.

1 Asymptotic dissipative waves from the point of
view of double-scale method

Let E3+1 be an Euclidean space and let P ∈ E3+1 be a current point. Let
U = U(P ) be the unknown vector function, solution of a system of PDEs
written in the following matrix form

Aα(U)Uα + ω−1

[
Hk ∂

2U
∂t∂xk

+ Hik ∂2U
∂xi∂xk

]
= B(U),

(α = 0, 1, 2, 3); (i, k = 1, 2, 3), (1)

where x0 = t (time), x1, x2, x3 are the space coordinates, U depends on xα,
Uα = ∂U

∂xα , Aα, Hk, Hik are appropriate matrices 9× 9 and

Aα(U)Uα = B(U) (2)

is the associated system of nonlinear hyperbolic PDEs.
In [8] it was shown that the motion of viscoanelastic media without mem-

ory, in the isothermal case, where only shear phenomena are taken into consi-
deration and the hydrostatic pressure is constant and uniform, is described
by a system of nonlinear PDEs having the form (1). The system of PDEs (1)
includes terms containing second order derivatives multiplied by a very small
parameter. These terms play a very important role because they usually have
a balancing effect on the non-linear steepening of the waves. In [41], using
(1), the propagation of linear acoustic waves was considered and the velocity
and attenuation of the waves were investigated. In [8] the non-linear dissi-
pative waves were worked out (see [2, 3, 4, 12, 13, 19, 20, 21, 22, 23, 32, 33])
and, in particular, a method, developed by G. Boillat [3] and generalized by
D. Fusco [15], was applied to construct asymptotic approximations of order
1 of solutions of the system of equations (1).

In this Section we study these non-linear dissipative waves from the point
of view of double scale-method.
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Following A. Jeffrey in [23], let us introduce for systems of PDEs of type
(1) (or type (2)) the concepts of waves (called dissipative waves only for the
system (1)) and associated wavefronts. Precisely, the solution hypersurfaces
of systems of type (1) (or type (2)) are referred to as waves, because they
may be interpreted as representing propagating wavefronts. When physical
problems are associated with such interpretation the solution on the side
of the wavefront towards which the propagation takes place may then be
regarded as being the undisturbed solution ahead of the wavefront, whilst
the solution on the other side may be regarded as a propagating disturbance
wave which is entering a region occupied by the undisturbed solution. This
is because the solution at a point in the undisturbed region characterises the
state of the physical system at that time and place before the advancing wave
has reached it.

The smooth solutions of systems of type (1) (or type(2)) that present a
steep variation in the normal direction to the associated wavefront are called
asymptotic waves. Then, there exists a family of hypersurfaces S (defined
by the equation ϕ(xα) = 0) moving in the Euclidean space E3+1 (consisting
of points of coordinates xα, α = 0, 1, 2, 3, or, equivalently of the time t = x0

and the space coordinates xi, i=1, 2, 3, having equation

ϕ(t, xi) = ξ̄ = const, (3)

such that the solutions U or/and some of their derivatives vary steeply across
S while along S their variation is slow [1]. From the double scale method
point of view this means that around S there exist asymptotic internal layers
(see [16]) such that the order of magnitude (i.e. the scale) of the solutions
or/and of some of their derivatives inside these layers and far away from
them differs very much. In systems of equations of type (1) the coefficient
ω−1 is the small parameter, that is associated with the order of magnitude
of the interior layer. Therefore, it is natural to introduce a new independent
variable ξ, related to the hypersurfaces S,

ξ = ωξ̄ = ωϕ(t, xi), (4)

with ξ = ϕ(t,xi)
ω−1 asymptotically fixed, i.e. ξ = Ord(1) as ω−1 → 0,

and ω � 1 a very large parameter, to assume that the solution depends on
the old as well as the new variable, i.e. U = U(xα, ξ), and to consider that
xα and ξ are independent.
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Taking into account that U is sufficiently smooth, hence it has sufficiently
many bounded derivatives, it follows that, except for the terms containing ω,
all the other terms are asymptotically fixed and the computation can proceed
formally. In this way, if xα = xα(s) are the parametric equations of a curve
C in E3+1, we have

dU
ds

= ω
∂U
∂ξ

∂ϕ

∂s
+
∂Uα

∂xα
dxα

ds

(where the dummy index convention is understood). This relation shows
that, indeed, along C, U does not vary too much if C belongs to the hyper-
surface S (in this case dϕ

ds = 0) but has a large variation if C is not situated
on S. For these reasons ξ is referred to as the fast variable.

Let us sketch the various steps in applying the double-scale method.
First, we look for the solution of the equations as an asymptotic series of

powers of the small parameter, say ε, namely with respect to the asymptotic
sequence

{
1, εa+1, εa+2, ...,

}
or
{

1, ε
1
p , ε

2
p , ...,

}
, as ε → 0. In [7] - [9] it is

considered p = 1 and ε = ω−1, such that U(xα, ξ) is written as an asymptotic
power series of the small parameter ω−1, i.e. with respect to the asymptotic
sequence 1, ω−1, ω−2, ..., as ω−1 → 0, the Ui (i = 1, 2, ...) being functions
of xα and ξ,

U(xα, ξ) ∼ U0(xα, ξ) + ω−1U1(xα, ξ) +O(ω−2), as ω−1 → 0. (5)

In (5) U0(xα, ξ) is a known solution [15] of

Aα(U0)Uα(U0) = B(U0), (6)

where U0 is taken as the initial unperturbed state.
The next step of the double-scale method consists in expressing the

derivatives with respect to xα, ∂
∂xα , in terms of the derivatives with respect

to xα and ξ, i.e. ∂
∂xα = ∂

∂xα + ∂
∂ξ

∂ξ
∂xα = ∂

∂xα + ω ∂
∂ξ

∂ϕ
∂xα , so that the derivative

Uα = ∂U
∂xα has the form

∂U
∂xα

∼ ω−1

(
∂U1

∂xα
+ ω

∂U1

∂ξ

∂ϕ

∂xα

)
+ ω−1∂U

2

∂ξ

∂ϕ

∂xα
+O(ω−2), as ω−1 → 0,

(7)
where we have assumed that the first approximation U0 is constant.
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Then, taking into account the form of Aα, Hk, Hik and B, the following
asymptotic expansions are deduced:

Aα(U) ∼ Aα(U0) +
1
ω
∇Aα(U0)U1 +O

(
1
ω2

)
, as ω−1 → 0, (8)

Hk(U) ∼ Hk(U0) +
1
ω
∇Hk(U0)U1 +O

(
1
ω2

)
, as ω−1 → 0, (k = 1, 2, 3),

(9)

Hik(U)∼Hik(U0) +
1
ω
∇Hik(U0)U1 +O

(
1
ω2

)
, as ω−1 → 0, (i, k = 1, 2, 3),

(10)

B(U) ∼ B(U0) +
1
ω
∇B(U0)U1 +O

(
1
ω2

)
, as ω−1 → 0, (11)

where ∇ = ∂
∂U .

The last point of the method consists in introducing the asymptotic ex-
pansions (7) - (11) into (1) and matching the obtained series.

It follows

(Aα)0Φα
∂U1

∂ξ
= 0 (α = 0, 1, 2, 3), (12)

(Aα)0

(
Φα

∂U2

∂ξ

)
= −

[
(Aα)0

∂U1

∂xα
+ (∇Aα)0U1

(
Φα

∂U1

∂ξ

)

+(Hk)0Φ0Φk
∂2U1

∂ξ2
+ (Hik)0ΦiΦk

∂2U1

∂ξ2
− (∇B)0U1

]
, (13)

where Φα = ∂ϕ
∂xα (Φk = ∂ϕ

∂xk
, k = 1, 2, 3) and the symbol (...)0 indicates that

the quantities are calculated in U0. Equation (12) is linear in U1, while (13)
is affine in U2.

Remind that the wavefront ϕ is still an unknown function. In order to
determine it, we recall its equation is ϕ(t, x1, x2, x3) = 0). This implies
that along the wavefront we have dϕ

dt = 0, implying ∂ϕ
∂t + v · gradϕ = 0, or

equivalently,
∂ϕ
∂t

|gradϕ| + v · gradϕ|gradϕ| = 0. Obviously,

gradϕ

|gradϕ|
= n, (14)
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such that the previous equality reads

∂ϕ
∂t

|gradϕ|
+ v · n = 0. (15)

Introduce the notation

λ = −
∂ϕ
∂t

|gradϕ|
, (16)

so that
λ(U,n) = v · n, (17)

where λ is called the velocity normal to the progressive wave, being n the
unit vector normal to the wave front.

Following the general theory [3] we introduce the quantity

Ψ(U,Φα) = ϕt + |gradϕ|λ(U,n). (18)

The characteristic equations for (18) are

dxα

dσ
=

∂Ψ
∂Φα

,
dΦα

dσ
= − ∂Ψ

∂xα
(α = 0, 1, 2, 3), (19)

where σ is the time along the rays.
The i-th component of the radial velocity Λ is defined by

Λi(U,n) ≡ dxi

dσ
=
∂Ψ
∂φi

= λni +
∂λ

∂ni
−
(

n · ∂λ
∂n

)
ni = λni + vi − (nkvk)ni,

(20)
(i = 1, 2, 3).

Hence,
Λ(U,n) = v − (vn − λ)n. (21)

The theory in [3] enables us to deduce the equation for ϕ by using (15).
Of course, equations of asymptotic approximations of higher order can be
written and they are affine, but their solutions are very difficult. Just to
solve the linear equation (12), a method was developed by G. Boillat [3] and
generalized by D. Fusco [15] (see Sections 2, 3).
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2 Propagation into an uniform unperturbed state

Consider an uniform unperturbed state U0, solution of (6). If the quantities
(14) and (16) are introduced in the expression (12) we obtain

(A0n − λI)
∂U1

∂ξ
= 0, (22)

where (An)0 = A0n and An(U) = Aini. In the case where the eigenvalues
are real and the eigenvectors of the matrix An are linearly independent, the
system of PDEs (2) is hyperbolic (see [17] for the definition of hyperbolicity).
Furthermore, in [3] it was shown that only for the waves propagating with
a velocity λ such that ∇λ · r 6= 0 (with r the right eigenvector of (An)0

corresponding to the eigenvalue λ), i.e. with a velocity that does not satisfy
the Lax - Boillat exceptionality condition ∇λ · r = 0, our results are valid.
Eq. (22) shows that U1(xα, ξ), by integration, has the form

U1(xα, ξ) = u(xα, ξ)r(U0,n) + v1(xα), (23)

where u is a scalar function to be determined and v1 is an arbitrary function
of integration which can be taken as zero, without loss of generality. It may
be observed that in (23) u gives rise to the phenomenon of the distortion of
the signals and this term governs the first-order perturbation obeying a non-
linear partial differential equation (see Section 3). We conclude this section
by showing how the wave front ϕ(t, x1, x2, x3) = 0 can be determined (see
[8]). Since we are considering the propagation into an uniform unperturbed
state, it is known [3] that the wave front ϕ satisfies the partial differential
equation

Ψ(U0,Φα) = ϕt + |gradϕ|λ(U0,n0) = Ψ0 = 0, (24)

where n0 is a constant value of n, and so

Λi(U0,n0) =
∂Ψ0

∂Φi
(i = 1, 2, 3). (25)

The characteristic equations for (24) are

dxα

dσ
=
∂Ψ0

∂Φα
,

dΦα

dσ
= −∂Ψ0

∂xα
(α = 0, 1, 2, 3), (26)

where σ is the time along the rays.
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By integration of (26) one obtains

x0 = t=σ, xi=(xi)0 + Λ0
i (U

0,n0)t, with (xi)0 =(xi)t=0 (i=1, 2, 3). (27)

If we denote by ϕ0 the given initial surface, we have (ϕ)t=0 = ϕ0
[
(xi)0

]
and n0 represents the normal vector at the point (xi)0 defined by
n0 =

(
gradϕ
|gradϕ|

)
t=0

= grad0ϕ0

|grad0ϕ0| , where (grad0)i ≡ ∂
∂(xi)0

(i = 1, 2, 3).

Then, x = x|t=0 + Λ0t and since the Jacobian J of the transformation
x → x|t=0 is nonvanishing, i.e. J = det|δik + ∂Λ0

k

∂(xi)0
t| 6= 0 (i, k = 1, 2, 3),

(xi)0 can be deduced from equations (27)2 and ϕ in the first approximation
takes the following form

ϕ(t, xi) = ϕ0(xi − Λ0
i t). (28)

3 First approximation of the wavefront and of U

In [8] it is shown that, by utilizing (13) and (23) (see [3] and [15]), the
following equation for u(xα, ξ) can be obtained:

∂u

∂σ
+ (∇Ψ · r)0 u

∂u

∂ξ
+

1√
J

∂
√
J

∂σ
u+ µ0∂

2u

∂ξ2
= ν0u, (29)

where
(∇Ψ · r)0 = (|gradϕ|)0 (∇λ · r)0 , (30)

µ0 =

[
l ·
(
Hk ∂ϕ

∂t
∂ϕ
∂xk

+ Hik ∂ϕ
∂xi

∂ϕ
∂xk

)
r
]

0

(l · r)0

, (31)

ν0 =
(l · ∇B r)0

(l · r)0

, (32)

with l the left eigenvector and r the right eigenvector corresponding to the
eigenvalue λ, that does not satisfy the Lax- Boillat condition.

By using the transformation of variables (see [15])

u =
v√
J
ew, κ =

∫ σ

0

ew√
J

(∇Ψ · r)0 dσ, with w =
∫ σ

0
ν0dσ, (33)
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equation (29) can be reduced to an equation of the type

∂v

∂κ
+ v

∂v

∂ξ
+ µ̂0∂

2v

∂ξ2
= 0, with µ̂0 =

µ0
√
Je−w

(∇Ψ · r)0

, (34)

which is similar to Burger’s equation and is valid along the characteristic
rays. Equation (34)1 can be reduced to the semilinear heat equation [18]

∂h

∂κ
= µ̂0∂

2h

∂ξ2
− hlog h

µ̂0

dµ̂0

dκ
, (35)

for which the solution is known, using the following Hopf transformation

v(ξ, κ) = µ̂0
∂

∂ξ
logh(ξ, κ). (36)

4 Equations governing the motion of Jeffreys media
and their matrix form

In [27] a theory for mechanical relaxation phenomena, based on ther-
modynamics of irreversible processes [11, 29, 34, 37] with internal variables
[29], was developed by G. A. Kluitenberg. It was assumed that several micro-
scopic phenomena occur, which give rise to inelastic deformation, such that
the tensor of the total strain εαβ can be split in two parts: εαβ = εelαβ + εinαβ ,
where the tensors εelαβ and εinαβ describe the elastic and inelastic strains, re-
spectively. Contrary to the elastic strain, the inelastic deformation is due
to the effects of lattice defects (slip, dislocations,...) and to the influence of
microscopic stress fields, surrounding imperfections in the medium, that can
give rise to memory effects on the mechanical and thermodynamic behavior
of rheological media. Experiments show that there exist several types of such
independent and simultaneous contributions to the inelastic strain, so that,
assuming that they are of n different types, then εinαβ can be split in n con-

tributions ε(k)
αβ (k = 1, 2, ..., n): εinαβ =

∑n
k=1 ε

(k)
αβ (with n arbitrary), that are

introduced as internal variables in the thermodynamical state vector.
In the theory of Kluitenberg Eulerian formalism is used and it is assumed

that the gradient of the displacement field is small. This implies that the
deformations are supposed to be small from a kinematical (or geometrical)
point of view. However the translations and the velocity of the medium
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may be large [29]. Then, the strain tensor εik is assumed to be small, i.e.
εik = 1

2

(
∂
∂xk

ui + ∂
∂xi
uk
)

(i, k = 1, 2, ..., n), where ui is the i-th component
of the displacement field u and xi is the i-th component of the position
vector x in Eulerian coordinates in a Cartesian reference frame. It should
be emphasized, however, that the same physical ideas which are developed
in this theory can also be reformulated for the case where the deformations
are large from a kinematical point of view [29].

In [27], eliminating the internal tensorial variables, for shear phenomena
in the isotropic case, the following mechanical relaxation equation between
the deviators τ̃ik of the mechanical stress tensor (which occurs in the equation
of motion and in the first law of thermodynamics) and ε̃ik of the strain tensor
was derived

R
(τ)
(d)0τ̃ik +

n−1∑
m=1

R
(τ)
(d)m

dm

dtm
τ̃ik +

dn

dtn
τ̃ik = R

(ε)
(d)0ε̃ik +

n+1∑
m=1

R
(ε)
(d)m

dm

dtm
ε̃ik

(i, k = 1, 2, 3). (37)

In the above equations d
dt is the material derivative with respect to time [29]

and R
(τ)
(d)m (m = 0, 1, ..., n− 1) and R

(ε)
(d)m (m = 0, 1, ..., n+ 1) are algebraic

functions of the coefficients occurring in the phenomenological equations and
in the equations of state. The rheological relations for ordinary viscous fluids,
for thermoelastic media and for Maxwell, Kelvin (Voigt), Jeffreys, Burgers,
Poynting-Thomson, Prandtl-Reuss, Bingham, Saint Venant and Hooke me-
dia are special cases of this more general mentioned above relation (see also
[5, 11, 25, 26, 27, 28, 29, 34, 37, 38]). Assuming that only one microscopic phe-
nomenon gives rise to inelastic strain (n = 1), in the isothermal and isotropic
case, for shear phenomena, when the hydrostatic pressure is assumed con-
stant and uniform, the mechanical relaxation equation (37) describing the
behaviour of viscoanelastic media without memory (Jeffreys media) can be
written in the following form [8]

R
(τ)
(d)0P̃ik +

d

dt
P̃ik +R

(ε)
(d)1

d

dt
ε̃ik +R

(ε)
(d)2

d2

dt2
ε̃ik = 0, (38)

where P̃ik and ε̃ik are the deviators of the mechanical pressure tensor Pik and
of the strain tensor εik, respectively, and dεik

dt = 1
2

(
∂vi
∂xk

+ ∂vk
∂xi

)
. We define

Pik in terms of the symmetric Cauchy stress tensor Pik = −τik (i, k = 1, 2, 3)
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and the following quantities

P̃ik = Pik −
1
3
Pssδik, P =

1
3
Pss, Pss = trP,

Pik = P̃ik + Pδik, P̃ss = 0,

where the hydrostatic pressure P is the scalar part of the tensor Pik. Ana-
logous definitions are valid for the deviator ε̃ik and the scalar part ε of the
strain tensor. In eq. (38) the coefficients satisfy the relations

R
(τ)
(d)0 = a(0,0)η(1,1)

s ≥ 0, (39)

R
(ε)
(d)1 = a(0,0)

[(
1 + η(0,1)

s

)2
+ η(0,0)

s η(1,1)
s

]
≥ 0, (40)

R
(ε)
(d)2 = η(0,0)

s ≥ 0, (41)

where a(0,0) is a scalar constant which occurs in the equations of state, while
the coefficients η(0,0)

s , η(0,1)
s and η(1,1)

s are called phenomenological coefficients
and represent fluidities.

The balance equations for the mass density and momentum in the case
of Jeffreys media read

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0, (i = 1, 2, 3) (42)

ρ

(
∂

∂t
vi + vk

∂

∂xk
vi

)
+

∂

∂xk
P̃ik = 0, (43)

where vi = dui
dt is the i-th component of the velocity field and the force per

unit mass is neglected.

5 One-dimensional case

In this Section the one-dimensional case is studied, containing original
results. Consider the system of equations (38), (42) and (43). Assume that
v2 = v3 = 0, x2 = x3 = 0 and that the involved physical quantities depend
only on x1, denoted by x. Denote v1(x, t) by v and the components of the
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deviator of the mechanical pressure tensor Pik, P̃ik, byDik. Then, the system
of equations (38), (42) and (43) read

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0, (44)

∂v

∂t
+ v

∂v

∂x
+

1
ρ

∂D11

∂x
= 0, (45)

∂D21

∂x
= 0, (46)

∂D31

∂x
= 0, (47)

∂D11

∂t
+ v

∂D11

∂x
+

2
3
R

(ε)
(d)1

∂v

∂x
+

2
3
R

(ε)
(d)2

∂2v

∂t∂x
+

2
3
R

(ε)
(d)2

∂2v

∂x2
v + R

(τ)
(d)0D11 = 0,

(48)

∂D12

∂t
+ v

∂D12

∂x
+R

(τ)
(d)0D12 = 0, (49)

∂D13

∂t
+ v

∂D13

∂x
+R

(τ)
(d)0D13 = 0, (50)

∂D22

∂t
+v

∂D22

∂x
− 1

3
R

(ε)
(d)1

∂v

∂x
− 1

3
R

(ε)
(d)2

∂2v

∂t∂x
− 1

3
R

(ε)
(d)2

∂2v

∂x2
v + R

(τ)
(d)0D22 = 0,

(51)
∂D23

∂t
+ v

∂D23

∂x
+R

(τ)
(d)0D23 = 0, (52)

where Dik = Dki.
Thus, equs. (46) and (47) show that D21 = f(t), D31 = f1(t), where f
and f1 are functions of t. Therefore, from eqs. (49) and (50) we have

D12 = e
−R(τ)

(d)0
t +D0

12, D13 = e
−R(τ)

(d)0
t +D0

13.

Remark that, due to the presence of a tensorial internal variable, there is a
response time of the medium possessing mechanical relaxation properties.

Then, the remained system of equations (44), (45), (48), (51) and (52)
takes the matrix form (1)

Ut + AUx + ω−1

[
H1 ∂

2U
∂t∂x

+ H11∂
2U
∂x2

]
= B(U), (53)
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having the following associated system of nonlinear hyperbolic PDEs

Ut + AUx = B(U), (54)

where A0(U) = I is the identity matrix,

U = (ρ, v,D11, D22, D23)T , B = (0, 0,−R(τ)
(d)0D11,−R(τ)

(d)0D22,−R(τ)
(d)0D23)T ,

A =


v ρ 0 0 0
0 v 1

ρ 0 0

0 2
3R

(ε)
(d)1 v 0 0

0 −1
3R

(ε)
(d)1 0 v 0

0 0 0 0 v

 , (55)

H1 =


0 0 0 0 0
0 0 0 0 0
0 2

3R
′(ε)
(d)2 0 0 0

0 −1
3R
′(ε)
(d)2 0 0 0

0 0 0 0 0

 , H11 =


0 0 0 0 0
0 0 0 0 0
0 2

3R
′(ε)
(d)2v 0 0 0

0 −1
3R
′(ε)
(d)2v 0 0 0

0 0 0 0 0

 ,

(56)
with R(ε)

(d)2 = ω−1R
′(ε)
(d)2. The symbol (...)T means that U and B are column

vectors of 5 components.
The eigenvalues of the matrix A are:
• λ1 = v (of multiplicity equal to 3);

• the simple eigenvalues λ
(±)
2 = v ± γ, with γ =

√
2R

(ε)
(d)1

3ρ .

The right eigenvectors corresponding to λ(±)
2 can be taken as

r(±)
2 =

ρ,−(v − λ(±)
2 ),

2
3
R

(ε)
(d)1,−

R
(ε)
(d)1

3
, 0

T

. (57)

The left eigenvectors are taken as

l(±)
2 =

(
0,−

(
v − λ(±)

2

)
,

1
ρ
, 0, 0

)
. (58)

Only, the eigenvalues λ
(±)
2 do not satisfy the Lax - Boillat exceptionality

condition because ∇λ(±)
2 ·r(±)

2 6= 0. Thus, our results are valid for λ(±)
2 . Now,
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let us consider only the longitudinal wave traveling in the right direction and
the case where the propagation is in a constant state U0, i. e.

λ
(+)
2 = v + γ and U0 = (ρ0, 0, 0, 0, 0),

with ρ0 constant. The characteristic rays are

x0 = σ = t, x = (x)0 + λ
(+)
2 (U0)σ = (x)0 + γ0t, (59)

whence the wave front is

ϕ(t, x) = ϕ0
(
x(t)− γ0t

)
, where γ0 = γ(U0), γ0 =

√√√√2R(ε)
(d)1

3ρ0
, (60)

implying ϕx = 1.
In order to compute the terms in (29) we start with

∇Ψ · r(+)
2 = ϕx(∇λ(+)

2 · r(+)
2 ), with ∇ ≡

(
∂

∂ρ
,
∂

∂v
,

∂

∂D11
,

∂

∂D22
,

∂

∂D23

)
.

(61)

Hence,
(
∇λ(+)

2 · r(+)
2

)
0

=
1
2
γ0, being (∇λ(+)

2 )0 =
(
− γ0

2ρ0
, 1, 0, 0, 0, 0

)
.

(62)
Furthermore, a direct easy computation gives

(
l(+)
2 · ∇B r(+)

2

)
0

= −
2R(τ)

(d)0R
(ε)
(d)1

3ρ0
,
(
l(+)
2 · r(+)

2

)
0

= 2(γ0)2 =
4R(ε)

(d)1

3ρ0
,

(63)
and so from (32) we have

ν0 = −
R

(τ)
(d)0

2
. (64)

Finally, we have

µ0 =

[
l(+)
2 ·

(
H1 ∂ϕ

∂t
∂ϕ
∂x + H11 ∂2ϕ

∂x2

)(
r(+)

2

)]
0(

l(+)
2 · r(+)

2

)
0

=

(
∂ϕ
∂t

)
0
R
′(ε)
(d)2√

6ρ0R
(ε)
(d)1

. (65)

This example, in spite of its simplicity, shows the influence of a tensorial
internal variable on the motion of Jeffreys media.
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Note of L. R. The present paper is one of a series of works started and planned
in 2004 during a visit of Adelina Georgescu at the Department of Mathematics of
the University of Messina in occasion of study days on "Asymptotic Methods with
Applications to Waves and Shocks". These papers contain a systematic formulation
of previous studies on nonlinear dissipative waves on rheological media, performed
in a classical way by the second author L. R., following the modern point of view
of double scale method as in the book [16] on asymptotic treatments of A.G. These
works were continued during the scientific collaboration of the two authors, in par-
ticular at Messina in 2005 and 2007, during meetings dedicated to series of lectures
of A. G. on "Applied Mathematics" and next visits of L. R. at Bucharest in 2007
and 2009. They were finished in 2009 and written in final version in 2010. These
studies come from enlightening discussions on some mathematical tools, together
with their physical interpretations. The author L. R. is very grateful to A. G. for
her precious encouragement to this joint study regarding a revision of previous stud-
ies and the derivation of original results on the same subject.
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A particular Lotka-Volterra system with two parameters describing

the dynamics of two competing species is analyzed from the algebraic
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We consider the general form of a Lotka -Volterra system as [4], [8]{
ẋ = x(c+ gx+ hy),
ẏ = y(f +mx+ ny),

(1)

where x, y represent the number of the populations of the two species, c, f
represent the growth rates of the species, and g, h,m, n represent the com-
petitive impacts of one specie to another. The equilibrium points of (1) are:
M1(0, 0), M2(−c/g, 0), M3(0,−f/n) and M4((fh − cn)/(gn − hm), (cm −
fg)/(gn− hm)). All these points are in the finite part of the phase plane if
and only if gn(gn−hm) 6= 0. On the other hand, for the system (1), we have
µ0 = gn(gn− hm), where µ0 is defined in the Appendix.

Therefore, for µ0 6= 0 the system (1) has four different or equal equili-
brium points.

The following two theorems holds, and their proofs can be found in [3].

Theorem 1. [3]. For µ0 6= 0 the number of the four finite singularities of
the system (1) are determinated by the following conditions:

4 simple ⇔ D 6= 0;
2 simple, 1 double ⇔ D = 0, S 6= 0;
2 double ⇔ D = S = 0, P 6= 0;
1 of multiplicity 4 ⇔ D = S = P = 0,

where D,S,P are defined in the Appendix.

Since µ0 6= 0, due to the transformation (x, y) 7→ (x/g, y/n), we can
consider g = n = 1. Therefore, the system (1) becomes{

ẋ = x(c+ x+ hy),
ẏ = y(f +mx+ y),

(2)

for which µ0 = 1− hm, D = −c2f2(c− fh)2(f − cm)2 and

S = 3c4m2(x+ hy)2[3m2x2 − 2m(hm− 4)xy + (3h2m2 − 8hm+ 8)y2],
P = c4y2(mx+ y)2( if cf = 0),

or
S = 3c4m2(hm− 1)4x2(3m2x2 + 8mxy + 8y2),
P = c4(hm− 1)2y2(mx+ y)2( if (c− fh)(f − cm) = 0).

We use the following abbreviations: S=saddle, N=node, F=focus,
C=center, SN=saddle-node.
In addition, K,W3,W4 are defined in the Appendix.
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Theorem 2. [3]. Let us consider the system (1) with µ0 6= 0. Then the
type of the finite singularities of this system is determinated by the following
affine-invariant conditions:

1) S, S, S, N ⇔ D 6= 0, µ0 < 0, K < 0, W4 ≥ 0;
2) S, S, S, F ⇔ D 6= 0, µ0 < 0, K < 0, W4 < 0, B3 6= 0;
3) S, S, S, C ⇔ D 6= 0, µ0 < 0, K < 0, W4 < 0, B3 = 0;

4) S, N, N, N ⇔ D 6= 0, µ0 < 0, K > 0 and
{
W4 > 0 or
W4 = 0, W3 ≥ 0;

5) S, N, N, F ⇔ D 6= 0, µ0 < 0, K > 0 and
{
W4 < 0, B3 6= 0 or
W4 = 0, W3 < 0

;

6) S, N, N, C ⇔ D 6= 0, µ0 < 0, K > 0 and W4 < 0, B3 = 0;

7) S, S, N, N ⇔ D 6= 0, µ0 > 0 and
{
W4 > 0 or
W4 = 0, W3 ≥ 0;

8) S, S, N, F ⇔ D 6= 0, µ0 > 0 and
{
W4 < 0 or
W4 = 0, W3 < 0;

9) SN, S, S ⇔ D = 0, S 6= 0, µ0 < 0, K < 0;
10) SN, N, N ⇔ D = 0, S 6= 0, µ0 < 0, K > 0

and
{
W4 > 0 or
W4 = 0, W3 ≥ 0;

11) SN, N, F ⇔ D = 0, S 6= 0, µ0 < 0, K > 0, W4 < 0;
12) SN, N, C ⇔ D = 0, S 6= 0, µ0 < 0, K > 0, W4 = 0, W3 < 0;
13) SN, S, N ⇔ D = 0, S 6= 0, µ0 > 0, W4 ≥ 0;
14) SN, S, F ⇔ D = 0, S 6= 0, µ0 > 0, W4 < 0;
15) SN, SN ⇔ D = S = 0, P 6= 0;
16) a degenerated nonhyperbolic point of the multiplicity 4

(a) ⇔ D = S = P = 0, µ0 < 0, η > 0, χ > 0;
(b) ⇔ D = S = P = 0, µ0 < 0, η > 0, χ < 0;
(c) ⇔ D = S = P = 0, µ0 < 0, η = 0;
(d) ⇔ D = S = P = 0, µ0 > 0, η > 0;
(e) ⇔ D = S = P = 0, µ0 > 0, η = 0,

where (a)-(e) have the representations:
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2 The particular competing species model

The model we study in this paper is proposed as an application by M.W.
Hirsch, S. Smale and R. L. Devaney in [5] and has the form{

ẋ = x(a− x− ay),
ẏ = y(b− bx− y),

(3)

where x, y represent the number of the populations of the two species, a and
b are positive parameters.

In order to apply the Theorems 1 and 2, we transform the system (3)
into the system (1).

The system (3) is equivalent with{
ẋ = −x(−a+ x+ ay),
ẏ = −y(−b+ bx+ y),

and, by the change of the sense of the time t 7→ −t we obtain the system{
ẋ = x(−a+ x+ ay),
ẏ = y(−b+ bx+ y),

(4)

which is the system we are concerned herein.
Due to physical reasons, the phase space must be the first quadrant (with-

out axes of coordinates). However, for mathematical (namely bifurcation)
reasons we consider, in addition, the origin and the half-axes.

Remark 1. The system (4) has the same equilibrium points as (3), but the
attractive properties of the equilibria of the system (4) are opposite of those
of the system (3).

3 The equilibrium points

By convention, we say that an equilibrium exists if its coordinates are finite
and positive. Therefore, this is a biological, not a mathematical existence.

The equilibrium points of the system (4) areM1(0, 0),M2(a, 0),M3(0, b),
M4(a(1 − b))/(1 − ab), b(1 − a)/(1 − ab). For these points we compute ∆i,
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ρi, δi, (i = 1, 2, 3, 4) given in the Appendix.

∆1 = ab, ρ1 = −a− b, δ1 = (a− b)2,
∆2 = ab(a− 1), ρ2 = a− b+ ab, δ2 = (a+ b− ab)2,

∆3 = ab(b− 1), ρ3 = −a+ b+ ab, δ3 = (a+ b− ab)2,
∆4 = ab(a− 1)(b− 1)/(1− ab), ρ4 = (a+ b− 2ab)/(1− ab),

δ4 = [(a− b)2 + 4a2b2(a− 1)(b− 1)]/(1− ab)2

(5)

For the system (4) we have

µ0 = 1− ab, µ1 = (−2b+ ab+ ab2)x+ (2a− ab− a2b)y,
D = −a4b4(a− 1)2(b− 1)2, K = 2(bx2 + 2xy + ay2),

W4 = (a− b)2(ab− a− b)2[(a− b)2 + 4a2b2(a− 1)(b− 1)].
(6)

In the following, we study the nature of the finite singularities of the
system (4) for the case µ0 6= 0 (i.e. ab 6= 1).

Case D 6= 0. This case is equivalent with 1−ab 6= 0, a /∈ {0, 1}, b /∈ {0, 1}.
From Theorem 1, it follows that the system (4) has four simple equilibrium
points.
• If µ0 < 0 then 1 − ab < 0. Since a and b are positive parameters, it

follows that K > 0. If W4 > 0, then we have a > 1, b > 1 and we are in
the case 4 from the Theorem 2 (i.e. the system (4) has three nodes and a
saddle) or (a > 1, b < 1), (a < 1, b > 1), where the point M4 is not in the
first quadrant, therefore it does not exist from biological viewpoint. In this
case there are only three points from biological viewpoint (two nodes and a
saddle). On the other hand, W4 can not be negative. Indeed, if W4 < 0 then
(a − 1)(b − 1) < 0, therefore a > 1, b < 1 or a < 1, b > 1. It follows that
M4 is not in the first quadrant, therefore it does not exist from biological
viewpoint. Again there are only three points from biological viewpoint (two
nodes and a saddle).

Thus, the finite singularities of total multiplicity four of the system (3)
which exist from biological viewpoint are as follows: if a > 1, b > 1, then
M1 is a repulsive node, M2, M3 are attractive nodes and M4 is a saddle; if
a > 1, b < 1, then M1 is a repulsive node, M2 is an attractive node and M3

is a saddle; if a < 1, b > 1, then M1 is a repulsive node, M2 is a saddle and
M3 is an attractive node.
• If µ0 > 0 then 1−ab > 0. If W4 > 0, then we have a < 1, b < 1 and we

are in the case 7 from the Theorem 2 (i.e. the system (4) has two nodes and
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two saddles), or (a > 1, b < 1), (a < 1, b > 1), when M4 is not in the first
quadrant, therefore it does not exist from biological viewpoint. In this case
there are only three points (two nodes and a saddle). On the other hand, W4

can not be negative. Indeed, if W4 < 0 then (a− 1)(b− 1) < 0, equivalently
with a > 1, b < 1 or a < 1, b > 1 therefore, the point M4 is not in the
first quadrant, so it does not exist from biological viewpoint. Again there
are only three points from biological viewpoint (two nodes and a saddle).

Thus, the finite singularities of total multiplicity four of the system (3)
that exist from biological viewpoint are as follows: if a < 1, b < 1, then
M1 is a repulsive node, M2, M3 are saddles and M4 is an attractive node; if
a > 1, b < 1, then M1 is a repulsive node, M2 is an attractive node and M3

is a saddle; if a < 1, b > 1, then M1 is a repulsive node, M2 is a saddle and
M3 is an attractive node.

Case D = 0. We have two subcases: ab = 0 or (a− 1)(b− 1) = 0.

• For ab = 0, without loss of generality, due to the change x↔ y, a↔ b,
which keeps the system (4) unchanged, we can consider only a = 0. In this
case S = 0 and P = b4x4.

If b 6= 0, then P 6= 0 and we are in the case 15 from the Theorem 2 (i.e.
the system (4) has two saddle-nodes).

If b = 0, then P = 0, µ0 = 1 > 0 and η = 1 > 0, therefore we are
in the case 16 (d) from the Theorem 2 (i.e. the system (4) has a point of
multiplicity 4).

Thus, in the plane, the type of the finite singularities for the system (3)
are as follows: if a = 0, b 6= 0 (a 6= 0, b = 0), then M1 = M2, M3 = M4

(M1 = M3, M2 = M4) are saddle-nodes ; if a = 0, b = 0, then M1 = M2 =
M3 = M4, i.e. we have a nonhyperbolic point of multiplicity 4.

• For (a − 1)(b − 1) = 0, without loss of generality, due to the change
x ↔ y, a ↔ b, which keeps the system (4) unchanged, we can consider only
a = 1. In this case S = 3b2(b− 1)4x2(3b2x2 + 8bxy + 8y2).

If S 6= 0, then b /∈ {0, 1} and µ0 = 1− b, η = 0, W4 = (b− 1)2.

For µ0 < 0 (i.e. b > 1), we have K > 0, W4 > 0, therefore we are
in the case 10 from the Theorem 2 (i.e. the system (4) two nodes and a
saddle-node).
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For µ0 > 0 (i.e. b < 1), we have K > 0, W4 > 0 therefore we are in the
case 13 from the Theorem 2 (i.e. the system (4) has a node, a saddle and a
saddle-node).

Thus, the finite singularities of total multiplicity four of the system (3)
are as follows: if a = 1, b < 1 (b > 1), then M1 is a repulsive node, M3

is a saddle, M2 = M4 is a saddle-node (M1 is a repulsive node, M3 is an
attractive node, M2 = M4 is a saddle-node); if b = 1, a < 1 (a > 1) then
M1 is a repulsive node, M2 is a saddle, M3 = M4 is a saddle-node (M1 is a
repulsive node, M2 is an attractive node, M3 = M4 is a saddle-node).

If S = 0, then b = 0 (if b = 1 we obtain a contradiction: µ0 = 0). For
b = 0 we have two saddle-nodes M1 = M3 and M2 = M4 .

4 The phase portraits

In [2] the system (3) was studied by the topological methods and the dy-
namic bifurcation diagram was representing. Here we represent only the
phase portraits that have a biological significance (i.e the equilibria are in
the first quadrant) and where the equilibrium points have total multiplicity
four (fig.2). The parametric portrait (fig.1) is representing by the strata 0-10
without the curve T (corresponding to ab = 1).

Fig. 1. The parametric portrait.
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Fig. 2. The phase portraits for the various strata from Fig. 1

5 Appendix

Consider the two-dimensional nonlinear system of ordinary differential equa-
tions {

ẋ = p0(x, y) + p1(x, y) + p2(x, y) ≡ p(x, y),
ẏ = q0(x, y) + q1(x, y) + q2(x, y) ≡ q(x, y),

(7)

where pi and qi, i=0,1,2 homogenous polynomials of i degree.
For a singular point Mi(xi, yi) we use the notations:

ρi = (p′x(x, y) + q′y(x, y))|(xi,yi) = trAi,



Finite singularities of total multiplicity four for a particular system 143

∆i =
∣∣∣∣ p′x(x, y) p′y(x, y)
q′y(x, y) q′y(x, y)

∣∣∣∣
(xi,yi)

= det Ai,

δi = ρ2
i − 4∆i = tr2 Ai − 4 det Ai,

where Ai is the matrix of the linear terms from the linearized system around
the point (xi, yi).

The following polynomials are the GL-comitants and T -comitants of the
system (7) [1], [6], [7]:

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y), i = 0, 1, 2;
η(a) = Discrim(C2(a, x, y));
K(a, x, y) = Jacob(p2(a, x, y), q2(a, x, y));
µ0(a) = Resx(p2, q2)/y4 = Discrim(K(a, x, y))/16;

D(a) = −
((

(D,D)(2), D
)(1)

, D
)(3)

/576 ≡ −Discrim(D);
P(a, x, y) = µ2

2 − 3µ1µ3 + 12µ0µ4;
S(a, x, y) =

[
3µ2

1 − 8µ0µ2

]2 − 16µ2
0P;

B3(a, x, y) = (C2, D)(1) = Jacob(C2, D),
W3 = µ2

0

∑
1≤i<j<l≤4

δiδjδl,

W4 = µ2
0δ1δ2δ3δ4.
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Abstract
In this paper we set up a numerical algorithm for computing the

flow of a class of pseudo-plastic fluids. The method uses the finite vol-
ume technique for space discretization and a semi-implicit two steps
backward differentiation formula for time integration. As primitive
variables the algorithm uses the velocity field and the pressure field.
In this scheme quadrilateral structured primal-dual meshes are used.
The velocity and the pressure fields are discretized on the primal mesh
and the dual mesh respectively. A certain advantage of the method is
that the velocity and pressure can be computed without any artificial
boundary conditions and initial data for the pressure. Based on the
numerical algorithm we have written a numerical code. We have also
performed a series of numerical simulations.
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1 Introduction

In this paper we are interested in the numerical approximation of a class
of pseudo-plastic fluid flow. The motion of the fluid is described by the
generalized incompressible Navier-Stokes equations{

∂u
∂t

+ u · ∇u = −∇p+∇ · σ(u) + f ,

∇ · u = 0,
(1)

where u is the velocity vector field, p is the hydrodynamic pressure field, σ
the extra stress tensor field and f is the body force. The extra stress tensor
σ(u) obeys a constitutive equation of the type

σab(u) = 2ν(|∂̃u|)∂̃uab (2)

where ∂̃u is the strain rate tensor given by

∂̃uab =
1
2

(∂aub + ∂bua) ,

∂a standing for the partial derivative with respect to the space coordinate
xa, and for any square matrix e, |e| being defined as

|e| =

∑
i,j

e2
ij

1/2

.

Concerning the viscosity function ν(s), we assume that it is a continuous
differentiable, decreasing function, with bounded range{

0 < ν∞ ≤ ν(s) ≤ ν0 <∞,∀s > 0,
(ν(s1)− ν(s2)) (s1 − s2) < 0,∀s1, s2 > 0,

(3)

and it satisfies the constraint

ν(s) + sν̇(s) > c > 0. (4)

The model of the Newtonian fluid corresponds to ν = constant.
We consider the case when the flow takes place inside a fixed and bounded

domain Ω ⊂ R2 and we assume that the fluid adheres to its boundary ∂Ω,
hence we impose a Dirichlet type boundary condition for the velocity field,
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u = uD(x), x ∈ ∂Ω, t > 0. (5)

To the equations (1) we append the initial condition for the velocity

u(x, 0) = u0(x), x ∈ Ω. (6)

The initial boundary value problem (IBV), which we intend to solve nu-
merically, consists in finding the velocity field u(x, t) and the pressure field
p(x, t) that satisfy the partial differential equations (1), boundary condition
(5) and the initial condition (6).

A constitutive function as (2) is used , for example, to describe the be-
havior of polymeric fluids, [5], [8], [11], and the flow of the blood through the
vessels, [19], [9], [6], [18].

In writing down a numerical algorithm for the non-stationary incom-
pressible generalized Navier-Stokes equations three main difficulties occur,
namely: (i) the velocity field and the pressure field are coupled by the in-
compressibility constraint [12], (ii) the presence of the nonlinear convection
term and (iii) the nonlinear dependence of the viscosity on the share rate.

The first two problems are common to the Navier-Stokes equations and
in the last fifty years several methods were developed to overcome them: the
projection method, [12], [13], [7],[14], [3], and gauge method, [20]- to mention
the most significant methods for our case.

When one deals with a non-Newtonian fluid, the nonlinearity of the vis-
cosity rises a new problem in obtaining a discrete form for the generalized
Navier-Stokes equations. The new issue is the development of an appropriate
discrete form of the action of the stress tensor on the boundary of the volume-
control. A similar dificulty is raised by the discretization of the p-laplacean,
see [2] for that.

The outline of the paper is as follows. In Section 2 we define the weak
solution of IBV (1), (5) and (6) and we present an existence theorem of the
weak solution for a class of pseudo-plastic fluids that satisfy (4). In Section
3 we establish the semi-discrete, space discrete coordinates and continuum
time variable form of the equation (1) and we present some general concepts
concerning the space discretization and related notions like admissible mesh,
primal and dual mesh, the discretization of the derivative operators etc. In
Section 4 we present an algorithm for solving a 2D model. In the last section
we present the results of some numerical simulations of the lid driven cavity
flow.
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2 The Existence of the Weak Solution

To define the weak solution we need the following functional frame, [16], [17].
By Lp(Ω) andWm,p(Ω), m = 0, 1, · · · , we denote the usual Lebesgue and

Sobolev spaces, respectively. The scalar product in L2 is indicated by (·, ·).
For u, v vector functions defined on Ω we put

(u,v) =
∫
Ω

uavadx,

(∇u,∇v) =
∑
a,b=1

∫
Ω

∂au
b∂av

bdx.

We denote by || · || the norm in L2 associate to (·, ·). The norm in Wm,p

is denoted by || · ||m,p. Consider the space

V = {ψ ∈ C∞0 (Ω),divψ = 0} .

We define H(Ω) the completion of V in the space L2(Ω). We denote by
H1(Ω) the completion of V in the space W1,2.

For T ∈ (0,∞] we set QT = Ω× [0, T ) and define

VT = {φ ∈ C∞0 (QT ); divφ(x, t) = 0 in QT } .

The weak solution of IBV is defined as follow.

Definition 1. Let f ∈ L2(Ω). Let u0(x) ∈ L2(Ω) and uD be such that
div u0 = 0,
uD · n = 0, x ∈ ∂Ω,
u0 = uD, x ∈ ∂Ω,

(7)

and there exists v ∈W1,2(Ω) ∩ L4(Ω) a vector function that satisfies{
div v = 0,
v = uD, x ∈ ∂Ω.

(8)

Then u is a weak solution of IBV (1,5,6) if

u− v ∈ L2
(
(0, T ); H1(Ω)

)
∩ L∞ ((0, T ); H(Ω)) (9)
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and u verifies

−
∞∫

0

(
u,
∂φ

∂t

)
dt−

∞∫
0

(u⊗ u,∇φ) dt+

∞∫
0

(
σ(u), ∂̃φ

)
dt =

=

∞∫
0

(f , φ) dt+ (u0, φ)

(10)

for any test function φ ∈ VT .

Concerning the existence of the weak solution of the IBV we proved the
following result, [15]:

Theorem 1. If the constitutive function ν(·) satisfies the relations (3) and
(4) then there exists a weak solution of the IBV (1), (5) and (6).

3 Semi-discrete Finite Volume Method

The finite volume method (FVM) is a method for approximating the solution
of a partial differential equation (PDE). It basically consists in partitioning
the domain Ω, on which the PDE is formulated, into small polygonal domains
ωi (control volumes) on which the unknown is approximated by constant
values, [10].

We consider a class of finite-volume schemes that includes two types of
meshes: the primal mesh, T = {ωI , rI} and the dual mesh, T̃ = {ω̃J , r̃J }.
The space discrete form of the GNS equations are obtained from the integral
form of the balance of momentum equation and mass balance equation on
the primal mesh and the dual mesh respectively.

For any ωi of the primal mesh T the integral form of the balance of
momentum equation reads as,

∂t

∫
ωi

u(x, t)dx+
∫
∂ωi

uu · nds+
∫
ωi

∇pdx =
∫
∂ωi

σ · nds, (11)

and for any ω̃α of the dual mesh T̃ the integral form of mass balance equation
is given by ∫

∂eωα u · nds = 0. (12)
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The velocity field u(x, t) and the pressure field p(x, t) are approximated
by the piecewise constant functions on the primal mesh and the dual mesh
respectively,

u(x, t) ≈ ui(t), ∀x ∈ ωi, p(x, t) ≈ pα(t), ∀x ∈ ω̃α.

By using certain approximation schemes of the integrals as functions of the
discrete variables {ui(t)}i∈I , {pα(t)}α∈J one can define:

Fi(u) ≈
∫
∂ωi

uu · nds, Si(u) ≈
∫
∂ωi

σ · nds,

Gradi(p) ≈
∫
ωi
∇pdx, ,Divα(u) ≈

∫
∂eωα u · nds.

(13)

The semi-discrete form of GNS equations, continuous with respect to time
variable and discrete with respect to space variable, can be written as:

mi
dui
dt

+ Fi({u}) + Gradi({p})− Si({u}) = 0, i ∈ I
Divα({u}) = 0, α ∈ J

(14)

where mi stands for the volume of the ωi.
Now the problem is to find the functions {ui(t)}i∈I , {pα(t)}α∈J that sat-

isfy the differential algebraic system of equations (DAE) (14) and the initial
condition

ui(t)|t=t0 = u0
i , ∀i ∈ I. (15)

In solving the Cauchy problem (14) and (15), an essential step is to
define a primal-dual mesh

(
T , T̃

)
that allows one to calculate the velocity

field independent of the pressure field.
In the next subsections we define a pair of quadrilateral admissible primal-

dual (QAPD) meshes
(
T , T̃

)
, and we define the discrete gradient of the

scalar functions and the discrete divergence of the vector functions such that
the discrete space of the vector fields admits an orthogonal decomposition
into two subspaces: one of discrete divergences free vectors fields, and other
consisting of vectors that are the discrete gradient of some scalar fields.

3.1 Quadrilateral primal-dual meshes

Let Ω be a polygonal domain in R2. Let T = {ωI , rI} be a quadrilateral
mesh defined as follows:
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∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(1) ωi is a quadrilateral, ∪i∈Iωi = Ω,
(2) ∀i 6= j ∈ I and ωi ∩ ωj 6= Φ, either H1(ωi ∩ ωj) = 0, or

σij := ωi ∩ ωj is a common (n− 1)− face of ωi and ωj ,
(3) ri ∈ ωi, if ωi = [ABCD], then ri = [MABMDC ] ∩ [MADMBC ],
(4) for any vertex P ∈ Ω there exists only four quadrilateral ω

with the common vertex P,
where H1 is the one-dimensional Hausdorff measure, and MAB denotes the
midpoint of the line segment [AB].

Let T̃ = {ω̃J , r̃J } be another mesh defined as follows:∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
(1) ∀α ∈ J , r̃α is a vertex of T ,
(2) r̃α ∈ ω̃α,∀α ∈ J ,
(3) ∀r̃α ∈ Ω, the poligon ω̃α has the vertexes :

the centers of the quadrilaterals with the common vertex r̃α
and the midpoints of the sides emerging from r̃α,

where by "center" of the quadrilateral we understand the intersection of the
two segments determined by the midpoints of two opposed sides.

Figure 1: Quadrilateral mesh.

We call (T , T̃ ) - a pair of QAPD meshes.
We denote by HeT (Ω) the space of piecewise constant scalar functions

that are constant on each volume ω̃α ∈ ω̃J , by HT (Ω) the space of piecewise
constant vectorial functions that are constant on each volume ωi ∈ ωI and
by H ⊗HeT (Ω) the space of piecewise constant tensorial functions of order
two that are constant on each volume ω̃a ∈ ω̃J .

For any quantity ψ that is piecewise constant on ω̃J we denote by ψα the
constant value of ψ on ω̃a, analogously ψi stands for the constant value of a
piecewise constant quantity ψ on ωI .
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We define the discrete derivative operators:
Div

(T ,eT )
: HT (Ω)→ HeT (Ω), by

Divα(u) :=
∫
∂eωα

u · nds =
∑
i

uai

∫
∂eωα∩ωi

nads, (16)

∂
(T ,eT )

: HT (Ω)→ H⊗HeT (Ω) by

∂b u
a|α =:

1
m(ω̃α)

∫
∂eωα

ubnads =
1

m(ω̃a)

∑
i

ubi

∫
∂eωα∩ωi

nads, (17)

Grad
(T ,eT )

: HeT (Ω)→ HT (Ω) by

Gradi(φ)
∫
∂ωi

φnds =
∑
α

φα

∫
∂ωi∩eωα

nds, (18)

rot
(T ,eT )

: HeT (Ω) −→ HT (Ω) by

roti(φ) :=
1

m(ωi)

∫
∂ωi

φdr =
1

m(ωi)

∑
α

φα

∫
∂ωi∩eωα

dr. (19)

On the space HT (Ω) we define the scalar product 〈〈·, ·〉〉 by

〈〈u,v〉〉 =
∑
i∈I

ui · vi, (20)

and on the space HeT (Ω) we define the scalar product 〈·, ·〉 by

〈φ, ψ〉 =
∑
α∈J

φαψα. (21)

In the next lemma we prove certain properties of the discrete derivative
operators.

Lemma 1. Let
(
T , T̃

)
be a pair of QAPD meshes and the discrete diver-

gence, the discrete gradient and the discrete rotation be defined, respectively,
by (16), (18), and (19). Then:
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(a1) Discrete Stokes formula. For any u ∈ HT (Ω) and any φ ∈ HeT (Ω), a
discrete integration by parts formula holds, that is〈

Div
(T ,eT )

(u), φ
〉

+
〈〈

u,Grad
(T ,eT )

(φ)
〉〉

= 0. (22)

(a2) For any ψ ∈ HeT (Ω), ψ|∂Ω = 0 one has

Div
(T ,eT )

rot
(T ,eT )

ψ = 0. (23)

Proof. To prove (a1) we use the fact that for any domain ω∫
∂ω

nds = 0

and the definitions of the two operators.
To prove (a2), we note firstly that

Divα(rot
(T ,eT )

ψ) =
∑
i

roti(ψ) ·
∫
∂eωα∩ωi nds =

=
∑
i

1
m(ωi)

∑
β

ψβ

∫
eωβ∩∂ωi dr ·

∫
∂eωα∩ωi nds.

Then, let ωiαa , a = 1, 4 be the primal volumes with the common vertex Pα
and numbered such that ωiαa and ωiαa+1

have a common side. For each iαa let
P
α
iαa
b

, b = 1, 4 be the vertexes of the quadrilateral ωiαa anticlockwise numbered
and P

α
iαa
1

= Pα. We have

1
m(ωia)

∑
b

ψ
α
iαa
b

∫
eω
α
iαa
b

∩∂ωiαa
dr ·

∫
∂eωα∩ωia nds = ψ

α
iαa
2

− ψ
α
iαa
4

.

Finally, by summing up for a = 1, 4, we have

Divα(rot
(T ,eT )

ψ) =
∑
a

(ψ
α
iαa
2

− ψ
α
iαa
4

) = 0,

for any α such that Pα ∈ Ω. If for some α, Pα ∈ ∂Ω, we use the fact that
ψβ = 0 on any boundary dual-volumes ω̃β .
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Now we prove an orthogonal decomposition of the space HT (Ω) that
resembles the one for the non-discrete case. Let {Ψα}α∈J ,Ψα ∈ HeT (Ω) be
a basis of the space HeT (Ω) given by

Ψα(x) =
{

1, if x ∈ w̃α,
0, if , x /∈ w̃α. (24)

Define the discrete vector field Uα ∈ HT (Ω) by

Uα = rot(Ψα). (25)

Let WT (Ω) be the linear closure of the set {Uα;α ∈ Int(J )} in the space
HT (Ω) and let GT (Ω) be the subspace orthogonal to it, so that

HT (Ω) = WT (Ω)⊕GT (Ω). (26)

We state and prove the following proposition.

Proposition 1. GT (Ω) consists of elements Grad
(T ,eT )

with φ ∈ HeT (Ω).

Proof. Let u ∈ GT (Ω), i.e.

〈〈u, Uα〉〉 = 0, ∀α ∈ Int(J ). (27)

We construct a function φ ∈ HeT (Ω) such that

Gradi(φ) = ui, ∀i ∈ I.

For a given ωi we denote by Pαib
, b = 1, 4 its vertexes counterclockwise

numbered. The gradient of a scalar field φ can be written as

Gradi(φ) = −→τ 1,3(φαi3 − φαi1) +−→τ 2,4(φαi4 − φαi2),

where −→τ 1,3 is a vector orthogonal to
−−−−→
Pαi2

Pαi4
oriented from Pαi1

to Pαi3 and

|−→τ 1,3| =
∣∣∣−−−−→Pαi2

Pαi4

∣∣∣ /2 and −→τ 2,4 is a vector orthogonal to
−−−−→
Pαi1

Pαi3
oriented

from Pαi2
to Pαi4 and |−→τ 2,4| =

∣∣∣−−−−→Pαi1
Pαi3

∣∣∣ /2. Hence, we have

ui ·
−−−−→
Pαi2

Pαi4
m(ωi)

= φαi4
− φαi2 ,

ui ·
−−−−→
Pαi1

Pαi3
m(ωi)

= φαi3
− φαi1 .

(28)
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The point is that if u satisfies the ortogonalty conditions (27) then one can
solve the equations (28) inductively, i.e. starting from two adjacent values
and following some path of continuation. For a general discrete field u the
different paths lead to different values!

Corollary 1 (Discrete Hodge formula). Let (T , T̃ ) be a pair of QAPD
meshes. Then for any w ∈ HT (Ω) there exists an element u ∈ HT (Ω)
and a scalar function φ ∈ HeT (Ω) such that

w = u + Grad(φ) with Div
(T ,eT )

(u) = 0. (29)

Proof. We search for a divergence free vector u of the form

u =
∑
a∈J

αaUa.

By inserting this form into (29), one obtains a linear algebraic system of
equation for the determination of the unknowns {αa}a∈J ,〈〈

w,Ub
〉〉

=
∑
a∈J

αa

〈〈
Ua,Ub

〉〉
.

The matrix of the system is the Gram matrix of a linear independent family,
hence there exists an unique solution u.

Since 〈〈w − u,Ua〉〉 = 0 for any function in the basis, it follows that w−u
is orthogonal to G⊥, thus w − u ∈ G. Hence there exists φ ∈ HeT (Ω) such
that

w − u = Grad(φ).

3.2 Discrete convective flux and discrete stress flux

To cope with the boundary value problems one defines a partition {∂kω}k∈K
of the boundary ∂Ω mesh induced by the primal mesh i.e

∂kω = ∂Ω ∪ ∂ωik , ∂Ω = ∪k∈K∂kω.

On each ∂kω the boundary data uD are approximated by constant values
uDk.

Several formulas to calculate the numerical convective flux (NCF) are
available, most of them derived from the theory of hyperbolic equations.
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In the case of a hyperbolic equation, the numerical convective flux must
satisfy, besides the accuracy of the approximation requirements, a number of
conditions in order that the implied solution be physically relevant. In the
case of Navier-Stokes equation at high Reynolds number, the way in which
NCF is evaluated is also very important. We propose to define the NCF as
follow. Consider the tensorial product u⊕u constant on the dual mesh and,
for any control volume ωi that does not lie on the boundary F , set for the
NCF:

Fai =
∑
α

(uaub)α
∫

eωα∩∂ωi nbds. (30)

The tensorial product u⊕ u is approximated by

(uaub)α =
1

m(ω̃α)

∫
eωα u

adx
1

m(ω̃α)

∫
eωα u

bdx. (31)

The numerical stress flux is set up by considering that the gradient of the
velocity is piecewise constant on the dual mesh. This fact implies that the
stress tensor is also piecewise constant on the dual mesh. So we can write
for the numerical stress flux

Si(u) =
∑
α

σα(u) ·
∫

∂ωi∩eωα
nds. (32)

The values of σα(u) are evaluated as

σα(u) = 2ν(|Dα(u)|)Dα(u), (33)

where the discrete strain rate tensor Dα is given by

Dab(u)|α =
1
2

(∂a ub + ∂b u
a)
∣∣∣
α
. (34)

Dirichlet Boundary conditions. The boundary conditions for the veloc-
ity are taken into account through the numerical convective flux and numer-
ical stress flux. If for some α the dual volume ω̃α intersects the boundary ∂Ω
the gradient of the velocity is given by:

∂a u
b
∣∣∣
α

=
1

m(ω̃α)

∫
∂eωα

ubnads =
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=
1

m(ω̃α)

 ∫
∂exteωα

ubDnads+
∑
i

ubi

∫
∂inteωα∩ωi

nads

 . (35)

For a primal volume ωi adjacent to the boundary ∂Ω the NCF (30) is
given by

Fai = uaDu
b
D

∫
∂Ω∩∂ωi

nbds+
∑
α

(uaub)α
∫

Ω∩∂ωi

unbds. (36)

4 Fully-Discrete Finite Volume Method

We set up a time integration scheme of the Cauchy problem (14) and (15)
that determines the velocity field independently on the pressure field. The
pressure field results from the discrete balance momentum equation (14-1).
The scheme resembles the Galerkin method and it makes use of the orthogo-
nal decomposition (26) of the space HT (Ω) and of the set of divergence free
vectorial fields {Uα}α∈J 0 .

We write the unknown velocity field u(t) as linear combination of {Uα}α∈J 0

u =
∑
α

ξα(t)Uα (37)

where the coefficients ξα(t) are required to satisfy the ordinary differential
equations∑
α

dξα
dt

〈〈
mUα,Uβ

〉〉
+
〈〈
F(ξ),Uβ

〉〉
−
〈〈
S(ξ),Uβ

〉〉
= 0, ∀β ∈ J 0, (38)

with the initial conditions∑
α

ξα(0)
〈〈
Uα,Uβ

〉〉
=
〈〈

u0,Uβ
〉〉

, ∀β ∈ J 0. (39)

If the functions ξα satisfy (38) and (39) thenm
du
dt

+F({u})−S({u}) belongs
to the space GT (Ω) which implies that there exists a scalar field p(t) such
that

−Grad
(T ,eT )

p = m
du
dt

+ F({u})− S({u}). (40)
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Concerning the initial conditions (15), we note that for t = 0 the solution
(37) equals not u0 but its projection on the space WT (Ω).

Now we develop a time integration scheme for the equation (38) derived
from two steps implicit backward differentiation formulae (BDF).

Let {tn} be an increasing sequence of moments of time. We make the
notations: ξnα = ξα(tn), un =

∑
α

ξnαUα. Supposing that one knows the

values {ξn−1, ξn} one calculates the values ξn+1 at the next moment of time
tn+1 as follows. Define the second degree polynomial P (t) which interpolates
the unknown ξn+1 and known quantities {ξn−1, ξn} at the moments of time
tn+1, tn, tn−1, respectively. The unknowns ξn+1 are determined by imposing
to the polynomial P (t) to satisfy the equations (38).

For a constant time step 4t one has

dPα(tn+1)
dt

=
(

3
2
ξn+1
α − 2ξnα +

1
2
ξn−1
α

)
/4t

that leads to the following nonlinear equations for ξn+1

∑
I

3
2
ξn+1
α

〈〈
mUα,Uβ

〉〉
+ 4t

〈〈
F(ξn+1),Uβ

〉〉
−4t

〈〈
S(ξn+1),Uβ

〉〉
=

=
〈〈

2un − 0.5un−1,mUβ
〉〉
.

(41)
To overcome the difficulties implied by the nonlinearity, we consider a

linear algorithm:∑
α

3
2
λn+1
α

〈〈
mUα,Uβ

〉〉
−4t

〈〈
S(u;λn+1),Uβ

〉〉
=

0.5
〈〈

un − un−1,mUβ
〉〉
−

−4t
〈〈

3
2
F(un)− 1

2
F(un−1),Uβ

〉〉
+4t

〈〈
S(un),Uβ

〉〉
,

(42)

where
λn+1 := ξn+1 − ξn.

For the first step one can use a Euler step∑
α

λn+1
α

〈〈
mUα,Uβ

〉〉
−4t

〈〈
S(un;λn+1),Uβ

〉〉
=

−4t
〈〈
F(un),Uβ

〉〉
+4t

〈〈
S(un),Uβ

〉〉
.

(43)
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In both (42) and (43) schemes we use the notation

S(un;λn+1) = 2ν(|D(un)|)
∑
α

λn+1
α D(Uα).

5 Numerical Simulations

We present the results of some numerical experiments designed to test the
numerical method presented in the previous sections.

We consider the pseudo-plastic fluid modeled by the Carreau-Yasuda law,

ν(γ̇) = ν∞ + (ν0 − ν∞) (1 + (Λγ̇)a)(n−1)/a .

In the current study the problem was solved for a series of rectangular regular
or non-regular meshes. The code incorporates the time integration scheme
(42) and (43); the numerical convective flux F defined by the formulae (30),
(31), (36) and the numerical stress flux S defined by formulae (32), (33),
(34), (17), (35). In all the numerical simulations we consider that at the
initial time the fluid is at rest.

Lid Driven Cavity Flow

Figure 2: Lid Driven 2D Cavity Flow.

The fluid is moving in a rectangular box, the side and bottom walls are
static while the top wall is moving across the cavity with a constant velocity
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u = U, v = 0 as in Fig. 2. We assume the non-slip boundary conditions on
the walls.

In the first set of computations we test the capabilty of the method to
catch the behavior of the pseudo-plastic fluid. To be more precise, we chose a
pseudo-plastic fluid and two Navier Stokes fluids having the viscosities equal
to ν0, and ν∞, respectively.

Figure 3 shows the contours plots of the steady solutions for the three
type of fluids. Each flow consists of a core of fluid undergoing solid body
rotation and small regions in the bottom corners of counter-rotating vortex.
The intensity of the counter-rotating vortex is decreasing with respect to
viscosity. The velocity profile along the vertical centerline is shown in Figure
4. We observe that, in the lower part of the cavity, the fluid is moving in
contrary sense to the sense of the motion of the top wall. The maximum of
the negative velocity depends decreasingly on the viscosity of the fluid.

NS Eqs. GNS Eqs. NS Eqs.

Re0 = 102/1.57 Re0 ≤ Re ≤ Re∞ Re∞ = 103/1.57

Figure 3: U = 0.01ms−1, a = 0.144. Contour plot of stream functions,
steady solutions. Regular grid, 51× 51 grid points.

The second set of computations analyzes the response of the numerical
method to the variation of the parameters of the fluid. The results are shown
in Figure 5.

Final Remarks

A certain advantage of our method is that there is no need to introduce arti-
ficial boundary conditions for the pressure field or supplementary boundary
conditions for additional velocity field as in the projection methods or gauge
methods. The preliminary numerical results prove a good agreement with
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Figure 4: U = 0.01ms−1, a = 0.144. Distribution of u-velocity along at
vertical centre line of the cavity. Regular grid, 51× 51 grid points.

a = 0.644 a = 0.144
steady solution t = 200

Figure 5: GNS Eqs. U = 0.1ms−1 Re∞ = 104/1.57, Re0 = 103/1.57 .
Stretched grid, 51× 51 grid points.

the results obtained by other methods. At the present moment we do not
know if it is possible to extended the method to the 3D case and this is a
drawback of the method. The study of this extension might be a task for our
future work.
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components of this technique, that is the error analysis and the way
in which the coefficients of the new formulae can be determined. We
present briefly the recently developed error analysis of Coleman and
Ixaru, whose main result is that the error of the formulae based on the
exponential fitting (ef, for short) is a sum of two Lagrange-like terms, in
contrast to the case of the classical formulae where it consists of a single
term. For application we consider the case of two quadrature formulae
(extended Newton-Cotes and Gauss), which are indistinguishable in
the frame of the traditional error analysis, to find out that the Gauss
rule is more accurate. As for the determination of the coefficients, we
show how the ef procedure can be applied for deriving formulae of clas-
sical type. We re-obtain wellknown formulae and also derive some new
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1 Introduction

The exponential fitting (ef for short) is a powerful technique for the con-
struction of approximation formulae for operations on functions with special
behaviour, in particular when these are oscillatory functions. The following
simple examples are of help for understanding the object of this technique.

First derivative. The simplest approximation for this operation is the popular
central difference formula

f ′(X) ≈ 1
2h

[f(X + h)− f(X − h)] , (1.1)

which gives good results when f has a smooth variation on [X − h,X + h].
Much less known is the fact that when f is an oscillatory function of form

f(x) = f1(x) sin(ωx) + f2(x) cos(ωx) (1.2)

with smooth f1 and f2, then the slightly modified formula

f ′(X) ≈ θ

2h sin(θ)
[f(X + h)− f(X − h)], where θ = ωh , (1.3)

becomes appropriate; it tends to the former when θ → 0.
Second derivative. Three-point approximation

f ′′(X) ≈ 1
h2
{a1[f(X + h) + f(X − h)] + a2f(X)}, (1.4)

has the constant coefficients a1 = 1, a2 = −2 for the classical case, but the
θ dependent coefficients

a1(θ) =
θ

sin θ
and a2(θ) =

θ(sin θ − 2 cos θ)
sin θ

for oscillatory functions of form (1.2).
Quadrature. Trapezium rule∫ X+h

X−h
f(z)dz ≈ h[a1f(X + h) + a2f(X − h)] , (1.5)

has the classical coefficients a1 = a2 = 1 but

a1(θ) = a2(θ) =
sin(θ)
θ cos(θ)

,

for functions of form (1.2).
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Interpolation. Let f(X ± h) be given and we want to interpolate at some
x′ ∈ (X − h, X + h) with the formula

f(x′) ≈ a−f(X − h) + a+f(X + h). (1.6)

In the classical case (usual linear interpolation) the coefficients a± depend
only on x′; with t = (x′ −X)/h these are a±(x′) = (1 ± t)/2. However, for
treating oscillatory functions they depend also on θ,

a±(x′, θ) =
sin[(1± t)θ]

sin(2θ)
.

For other examples see e.g. [1], [2], [3].
The purpose of the exponential fitting procedure is to produce such new forms
for the approximation formulae and to evaluate their error. The expression
’exponential fitting’ indicates that the procedure has a larger area: in general
it covers the cases where f is a linear combination of exponential functions
with different frequencies. The oscillatory function (1.2) represents only one
of the possible combinations of such functions (two imaginary frequencies
±iω are actually involved in it) but in practice this case is by far the most
popular of all. The reason is related to the existence of a tremendously large
variety of phenomena governed by oscillatory functions; think, for example,
of phenomena involving oscillations, rotations, vibrations, wave propagation,
behavior of quantum particles etc.
The paper is organized in two parts. In the first part (Section 2) we consider
the error analysis while in the second part (Sections 3-5) we show how the ef
technique is used to build up new formulae. In the first part we present briefly
the recently developed error analysis of Coleman and Ixaru [4], whose results
might be of interest well beyond the area covered by the ef procedure. The
main finding of this analysis is that the error of the ef-based approximation
formulae is a sum of two Lagrange-like terms, in contrast to the case of the
classical formulae (that is where the coefficients are constants) where it con-
sists of a single term. For application we consider the case of two quadrature
formulae (extended Newton-Cotes and Gauss), which are indistinguishable
in the frame of the existing error analysis, to find out that the Gauss rule is
more accurate.
The unusual feature in the second part is that we apply the ef procedure for
deriving formulae of classical type. We re-obtain wellknown formulae and
also derive some new ones.



Approximation formulae generated by exponential fitting 167

2 A two-term Lagrange-like formula of the error

When the value of a function f at X + h is approximated by a truncated
Taylor expansion about X, that is by fK(X + h) =

∑K
k=0 h

kf (k)(X)/k!, the
resulting error may be expressed in the Lagrange form

E[f ] = f(X + h)− fK(X + h) =
hK+1

(K + 1)!
f (K+1)(η) , (2.7)

for some η ∈ (X, X + h), if f (K+1)(x) is continuous on (X, X + h). That
error may also be written, less usefully, as the formal expansion

E[f ] =
∞∑

k=K+1

hk

k!
f (k)(X) . (2.8)

Expressions of Lagrange type are also available for the truncation errors of
many other classical approximations. For example, the error of the sim-
plest approximation for the first derivative, eq.(1.1), has the Lagrange-like
expression

E[f ] = −1
6
h2f (3)(η) (2.9)

where η ∈ (X − h, X + h), but a formal expansion as in eq.(2.8) can also be
written, whose leading term is

lte = −1
6
h2f (3)(X) . (2.10)

Note that in both cases considered above the expression of the leading term
is the same as that in the Lagrange form except for the interchange of X and
η.
Expressions of the leading term of the error can be easily built up for both
classical and new forms of the coefficients. Also, since the new coefficients
tend to the classical ones when θ → 0 the same holds true for the leading
term of the error. For example, approximation (1.3) has

lte = h2 sin(θ)− θ
θ2 sin(θ)

[f (3)(X) + ω2f ′(X)] , (2.11)

see [1]. When θ → 0 (for fixed h this implies ω → 0 and viceversa) this lte
obviously tends to (2.10) which is the same as the whole E[f ] of (2.9) except
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for the interchange of X and η. This induces the impression that such a
link may be more general, in the sense that for any ef-based approximation
formula it is sufficient to build up the expression of the lte (which, as said,
can be derived without difficulty) and to accept simply that this expression
represents also the whole error E[f ] if X is replaced by some η.

The problem of whether the suggested link can be sustained has been
investigated recently by Coleman and Ixaru [4] for linear ef-based approxi-
mation formulae on the basis of a theory developed in the book of Ghizzetti
and Ossicini [5]. Coleman and Ixaru have shown that E[f ] can be written
as a sum of two Lagrange-like terms from which only one survives in the
limit θ → 0. The consequence is that the link is justified in the limit case
but it does not hold true for big θ, that is, in the region where the ef-based
approximation formulae are actually helpful.

The work [5] is concerned with quadrature formulae of the form∫ b

a
g(x)f(x) dx ≈

n∑
i=1

m−1∑
k=0

Akif
(k)(xi), (2.12)

whose error

E[f ] =
∫ b

a
g(x)f(x) dx−

n∑
i=1

m−1∑
k=0

Akif
(k)(xi) (2.13)

is such that E[f ] = 0 when f is a solution of a linear differential equation
Lf = 0 of order m. It is assumed that

a ≤ x1 < x2 < · · · < xn ≤ b

and it is convenient to define x0 = a and xn+1 = b, to allow for cases where
the end-points of the integration interval are not quadrature abscissas.

The operator L has the form

L =
m∑

k=0

wk(x)Dm−k , x ∈ [a, b] , where Dp =
dp

dxp
, (2.14)

with w0(x) = 1. Smoothness conditions on the coefficients wk are specified
in [5].

We place the discussion on the case when the coefficients Aki correspond-
ing to the given L are known, to find the expression of the error E[f ]. The
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presence of g(x) in the integrand allows for considerable flexibility. Not only
the quadrature formulae are covered by (2.12) but many others, including
any known linear approximation formula which is consistent with L of the
given form, for operations such as the numerical differentiation, quadrature,
solving differential or integral equations, interpolation etc.

For illustration let us examine the approximation formulae listed above
from this perspective.

- First derivative. The classical and ef-based formulae, eqs.(1.1) and (1.3),
respectively, are of form (2.12) for g(x) ≡ 0, n = m = 3, x1 = X−h, x2 = X,
x3 = X + h, A02 = A11 = A13 = A21 = A22 = A23 = 0, and A12 = −1.
The other coefficients are −A01 = A03 = 1/(2h) for the classical formula and
−A01 = A03 = θ/[2h sin(θ)] for the other. Since the classical formula is exact
for f = 1, x, x2 i.e. when f satisfies f (3)(x) = 0, it follows that L = D3.
Likewise, the ef-based formula is exact when f = 1, sin(ωx), cos(ωx) and
since these are three linear independent solutions of differential equation
f (3) + ω2f ′ = 0 it results that L = D(D2 + ω2) in this case.

- Second derivative, eq.(1.4). This corresponds to (2.12) if we take g(x) ≡
0, n = 3, m = 4, x1 = X−h, x2 = X, x3 = X+h, A22 = −1, A21 = 0 = A23

and A1k = A3k = 0 for k = 1, 2, 3. The other coefficients are A01 = A03 =
1/h2, A02 = −2/h2 for the classical case, and A01 = A03 = a1(θ)/h2, A02 =
a2(θ)/h2 for the ef-based case. The expressions of the operator are L = D4

and L = (D2 + ω2)2, respectively.
- Trapezium rule for the quadrature, eq.(1.5): g(x) ≡ 1, n = m = 2,

a = x0 = x1 = X − h, b = x2 = x3 = X + h, A11 = 0 = A12. The other
coefficients depend on the version. They are A01 = A02 = h for the classical
version and A01 = A02 = h sin(θ)/[θ cos(θ)] for the ef-based version. As for
the expression of the operator, this is L = D2 and L = D2 +ω2, respectively.

- Two point interpolation, eq.(1.6): g(x) ≡ δ(x − x′), n = m = 2,
a = x0 = x1 = X − h, b = x2 = x3 = X + h, A11 = A12 = 0. For the
classical version we have A01 = a−(x′), A02 = a+(x′) and L = D2 while
A01 = a−(x′, θ), A02 = a+(x′, θ) and L = D2 + ω2 for the ef-based version.

The theory of Ghizzetti and Ossicini allows writing E[f ] in integral form,

E[f ] =
∫ b

a
Φ(x)Lf(x) dx, (2.15)
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where function Φ(x) is determined piecewise in terms of some other functions,
namely

Φ(x) = φi(x) for xi < x < xi+1, i = 0, . . . , n.

The functions φi(x) are constructed as follows. Let K be the resolvent kernel
corresponding to the operator L, i.e., K(x, z) is the solution of Lu(x) = 0
such that [

∂k

∂xk
K(x, z)

]
x=z

= δk,m−1, (2.16)

for k = 0, 1, . . . ,m− 1. This is used to build up function φ0(x) by

φ0(x) = −
∫ x

a
K(t, x)g(t) dt . (2.17)

Once K(t, x) and φ0(x) are known the other φ-functions are generated by
recurence,

φi+1(x) = φi(x) +
m−1∑
k=0

Ak,i+1

[
∂k

∂tk
K(t, x)

]
t=xi+1

. (2.18)

Let us denote

T0 =
∫ b

a
Φ(x)dx.

The significance of this T0 is that it represents the front factor in the ex-
pression of the leading term of the error. This is easily seen if we take some
reference point X on (a, b), and use the Taylor series for Lf(x) around X,

Lf(x) = Lf(X) +
(x−X)

1!
d

dx
Lf(x)|x=X +

(x−X)2

2!
d2

dx2
Lf(x)|x=X + . . .

The leading term of the error is integral (2.15) in which only the first term
of this expansion is retained:

lte =
∫ b

a
Φ(x) dx× Lf(X) = T0 Lf(X) (2.19)

Indeed, the integrals with the next terms will result in higher order con-
tributions, proportional to h, h2, ...; to see this use the second mean-value
theorem. On the other hand, if Φ(x) does not change the sign on (a, b), then,
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assuming that f ∈ Cm(a, b), the same second mean-value theorem applied
on integral (2.15) gives that

E[f ] = T0 Lf(η) (2.20)

for some η ∈ (a, b), such that only in this case one can say that the ex-
pressions of lte and of E[f ] coincide except for the interchange of X and η.
However, Φ(x) may not be of constant sign. For illustration, function Φ(x)
corresponding to the ef-based approximation of the second derivative (1.4) is

Φ(x) = h
θ(1− |x∗|) cos[θ(1− |x∗|)]− sin[θ(1− |x∗|)]

2θ2 sin θ
,

where x∗ = (x − X)/h ∈ [−1, 1] is associated to x ∈ [X − h, X + h], see
[4]. Experimental evidence, also presented in [4], shows that this Φ(x) is of
constant sign if θ ∈ (0, θ1 ≈ 4.4934) but it changes the sign for bigger values
of θ.

To treat the case when Φ(x) changes the sign on (a, b) we follow [4] to
write Φ(x) = Φ+(x) + Φ−(x), where

Φ+(x) :=
{

Φ(x) for all x such that Φ(x) ≥ 0
0 otherwise

and

Φ−(x) :=
{

Φ(x) for all x such that Φ(x) ≤ 0
0 otherwise

The integral in (2.15) can be expressed as the sum of two integrals,

E[f ] =
∫ b

a
Φ+(x)Lf(x) dx+

∫ b

a
Φ−(x)Lf(x) dx . (2.21)

and, since functions Φ±(x) are of constant sign, the mean-value theorem can
be applied to both integrals to give

E[f ] = Lf(η+)
∫ b

a
Φ+(x) dx+ Lf(η−)

∫ b

a
Φ−(x) dx, (2.22)

for some η+ , η− ∈ (a , b). With

T± =
∫ b

a
Φ±(x) dx
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this reads simply

E[f ] = T+Lf(η+) + T−Lf(η−) , (2.23)

which is the announced two-term Lagrange-like expression of the error.
To summarize, the error of approximation formula (2.12) admits a La-

grange-like expression whose number of terms depends on the behavior of
Φ(x) on (a, b): it consists of a single term if Φ(x) does not change the sign
but of two terms otherwise. As a matter of fact, no case in which Φ(x)
changes its sign is known to us if L is of the simple form L = Dm (this covers
the familiar formulae with constant coefficients such as Simpson, Newton-
Cotes or Gauss). In all these cases the error expressions consist in a single
Lagrange-like term.
As for new applications, note that the expression of Φ(x) can be build up in
analytic form but the determination of functions Φ±(x) needs a numerical
approach. A final check for the accuracy of the later determination consists
in verifying that T0 = T+ + T−.
Note also that formula (2.23), whose derivation uses for start the work of
Ghizzetti and Ossicini [5], is more general than needed for linear ef-based
approximations since it assumes that the coefficients wk in the operator L
may depend on x, while in the exponential fitting these are simply constants.

Application

We consider two ef-based quadrature rules, see also [4].
• Extended Newton-Cotes rule, [7], [2]:

∫ b

a
f(x)dx =

∫ X+h

X−h
f(x)dx ≈ h

N∑
n=1

[a(0)
n f(X + x∗nh) + ha(1)

n f ′(X + x∗nh)] ,

(2.24)
on evenly-spaced abscissas x∗n = 2(n − 1)/(N − 1) − 1 (n = 1, 2, . . . , N).
The rule is called extended because it uses the values of f and its derivative,
to underline that its structure contrasts that of the versions in current use,
where only the values of f are used. As a matter of fact, the Simpson rule is
a particular case of the later (N = 3); for an adaptation of the Simpson rule
to oscillatory integrals see [9] and [10].
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• Gauss rule, [11], [2]:∫ b

a
f(x)dx =

∫ X+h

X−h
f(x)dx ≈ h

N∑
n=1

a(0)
n f(X + x∗nh) . (2.25)

The 2N coefficients, that is a(0)
n , a(1)

n for the first rule, and a(0)
n , x∗n for the

second (n = 1, . . . , N) are determined from the condition that the rule is
exact if f satisfies Lf = 0 for

L = (D2 + ω2)N = h−2N (D∗2 + θ2)N .

In the last member we have used the dimensionless x∗ = (x − X)/h and
D∗p = dp/dx∗p = hpDp. Both rules are exact if the integrand f is of form
(1.2) where f1, f2 are polynomials of degree N − 1 or less. The coefficients
of each rule depend on θ only.

The lte can be expressed either as in (2.19) or in terms of x∗,

lte = T0(D2 + ω2)Nf(X) = hT ∗0 (D∗2 + θ2)Nf(X) ,

where T ∗0 = h−(2N+1)T0. The advantage of the second representation is that
it makes the θ dependence more obvious. Indeed, T ∗0 depends on θ only, and
its expression is formally the same in both rules,

T ∗0 (θ) =
2−

∑N
n=1 a

(0)
n (θ)

θ2N
.

As said, the niche for such quadrature rules is that of highly oscillatory
integrands, i.e., when big values of θ are involved. Let then keep h fixed and
examine the behaviour of lte when ω (or θ) tends to infinity. Factor T ∗0 (θ)
decreases as θ−2N in both formulae because in each of these the coefficients
a

(0)
n (θ) tend to 0 when θ → ∞. The last factor, (D∗2 + θ2)Nf(X), which is

identical in the two, increases as θN , see [2], such that the prediction based
on the expression of the leading term is that the error should decrease as
θ−N in both formulae.
However, the two-term form of the error, eq.(2.23), leads to a different pic-
ture. It is convenient to write this equation under the equivalent form

E[f ](θ) = h[T ∗+(θ)(D∗2 + θ2)Nf(η+) + T ∗−(θ)(D∗2 + θ2)Nf(η−)] , (2.26)

where functions T ∗±(θ) satisfy T ∗+(θ) ≥ 0, T ∗−(θ) ≤ 0, and T ∗0 (θ) = T ∗+(θ) +
T ∗−(θ). The picture is different because the asymptotic behaviours of T ∗0 (θ),
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on one hand, and those of its components T ∗±(θ), on the other, are not nec-
essarily similar.
Indeed, Coleman and Ixaru have shown that for large θ and N ≥ 2 the sign
conserving functions T ∗±(θ) are well described by the approximation

T ∗±(θ) ≈ ±c(θ)θ−(2N−N̄) + c±(θ)θ−2N , (2.27)

where N̄ ≥ 0, and the functions c(θ) and c±(θ), with c+(θ) 6= −c−(θ), are
oscillating between constant limits; think, for example, of functions of the
form c(θ) = c+(θ) = 1 + cos θ and c−(θ) = −1 + cos θ. Consequently, the
errors will damp out as θN̄−N , and this is slower than the rule θ−N suggested
by the behaviour of the lte.
Coleman and Ixaru have also shown that the values of N̄ are different in the
two rules. They are N̄ = N − 2 for the extended Newton-Cotes rule but
N̄ = b(N − 1)/2c for the Gauss rule, that is N̄ = 0 for N = 2, N̄ = 1 for
N = 3, 4, and N̄ = 2 for N = 5, 6 etc. Thus the error damps out like θ−2

for the extended Newton-Cotes rule with any N ≥ 2 but faster and faster
when N is increased for the Gauss rule: θ−2 for N = 2, 3, θ−3 for N = 4, 5
etc. All these theoretical predictions are nicely confirmed in practice.
We can then conclude that the two-term Lagrange-like expression of the er-
ror [4] allows a solid theoretical understanding of the experimental evidence
that the ef-based approximation formulae are so well suited for operations on
oscillatory functions. It also warns us that the characterization of the error
in terms of the lte, as largely used in the literature, is often misleading.
The presented application is however rather special: only functions with
one frequency were involved and also the two selected quadrature rules (ex-
tended Newton-Cotes and Gauss) share the property of being defined for
any θ. However, such a property is quite exceptional in the family of the
ef-based formulae. The typical situation is when some values of θ exist at
which the formulae cannot be defined; these are called critical values, see [1],
[2]. For example, θn = (n + 1/2)π, n = 0, 1, 2, . . . are the critical values for
the trapezium rule (1.5) because the coefficients exhibit a factor cos(θ) in the
denominator. It would be then interesting to see applications on such cases,
and also on cases when linear combinations of functions of form (1.2) with
different frequencies are involved. Situations of the later type also appear
in some applications, as in the computation of the normalization constant
(two frequencies) or of the Slater integrals (eight frequencies) in quantum
mechanics, see, e.g. [2], [12], [13].
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It is also important to notice that the approach which has lead to the two-
term error formula is restrictive because in the present form it does not give
a direct answer for nonlinear approximations. For example, the two-step
hybrid algorithm for differential equations in which the phase-fitting tech-
nique is used [14], the conditionally P-stable ef-based method for differential
equations of form y′′ = f(x, y) [15], the ef-based extensions of Runge-Kutta
methods as in [16], [6],[17], [18], and references therein, cannot be approached
at this moment, and an adaptation is needed.

3 Exponential fitting technique for the construction
of the coefficients of approximation formulae

In the previous section we were concerned with the determination of the ex-
pression of the error when the coefficients of the approximation formulae are
assumed known. The complementary problem, that is the determination of
the coefficients, is of equal importance and this is what we consider in this
and the next sections in the frame of the ef approach. To fix the ideas we con-
tinue to focus our attention on quadrature formulae and, to make the things
even simpler, we restrict our concern on the two and three-point formulae
with constant coefficients, that is on the classically allowed extensions (in the
sense that the frequencies are simply set to zero) of the familiar trapezium
and Simpson rules, respectively.
There is a direct practical motivation for such extensions. When approaching
problems in natural sciences (physics, chemistry, biology etc.) a succession
of numerical operations has to be carried out, where the output from some
step is used as input in the next step. For example, let us assume that at
some moment we have to solve a second order differential equation, let this
be y′′ = f(x, y) on [a, b], and just after that we are interested in the eval-
uation of the integral of y over this interval. If the differential equation is
solved by the Runge-Kutta method, then we get not only the values of the
solution y at the mesh points but also of its first and second derivative; the
second derivative results directly from the expression of function f(x, y). If,
alternatively, the equation is solved by a finite difference scheme, then we
get the values of y and y′′ but not those of y′. As for the calculation of the
integral, plenty of versions are presented in the standard literature, see [19]
for example, but, surprisingly enough, these typically use only the values
of the integrand. Formulae which use also the values of sets of successive
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derivatives appeared only recently while formulae in which some of these
are missing do not exist although it is clear that all such extended formulae
are potentially more accurate whereas they exploit richier input information
than that contained in the integrand alone. Expressed in other words, the
new formulae provide an advantageous alternative to the standard formulae
which, for comparable accuracy, will need repeating the whole computation
on finer partitions, thus increasing the computational effort.
We consider the interval [−h, h], a partition of this by the meshpoints x0 =
x1 = −h, x2 = 0, x3 = x4 = h, and a quadrature rule of the form

Q[y] =
∫ h

−h
y(z)dz ≈

2∑
k=0

hk[ak1y
(k)(−h) + ak2y

(k)(0) + ak3y
(k)(h)] , (3.28)

that is a rule which potentially allows the computation of the integral in
terms of the values at the meshpoints of the integrand and of its first and
second derivatives. The error of this rule is

E[h,a; y] (3.29)

=
∫ h

−h
y(z)dz −

2∑
k=0

hk[ak1y
(k)(−h) + ak2y

(k)(0) + ak3y
(k)(h)]

where the arguments h and a (this collects all nine coefficients) are expli-
citly mentioned. The problem consists in the determination of the coeffi-
cients such that the error is minimal in a certain sense.
Various particular forms are of interest in terms of the available data. For
example, if only the values of y at the three points are known, then we have
to impose that all coefficients of the derivatives equal zero, i.e. only a01, a02

and a02 have to be determined.
Our investigation follows three steps:
1. Find the expressions of E[h,a; y] for y(x) = xn, n = 0, 1, 2, 3, · · · .
2. Evaluate the values of the coefficients such that E[h,a; y] = 0 for as many
successive y(x) = xn as possible (it is assumed that this is actually the way
which leads to coefficients which ensure the minimal error for the considered
rule) and determine, on this basis, the expression of the operator L, eq.(2.14).
3. Determine the Lagrange-like expression of the error.
Step 1 regards the general form (3.28) while steps 2-3 will treat each partic-
ular case separately. We have the following



Approximation formulae generated by exponential fitting 177

Lemma 1. The expressions of E[h,a; y] for y(x) = xn, n = 0, 1, 2, 3, · · ·
are of the form

E[h,a; xn] = hn+1En(a) , (3.30)

where En(a), called reduced moments, are

E0(a) = 2− (a01 + a02 + a03) ,
E1(a) = −(−a01 + a03 + a11 + a12 + a13) , (3.31)

E2(a) =
2
3
− [a01 + a03 + 2(−a11 + a13 + a21 + a22 + a23)] ,

En(a) = −[−a01 + a03 + n(a11 + a13) + n(n− 1)(−a21 + a23)] ,
for odd n ≥ 3 ,

En(a) =
2

n+ 1
− [a01 + a03 + n(−a11 + a13) + n(n− 1)(a21 + a23)] ,

for even n ≥ 4 .

Proof Elementary evaluations on y(x) = xn give:

y(h) = (−1)ny(−h) = hn, y(0) = δn0, for any n ≥ 0,
y′(h) = y′(−h) = y′(0) = 0 for n = 0 ,
y′(h) = (−1)n−1y′(−h) = nhn−1, y′(0) = δn1 for n > 0 ,
y′′(h) = y′′(−h) = y′′(0) = 0 for n = 0, 1 ,
y′′(h) = (−1)ny′′(−h) = n(n− 1)hn−2, y′′(0) = 2δn2 for n > 1 ,

and ∫ h

−h
y(z)dz =


2

n+ 1
hn+1 for even n

0 for odd n

If these are introduced in (3.30) the expressions under eq.(3.31) result di-
rectly.
Q. E. D.
Another element of general interest in the subsequent considerations is the
resolvent kernel of operator L = Dm. We have

Lemma 2. The resolvent kernel of L = Dm, m ≥ 1 is

K(t, z) =
1

(m− 1)!
(t− z)m−1. (3.32)
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Proof The general solution of the differential equation Dm u(x) = 0 is
the (m− 1)-th degree polynomial

u(x) =
m−1∑
i=0

aix
i .

Its successive derivatives are

∂k

∂xk
u(x) =

m−(k−1)∑
i=0

(i+ 1)(i+ 2) · · · (i+ k)ai+kx
i, k = 1, 2, · · · ,m− 1 .

The particular solution which satisfies the initial conditions

∂k

∂xk
u(x)|x=0 = δk,m−1

is
up(x) =

1
(m− 1)!

xm−1 ,

and the resolvent kernel is this particular solution with argument x = t− z.
Q. E. D.
For the construction of functions φi(x), eqs.(2.17)-(2.18), the expressions
of the integral and successive partial derivatives of the kernel will often be
involved:

I(X,x) :=
∫ x

X
K(t, x)dt = − 1

m!
(X − x)m , (3.33)

Kk(X,x) :=
∂k

∂tk
K(t, x)|t=X =

1
(m− k − 1)!

(X − x)m−k−1,

k = 0, 1, · · · ,m− 1.

Since x0 = x1 = −h and x3 = x4 = h, the function Φ(x) will have only two
piecewise determinations:

Φ(x) =


φ1(x) = −I(−h, x) +

2∑
k=0

hkak1Kk(−h, x) for −h < x < 0

φ2(x) = φ1(x) +
2∑

k=0

hkak2Kk(0, x) for 0 < x < h

(3.34)
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In the following we examine two families of quadrature rules of the form
(3.28). These are the two-point rules, denoted Q2

s, where only data at the
meshpoints ±h are accepted, and three-point rules, denoted Q3

s, where data
at all three meshpoints are accepted. Index s = 1, 2, 3, 4 identifies versions
in the corresponding family in terms of what are actually the data accepted
for input:

- Versions Q2
1 and Q3

1. Accepted input data: y. These are the trapezium
and Simpson rule, respectively.

- Versions Q2
2 and Q3

2. Accepted input data: y and y′.

- Versions Q2
3 and Q3

3. Accepted input data: y and y′′.

- Versions Q2
4 and Q3

4. Accepted input data: y, y′ and y′′.

4 Two-point rules

Remark: Since for these rules we always have ak2 = 0, k = 0, 1, 2, function
φ2(x) has the same expression as φ1(x) and therefore only one determination
is active in eq.(3.34): Φ(x) = φ1(x) for −h < x < h.
For the trapezium rule Q2

1 the following result is wellknown, e.g. [19] :

Theorem 1. The coefficients and the Lagrange-like expression of the error
for version Q2

1 are

a01 = a03 = 1 and E[h,a; y] = −2
3
h3y′′(η) ,

for some η ∈ (−h, h).
Proof This result can be proved in various ways but here we reconsider

the proof again mainly as a first and simple illustration on how the ef-based
procedure works.
Since only the values y(±h) are accepted, all coefficients in eq.(3.28) are set
to zero except for a01 and a03 which have to be determined. We cover the
above mentioned steps 2-3.
Step 2. Since the number of coefficients to be determined is 2 the same is
the number of the involved successive reduced moments. For brevity reasons
hereinafter the reduced moments will be called simply moments and the
parameter a will be omitted when they are written.
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The first two moments are E0 = 2 − (a01 + a03), E1 = −(−a01 + a03), and
the linear system E0 = E1 = 0 has the solution a01 = a03 = 1. For these
coefficients we have E2 = −4/3 6= 0 such that the error vanishes when y(x)
is a first degree polynomial or, equivalently, when y(x) is any solution of the
simple second order differential equation y′′ = 0, that is L = Dm withm = 2.
As a matter of fact, after the coefficients have been determined a compulsory
practice is to check how many next moments are also vanishing. This is
because in some situations it may happen that this holds true for a number
of such extra moments and therefore the degree of the polynomial may be
higher than the number of coefficients. We will meet such a situation for
version Q3

3.
Step 3. For m = 2 we have:

I(−h, x) = −1
2

(h+ x)2, K0(−h, x) = −(h+ x),

and then

φ0(x) =
1
2

(h+ x)2, φ1(x) = φ0(x) + ha01K0(−h, x) =
1
2

(x2 − h2) .

φ1(x) does not change the sign on (−h, h) (it is negative) and therefore the
error is of one-term Lagrange form (2.20) with

T0 =
∫ h

−h
φ1(x) dx = −2

3
h3 ,

and this completes the proof.
The following theorem covers the three extensions of the trapezium rule:

Theorem 2. The extended trapezium rules and the Lagrange-like expression
of their errors are as follows:
- Version Q2

2 :

Q[y] ≈ h[y(−h) + y(h)] +
1
3
h2[y′(−h)− y′(h)],

E[h,a; y] =
2
45
h5y(4)(η) ; (4.35)

- Version Q2
3 :

Q[y] ≈ h[y(−h) + y(h)]− 1
3
h3[y′′(−h) + y′′(h)],

E[h,a; y] =
4
15
h5y(4)(η) ; (4.36)
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- Version Q2
4 :

Q[y] ≈ h[y(−h) + y(h)] +
2
5
h2[y′(−h)− y′(h)]

+
1
15
h3[y′′(−h) + y′′(h)],

E[h,a; y] = − 2
1575

h7y(6)(η) , (4.37)

for some η ∈ (−h, h). The value of η may vary from one version to another.

Remarks:
1. The coefficients of the rules Q2

2 and Q2
4 are known, [8], but the expressions

of their error are new. The rule Q2
3 is entirely new.

2. One should not remain with the impression that these rules apply only
when the integration limits are −h and h. If these are X − h and X + h the
coefficients are the same. For example, Q2

2 reads:∫ X+h

X−h
y(z)dz ≈ h[y(X − h) + y(X + h)] +

1
3
h2[y′(X − h)− y′(X + h)]

Its error is as in eq.(4.35) but η ∈ (X − h,X + h).
Proof This follows the same pattern as for the previous theorem. However,
hereinafter we treat explicitly only the rule Q2

3 which is really new.
Four parameters have to be determined for this version, namely, a01, a03, a21

and a23, and the first four moments are E0 = 2− (a01 +a03), E1 = −(−a01 +
a03), E2 = 2/3−[a01 +a03 +2(a21 +a23)], E3 = −[−a01 +a03 +6(−a21 +a23)],
see (3.31).
The algebraic system E0 = E1 = E2 = E3 = 0 has the solution

a01 = a03 = 1, a21 = a23 = −1
3
.

With these we get E4 = 32/5 6= 0 and therefore L = Dm with m = 4.
Function φ1(x) is

φ1(x) = −I(−h, x) + ha01K0(−h, x) + h3a21K2(−h, x)

=
1
4!

(h+ x)4 − 1
3!
h(h+ x)3 − 1

3
h3(h+ x) .

Separate investigation shows that this φ1(x) is positive on (−h, h) and
then the error is of form (2.20) with

T0 =
∫ h

−h
φ1(x) dx =

4
15
h5 .

Q. E. D.
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5 Three-point rules

The following theorem exists:

Theorem 3. The set of three-point rules and the Lagrange-like expression
of their errors are as follows:
- Version Q3

1 (standard Simpson rule):

Q[y] ≈ h[y(−h) + 4y(0) + y(h)]/3,

E[h,a; y] = − 1
90
h5y(4)(η) ; (5.38)

- Version Q3
2:

Q[y] ≈ 1
15
h[7y(−h) + 16y(0) + 7y(h)] +

1
15
h2[y′(−h)− y′(h)],

E[h,a; y] =
1

4725
h7y(6)(η) ; (5.39)

- Version Q3
3:

Q[y] ≈ 1
21
h[5y(−h) + 32y(0) + 5y(h)]

− 1
315

h3[y′′(−h)− 32y′′(0) + y′′(h)] ,

E[h,a; y] =
1

396900
h9y(8)(η) ; (5.40)

- Version Q3
4:

Q[y] ≈ 1
105

h[41y(−h) + 128y(0) + 41y(h)] +
2
35
h2[y′(−h)− y′(h)]

+
1

315
h3[y′′(−h) + 16y(0) + y′′(h)],

E[h,a; y] = − 1
130977000

h11y(10)(η) , (5.41)

for some η ∈ (−h, h). The value of η may vary from one version to another.

Remark: the coefficients of the Simpson rule Q3
1 and the expression of its

error can be found in any standard textbook, e.g., [19]. The coefficients of
versions Q3

2 and Q3
4 are also known, [8], but the expressions of their error are

new. The rule Q3
3 is entirely new.
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Proof Technically, this follows the same steps as for the previous theorem
but the volume of calculations is a bit larger. This is due to the fact that
the number of involved moments is bigger, on one hand, and that function
Φ(x) now has two piecewise expressions: φ1(x) and φ2(x). In the following
we give details only on the new version Q3

3.
- Parameters to be determined and their total number N : ak1, ak2, ak3, k =
0, 2, i.e., N = 6 parameters.
- Expressions of the first N moments: E0 = 2 − (a01 + a02 + a03), E1 =
−(−a01 + a03), E2 = 2/3− [a01 + a03 + 2(a21 + a22 + a23)], E3 = −[−a01 +
a03 + 6(−a21 + a23)], E4 = 2/5− [a01 + a03 + 12(a21 + a23)], E5 = −[−a01 +
a03 + 20(−a21 + a23)].
- Solution of the algebraic system En = 0, n = 0, 1, · · · , N − 1: a01 = a03 =
5/21, a02 = 32/21, a21 = a23 = −1/315, a22 = 32/315.
- Extra checks and the value of m: E6 = E7 = 0 but E8 = 32/315 6= 0,
therefore L = Dm with m = 8. (Notice that the extra check was crucial
for this case. Otherwise we might have been tempted to wrongly assign the
value m = 6.)
- Components of function Φ(x):

φ1(x) = −I(−h, x) + ha01K0(−h, x) + h3a21K2(−h, x)

=
1
8!

(h+ x)8 − 5
21 · 7!

h(h+ x)7 +
1

315 · 5!
h3(h+ x)5 ,

φ2(x) = φ1(x) + ha02K0(0, x) + h3a22K2(0, x)

= φ1(x)− 32
21 · 7!

hx7 − 32
315 · 5!

h3x5 .

By separate investigation we find that this Φ(x) is positive on (−h, h) and
then the error is of the form (2.20).
- Value of T0:

T0 =
∫ 0

−h
φ1(x) dx+

∫ h

0
φ2(x) dx =

1
396900

h9 .

Q. E. D.

The results listed above for the quadrature rules Q2 and Q3 allow draw-
ing some conclusions. First, in all cases the error has the one-term Lagrange
form Chm+1ym(η) where C is some constant (called the error constant) and
m is the order of the differential equation Ly = 0. Second, we see that, as
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expected, the accuracy increases with the number of input data in the cor-
responding versions. Thus the three-point versions are more accurate than
their two-point counterparts (compare the orders) and within each of these
two families the order increases with the number of data at each point (one
for Qp

1 versions, two for versions Qp
2 and Qp

3 and three for Qp
4, p = 2, 3).

Third, and this is a new issue, the results allow answering a question of a
different nature: how does the type of data used in versions with the same
number of input data/point influence the accuracy? This is the case of ver-
sions Qp

2 and Qp
3 where the two data are y and y′, and y and y′′, respectively.

For the two-point versions the order is not modified but the error constant
is smaller for Q2

2 and therefore the values of y′ are more helpful in increasing
the accuracy than those of y′′. This is in contrast with the three-point ver-
sions where the use of y′′ is more advantageous because the corresponding
version, that is Q3

3, has a bigger order than Q2
2.

Numerical illustration
We compute the integral

Q =
∫ 1

0
e5x sin 5x dx =

1
10
e5x[sin(5x)− cos(5x)]|10 (5.42)

by all versions of two and three-point rules. We use h = 1/2, 1/4, 1/8, 1/16,
1/32 and 1/64, that is with N = 1, 2, 4, 8, 16 and 32 two-step intervals. Once
the version and h are fixed the integral is computed numerically by that
version on each of the N two-step intervals and the individual results are
summed. Let denote the value computed this way as Qcomput(h). This and
its error, ∆Q(h) = Q−Qcomput(h), depend also on the version, of course.

The error ∆Q(h) behaves as hm because it is the sum of the N individual
errors and N ·hm+1 ∼ hm. As a consequence the ratio of the errors from the
same version at 2h and h, ∆Q(2h)/∆Q(h), should be around 2m. Possible
deviations from this value are due to the influence of the variation of factor
y(m) over four successive intervals of width h. This variation tends to be
less and less important when h→ 0 and therefore that ratio will tend to the
theoretical value in this limit.
We have written a fortran program in double precision and in Table 1 we
give the error ∆Q(h) for the two-point versions. It is seen that, as expected,
the decrease of the error with h becomes faster and faster when the number
of acccepted data is increased. It is also confirmed the fact that the error
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Table 1: Stepwidth dependence of the absolute errors of the results given by
the four versions of rule Q2 for integral (5.42). Notation a(b) means a · 10b.

h Q2
1 Q2

2 Q2
3 Q2

4

1/ 2 0.53(+02) 0.11(+02) 0.14(+03) -0.16(+02)
1/ 4 0.14(+02) 0.30(+01) 0.20(+02) -0.29(+00)
1/ 8 0.29(+01) 0.24(+00) 0.14(+01) -0.35(-02)
1/16 0.67(+00) 0.15(-01) 0.93(-01) -0.50(-04)
1/32 0.17(+00) 0.97(-03) 0.58(-02) -0.76(-06)
1/64 0.41(-01) 0.61(-04) 0.36(-03) -0.12(-07)

Table 2: The same as in Table 1 for the versions of rule Q3. The error
from Q3

4 for h = 1/64 is zero within machine accuracy for double precision
computations (of approximately 16 decimal figures).

h Q3
1 Q3

2 Q3
3 Q3

4

1/ 2 0.52(+00) 0.25(+01) 0.98(-01) 0.14(-01)
1/ 4 -0.70(+00) 0.50(-01) -0.14(-02) 0.18(-04)
1/ 8 -0.59(-01) 0.60(-03) -0.80(-05) 0.13(-07)
1/16 -0.38(-02) 0.83(-05) -0.33(-07) 0.12(-10)
1/32 -0.24(-03) 0.13(-06) -0.13(-09) 0.11(-13)
1/64 -0.15(-04) 0.20(-08) -0.52(-12) 0.00(+00)

decrease is similar for versions Q2
2 and Q2

3 and that for each stepwidth h the
error for the latter is by a factor 6 larger. Table 2 gives the same data for
the three-point versions. The errors decrease faster than for the two-point
formulae and also, as predicted but in contrast to the two-point case, the
errors from Q3

3 are massively better than from Q3
3, especially for small h.

Table 3 collects the ratios ∆Q(2h)/∆Q(h). The theoretical predictions that
these should tend to 4, 16, 16, 64 for Q2 versions, and to 16, 64, 256, 1024 for
Q3 versions when h→ 0 are clearly confirmed.



186 Liviu Ixaru

Table 3: The ratio ∆Q(2h)/∆Q(h) for various values of the stepwith h.

h Q2
1 Q2

2 Q2
3 Q2

4 Q3
1 Q3

2 Q3
3 Q3

4

1/ 4 3.9 3.5 7.2 54.7 -0.7 51.1 -67.6 742.3
1/ 8 4.7 12.9 13.7 81.8 12.0 83.4 180.3 1361.9
1/16 4.3 15.4 15.6 70.8 15.3 71.6 242.4 1159.7
1/32 4.1 15.9 15.9 65.8 15.8 66.1 253.0 1081.7
1/64 4.0 16.0 16.0 64.5 16.0 64.5 254.0 −
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Abstract

In a previous paper we outlined a geometric model for the ther-
modynamic description of extrinsic semiconductors with defects of dis-
location. Applying a geometrization technique, within the rational
extended irreversible thermodynamics with internal variables, the dy-
namical system for simple material elements of these media, the expres-
sions of the entropy function and the entropy 1-form were obtained. In
this contribution we deepen the study of this geometric model. We
give a detailed description of the defective media under consideration
and of the dislocation core tensor, we introduce the transformation
induced by the process and, applying the closure conditions for the
entropy 1-form, we derive the necessary conditions for the existence of
the entropy function. These and other results are new in the paper.
The derivation of the relevant entropy 1-form is the starting point to
introduce an extended thermodynamical phase space.
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Introduction

Since in nature there exist no ideal crystals without defects, the aim of
this paper is to study the behavior of deformable extrinsic semiconductors
with defects of dislocation. The dislocation lines disturb the periodicity of
the crystal lattice (see [10] and [22]) and their structure resembles a network
of infinitesimally thin channels. The models for defective extrinsic semicon-
ductors may have relevance in several fundamentals technological sectors as
electronic microscopy, nanotechnology and technology for integrated circuits
VLSI (Very Large Scale Integration).

Semiconductor crystals, as germanium and silicon, are tetravalent ele-
ments [11]. In Fig.1a we have the representation of a germanium crystal
that has a behaviour of an insulator at a temperature of 0◦K. But at room
temperature, 300◦K (see Fig.1b), electrons of the crystal can gain enough
thermal energy to jump to the conduction band.

Figure 1: A symbolic representation in 2D of a germanium crystal structure:
(a) at 0◦K and (b) at 300◦K with a broken covalent bond

To modify the electrical conductivity of an intrinsic semiconductor, impu-
rity atoms adding one electron or one hole are introduced inside the crystal,
by means of different techniques of "doping". Using pentavalent impurities,
as antimony, a n-type extrinsic semiconductor is obtained, having more free
electrons that may flow (see Fig.2a). By trivalent impurities, as indium, a
p-type extrinsic semiconductor crystal is achieved, having more holes that
may flow freely (see Fig.2b).
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Figure 2: A symbolic representation in 2D of a germanium crystal struc-
ture:(a) doped by an atom of a pentavalent impurity (Antimony); (b) doped
by an atom of a trivalent impurity (Indium)

In a previous paper [27], in the framework of the rational extended ir-
reversible thermodynamics with internal variables [20], a thermodynamical
model for defective extrinsic semiconductors was developed, introducing a
dislocation density tensor à la Maruszewski [16] and its flux as internal
variables. In [17] taking into account the results obtained in [27], a ther-
modynamical geometric model was outlined for simple material elements
(see [2], [3], [4], [5], [23], [24] and [25]) of these media. The dynamical system
and the expressions for the entropy function and the entropy 1-form were
obtained. In this paper we deepen the study of this geometric model. In
Section 1 we introduce the dislocation core tensor which describes the dislo-
cation lines distribution. In Section 2 we give a detailed thermodynamical
description of the defective media under consideration, taking into account
the densities and the currents of the free electrons and holes coming from the
intrinsic base. Finally, in Section 3 we introduce the transformation induced
by the process and, applying the closure conditions for the entropy 1-form,
we obtain the necessary conditions for the existence of the entropy function.
The derivation of the entropy 1-form is the starting point to introduce a ther-
modynamical phase space [26]. Furthermore, from the necessary conditions
for the existence of the entropy function, constitutive laws can be obtained
by a suitable method [7].

In [1], [6], [8], [9], [15] and [18] geometric models for perfect extrinsic
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semiconductors, for defective piezoelectric media, for high Tc superconductors
of type-II, for porous structures, for polarizable media with internal variables
and for deformable dielectrics with a non-Euclidean structure, respectively,
were derived in the same geometrized framework.

1 The dislocation core tensor model

In extrinsic semiconductor crystals with defects of dislocation the geometry
of the internal structure of these materials can influence the physical fields
occurring in the body. These defects, acquired during a process of fabrication,
can self propagate, because of changed and favorable surrounding conditions.
Thus, they can provoke a premature fracture. The dislocation lines disturb
the periodicity of the lattice of the crystal and their structure resembles a
network of capillary channels inside the elastic solid (see [11], [16] and [22]).
The interatomic distances are not conserved in the direct neighborhood of
the dislocation lines in comparison to the distances in the remaining part of
the lattice (see Fig.3a).

Figure 3: (a) An edge dislocation structure; (b) Characteristics of the pore-
core structure (h̄� R) (after [16])

Moreover, the dislocation lines have their intrinsic orientation, which
means, among others, that two dislocations of opposite signs annihilate when
lines come close to each other. Their existence should not be omitted in the
analysis of such kinetic processes as diffusion of mass or charges, transport of
heat, recombination of charge carriers, etc. Thus, we introduce a dislocation



192 Maria Paola Mazzeo, Liliana Restuccia

Figure 4: Averaging scheme. Characteristics of a channel structure (see [12])

core tensor à la Maruszewski [16] and its flux in the thermodynamical state
space of independent variables for describing these defects. The definition
and the introduction of the dislocation core tensor is based (see Fig. 3b) on
a Kubik’s geometrical model for porous channels. In [12] Kubik considers
a representative elementary sphere volume Ω of a porous structure having
capillary tubes, large enough to provide a representation of all the statistical
properties of the channel space Ωch (see Fig. 4). Ω = Ωs + Ωch, where Ωs

is the solid space. Since all the channels are considered to be interconnected
the effective volume porosity is completely defined as fv = Ωch

Ω . The analysis
is restricted to media which are homogeneous with respect to volume poros-
ity fv , i.e. fv remains constant in the medium. To avoid confusion all the
microscopic quantities are written with respect to the coordinate system ξi ,
whereas all the macroscopic quantities are written with respect to the coor-
dinate system xi. Let α(ξ) be any scalar, vectorial or second order tensorial
quantity describing a microscopic property of the flux of some physical field
flowing through the channel space Ωch and written with respect to a coordi-
nate system ξi. We assume that such quantity is zero in the solid space Ωs.
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The volume averaging procedures give

α̂(x) =
1

Ωch

∫
Ωch

α(ξ)dΩ, ᾱ(x) =
1
Ω

∫
Ωch

α(ξ)dΩ, (1)

where the quantities α̂(x) and ᾱ(x) (written with respect to the a coordinate
system xi) describe at macroscopic level the same property of the flux of
the physical field under consideration. They are averaged quantities on the
channel-volume and on the bulk-volume, respectively. Similarly, we define
the averaged quantity α(ξ) on the channel-area as follows

∗
α (x,µ) =

1
Γch

∫
Γ

α(ξ)dΓ, (2)

where Γ is the central sphere section and Γch represents the channel-area of
Γ. The orientation of Γ in Ω is given by the normal vector µ. Γ = Γs + Γch,
where Γs is the solid-area. By definition the quantity α(ξ) is zero on the
solid-surface Γs. In such a medium, following [12], Maruszewski defines the
so called dislocation tensor, as follows

ᾱ(x)i = Rij(x,µ)
∗
αj (x,µ). (3)

Eq. (3) gives a linear mapping between the averaged quantity on the bulk-
volume ᾱ(x) and the average of the same quantity on the channel-area

∗
α

(x,µ). In [12] Kubik gives an interpretation of Rij considering the flux of a
quantity ᾱ(x) on a bulk-volume as a superposition of three unidimensional
fluxes (along three mutually perpendicular channels) having average values
∗
αi (x,µ) on the orthogonal section areas of these channels. In [16] a new
tensor, that refers Rij to the central sphere section Γ, is defined in the
following way

Rij(x,µ) = Γaij(x,µ).

aij is called dislocation core tensor and its unit is m−2. The components of
aij form a kind of continuous representation of the number of dislocations
which cross the surface Γ. Investigations show that aij is also dependent on
time.
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2 Governing equations for extrinsic semiconductors
with defects of dislocation

Now, we introduce a thermodynamic model for a defective extrinsic semi-
conductor developed in [27] by one of us (L.R.) in the framework of Thermo-
dynamics of irreversible processes with internal variables. In this paper, we
deepen the thermodynamic description of this medium taking into account
the densities and currents of the free electrons and holes that come from the
intrinsic base of the semiconductor. Furthermore, we derive a set of constitu-
tive relations. We use the standard Cartesian tensor notation in rectangular
coordinate systems. We refer the motion of our material system to a current
Eulerian configuration Kt. We assume that in defective, extrinsic, thermoe-
lastic semiconductors the following fields interact with each other: the elastic
field described by the total stress tensor Tij and the small-strain tensor εij ;
the thermal field described by the temperature θ, its gradient and the heat
flux qi; the electromagnetic field described by the electromotive intensity Ei
(that represents, in the Galilean approximation, the electric field referred to
an element of the matter at time t, i.e. to the so called comoving frame Kc)
and the magnetic induction Bi per unit volume; the charge carrier fields de-
scribed by the densities of electrons n and holes p, their gradients and their
fluxes jni and jpi ; the dislocation field described by the dislocation core tensor
aij , its gradient and the dislocation flux Vijk.

The independent variables are represented by the set

C = {εij , Ei, Bi, n, p, θ, aij ,Vijk, jni , j
p
i , qi, n,i, p,i, θ,i, aij,k}. (4)

All the processes, occurring in the considered body, are governed by the
following laws:

Maxwell’s equations having the form:

εijkEk,j +
∂Bi
∂t

= 0, Di,i − ρZ = 0, (5)

εijkHk,j − jZi −
∂Di

∂t
= 0, Bi,i = 0, (6)

where E, B, D and H denote the electric field, the magnetic induction, the
electric displacement and the magnetic field, respectively. Furthermore,

Hi =
1
µ0
Bi, Ei =

1
ε0

(Di − Pi) , (7)
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where ε0 and µ0 denote the permittivity and permeability of vacuum and P
is the polarization per unit volume. The magnetization M is assumed to be zero.

The total charge density Z and the density of the total current jZ are
defined as follows:

Z = n+ n̄+ p+ p̄,

jZi = ρnvni + ρn̄vn̄i + ρpvpi + ρp̄vp̄i = ρZvi + jni + jn̄i + jpi + jp̄i ,

where n < 0, n̄ < 0, p > 0, p̄ > 0, jni = ρn(vni − vi), jn̄i = 0 (being
vn̄i = vi), jpi = ρp(vpi − vi), jp̄i = 0 (being vp̄i = vi), ρ denotes the mass
density, vi are the components of the barycentric velocity of the body, vni ,
vn̄i , vpi , vp̄i , are the velocities of the electric charges n, n̄, p, p̄ , respectively,
and jni , jn̄i , jpi , jp̄i their conduction currents, i.e. the electric currents
due to the relative motion of the electric charges respect to the barycentric
motion of the body. ρZvi is the electric current due to the convection.

In particular, n is a total negative electric charge density coming from:
the density of free electrons created doping the semiconductor by pentavalent
impurities, denoted by N (see Fig. 2a), and the density of free electrons
coming from the intrinsic base of the semiconductor, denoted by n∗ (see Fig.
1b). n̄ is the charge density of the fixed and negative ionized atoms of doping
tetravalent impurities, having velocity v (i.e. they are comoving with the
body). Thus, we have the following charge conservation laws

ρṄ + jNi,i = gN , ρṅ∗ + jn
∗

i,i = gn
∗
, ρ ˙̄n = ḡn ρṅ+ jni,i = gn, (8)

where the superimposed dot denotes the material derivative, ρ is the mass
density, n = N +

∗
n, jni,i = jNi,i + jn

∗
i,i , jn̄i,i = 0 and gn = gN + gn

∗
.

Similarly, p are the positive electric charge density coming from: the
density of holes created doping the semiconductor by tetravalent impurities,
denoted by P (see Fig. 2b), and the density of holes coming from the intrinsic
base of the semiconductor denoted by p∗ (see Fig.1b). p̄ is the charge density
of the fixed and positive ionized atoms of doping pentavalent impurities,
having velocity v (i.e. they are comoving with the body). Thus, we have the
following charge conservation laws

ρṖ + jPi,i = gP , ρṗ∗ + jp
∗

i,i = gp
∗
, ρ ˙̄p = ḡp ρṗ+ jpi,i = gp, (9)

where p = P + p∗ jpi,i = jPi,i + jp
∗

i,i , jp̄i,i = 0 and gp = gP + gp
∗
.

Furthermore, we assume that the concentrations n̄ and p̄ are practically
constant. Hence,
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˙̄n = ˙̄p = 0 and ḡn = ḡp = 0. (10)

gn and gp describe the recombination of electrons and holes and satisfy
the equation

gn + gp = 0. (11)

Also, we have
the evolution equations for the electron, hole and heat fluxes having the

form:
j̇ni = Jni (C), j̇pi = Jpi (C), q̇i = Qi(C), (12)

where Jn, Jp and Q are the electron, hole and heat flux sources;
the continuity equation:

ρ̇+ ρvi,i = 0, (13)

where the mass charge carriers have been neglected compared to ρ (see the
final remark about it in Section 3);

the momentum balance:

ρv̇i − Tji,j − ρZEi − εijk
(
jnj + jpj+

M
P j

)
Bk − PjEi,j − fi = 0, (14)

where
M
P i= Ṗi + Pivk,k − Pkvi,k, Ei = Ei + εijkvjBk, (15)

Tij denotes the total stress tensor and fi is the body force;
the momentum of momentum balance:

εijkTjk + ci = 0. (16)

In [27] it was demonstrated that the couple ci for unit volume is vanishing,
so that the stress tensor Tij is symmetric;

the internal energy balance:

ρė− Tjivi,j −
(
jnj + jpj

)
Ej − ρEiṖi + qi,i − ρr = 0, (17)

where vi are the components of the barycentric velocity of the body, e is the
internal energy density, r is the heat source distribution per unit volume,
Pi = ρPi and vi,j is the velocity gradient given by

vi,j = Lij = ˙Fik (Fkj)
−1 ,



Material element model for defective extrinsic semiconductors 197

where Fij denotes the deformation gradient;
the evolution equations for the dislocation density and the dislocation flux :

.
aij +Vijk,k −Aij(C) = 0,

.
V ijk −Vijk(C) = 0, (18)

whereAij and Vijk are the dislocation density and the dislocation flux sources.
All the admissible solutions of the proposed evolution equations should

be restricted by the following entropy inequality :

ρṠ + JSk,k −
ρr

θ
≥ 0, (19)

where S denotes the entropy per unit mass and JS is the entropy flux asso-
ciated with the fields of the set C. JS is defined by

JS =
1
θ
q + k, (20)

with k an additional term called extra entropy flux density.
In [27] in order to close the balance equation system the entropy inequality

was analyzed by Liu’s theorem [14]. For the entropy extra flux k the following
form was obtained

kk = −qk + µnjnk + µpjpk + πijVijk + ρvkψ, (21)

where µn ≡ ∂ψ
∂n , µp ≡ ∂ψ

∂p and πij ≡ ρ ∂ψ
∂aij

are thermodynamical po-
tentials, with ψ = e − θS − EiPi the free energy density. Using Smith’s
theorem [28], in the case of defective semiconductors only of n-type, isotropic
polynomial representations, satisfying the objectivity and material frame in-
difference principles (see [19] and [21]), were derived for the constitutive func-
tions, where the following forms were assumed for the quantities responsible
for the dislocation field

aij = aδij , Aij = Aδij , Vijk = Vkδij , Vijk = Vkδij . (22)

In this paper, using the results obtained in [27] by Liu’s theorem and, ap-
plying Smith’s theorem, we derive the constitutive relations for n and p type
semiconductors in the same above assumptions (22) for the dislocation field.
In particular, we have

Tij = β1
τ δij + β2

τ εij + β3
τ εikεkj + β4

τEiEj + β5
τ (εjkEiEk + εikEjEk) +

+β6
τ (εjkεksEiEs + εikεksEsEj), (23)
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Pi = (β1
Pδik + β2

Pεik + β3
Pεijεjk)Ek, (24)

µn = β1
nn+ β2

np+ β3
na+ β4

nθ + β5
nEkEk+

+(β6
nδij + β7

nεij + β8
nεjkεki + β9

nEiEj + β10
n εjkEiEk)εij , (25)

µp = β1
pn+ β2

pp+ β3
pa+ β4

pθ + β5
pEkEk+

+(β6
pδij + β7

pεij + β8
pεjkεki + β9

pEiEj + β10
p εjkEiEk)εij , (26)

π = β1
πn+ β2

πp+ β3
πa+ β4

πθ + β5
pEkEk+

+(β6
πδij + β7

πεij + β8
πεjkεki + β9

πEiEj + β10
π εjkEiEk)εij , (27)

gn = β1
gnn+ β2

gnp+ β3
gna+ β4

gnθ + β5
gnEkEk+

+(β6
gnδij + β7

gnεij + β8
gnεjkεki + β9

gnEiEj + β10
gnεjkEiEk)εij , (28)

and gp = −gn, where βατ , β
γ
P, β

ε
n, βεp, βεπ, βεgn (α = 1, 2, ..., 6,

γ = 1, 2, 3, ε = 1, 2, ..., 10) can be functions of the following invariants

n, p, θ, a, EiEi, εkk, εijεij , εijεjkεki, εijEiEj , εijεjkEiEk. (29)

Furthermore, we have obtained the following approximated expressions for
the evolution equations for the dislocation density, dislocation, electron, hole
and heat fluxes

.
a +Vk,k = δ1

aεkk + δ2
an+ δ3

ap+ δ4
aθ + δ5

aa+ δ6
aEi + δ7

aa,i + δ8
an,i +

+δ9
ap,i + δ10

a θ,i + δ11
a Vi + δ12

a j
n
i + δ13

a j
p
i + δ14

a qi, (30)
.
Vk= δ1

υEk + δ2
υa,k + δ3

υn,k + δ4
υp,k + δ5

υθ,k + δ6
υVk + δ7

υj
n
k + δ8

υj
p
k + δ9

υqk, (31)
.
j
n

k= δ1
nEk + δ2

na,k + δ3
nn,k + δ4

np,k + δ5
nθ,k + δ6

nVk + δ7
nj
n
k + δ8

nj
p
k + δ9

nqk, (32)
.
j
p

k= δ1
pEk + δ2

pa,k + δ3
pn,k + δ4

pp,k + δ5
pθ,k + δ6

pVk + δ7
pj
n
k + δ8

pj
p
k + δ9

pqk, (33)
.
qk= δ1

qEk + δ2
qa,k + δ3

qn,k + δ4
qp,k + δ5

qθ,k + δ6
qVk + δ7

q j
n
k + δ8

q j
p
k + δ9

qqk, (34)

where δζa, δηυ, δηn, δηp , δηq (ζ = 1, 2, ..., 14, η = 1, 2, ..., 9) can depend on
invariants built on the set C (see eq. (4)). The laws (23) - (34) are very
general, but it is possible to treat special problems describing the physical
reality in several situations by some simplifications.
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3 A geometric model for extrinsic semiconductors
with defects of dislocation

In this Section, following [2], [3], [4], [5], [23], [24] and [25], we deepen the
study of the geometric model for the thermodynamics of extrinsic defective
semiconductors outlined in [17], where the dynamical system for simple mate-
rial elements of these media, the expressions of the entropy function and the
entropy 1-form were obtained. In particular, we derive the transformation
induced by the process and, applying the closure conditions for the entropy
1-form, the necessary conditions for the existence of the entropy function.

Consider a material element and define the state space at time t as the
set Bt of all the state variables which "fit" the configuration of the element at
time t. Bt is assumed to have the structure of a finite dimensional manifold.
The "total state space" is the disjoint union B =

⋃
t{t} × Bt with a given

natural structure of fibre bundle over R where time flows (see [4] and [5]). We
call it the thermodynamic fiber bundle. We consider the case in which the
instantaneous state space Bt does not vary in time (i.e. there is an abstract
space B such that Bt ' B for all instants of time t) and the state space
B has the topology of the Cartesian product B ' R × B. Furthermore, we
consider an abstract space of processes (see [2], [3], [23], [24] and [25]) i.e. a
set Π of functions

P it : [0, t]→ G,

where [0, t] is any time interval, the space G being a suitable target space
defined by the problem under consideration, i a label ranging in an unspec-
ified index set for all allowed processes and t ∈ R the so called duration of
the process. For the given state space B we suppose that the set Π is such
that the following statements hold:

• ∃D : P it ∈ Π→ D(P it ) ≡ Di
t ∈ P(B).

D is the domain function, Di
t is the domain of the i-th process (of

duration t) and P(B) is the set of all the subsets of B;

• ∃R : P it ∈ Π→ R(P it ) ≡ Rit ∈ P(B). R is the range function and Rit is
called the range of the i-th process (of duration t);

• considering the restrictions

P it = P it |[0,τ ] (τ ≤ t) (35)
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new processes, called restricted processes, are obtained and they satisfy
the following condition:

∀τ < t D(P it ) ⊆ D(P iτ ). (36)

Incidentally, this implies that
⋂t
τ=0D(P iτ ) = D(P it ), where t is the

maximal duration.

Then, a continuous function is defined

χ : (t, P it ) ∈ R×Π→ ρit ∈ C0(B,B) (37)

with
ρit : b ∈ Di

t ⊆ B → ρit(b) = bt ∈ Rit ⊆ B, (38)

so that for any instant of time t and for any process P it ∈ Π a continuous
mapping, ρit, called transformation induced by the process is generated, which
gives point by point a correspondence between the initial state b and the final
state ρit(b) = bt.
Moreover, if P it and P

j
s are processes such that Dj

s∩Rit 6= ∅, then the function

(P js ◦ P it ) : [0, t+ s]→ G

defined by

(P js ◦ P it )(τ) =
{

P it (τ), τ ∈ [0, t]
P js (τ − t), τ ∈]t, t+ s]

(39)

is a process having the following domain

D(P js ◦ P it ) = (ρit)
−1(Dj

s ∩Rit) (40)

and, ∀b ∈ D(P js ◦ P it ), the transformation induced by the process P js ◦ P it is
defined by

ρijt+s(b) = [ρjs(ρ
i
t)(b)]. (41)

Now, we introduce a function of time

λib(τ) =
{
b if τ = 0 with b ∈ Di

t

ρit(b) if τ ∈]0, t]
(42)

such that the transformation for the medium is a function

δ : τ ∈ R −→ δ(τ) = (τ, λib(τ)) ∈ R×B. (43)
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With these positions the transformation is interpreted as a curve δ in the
union of all the state spaces such that it intersects the instantaneous state
space just once.
Now, we assume that the behavior of extrinsic thermoelastic semiconductors
with defects of dislocation is described by the following state variables

C = {Fij , Di, Bi, n, p, e, aij ,Vijk, jni , j
p
i , qi, n,i, p,i, θ,i, aij,k},

where we have taken into consideration the gradient of deformation Fij in-
stead of the strain tensor, following standard methods. The full state space
is then

B = Lin(V)⊕V⊕V⊕R⊕R⊕R⊕W1⊕W2⊕V⊕V⊕V⊕V⊕V⊕V⊕Lin(W1),

where V ' R3, W1 and W2 are vector spaces accounting for the internal
variables a and V , respectively.
Moreover, applying the usual method, we assume that for each pair (P it , b)
the following dynamical system holds (see [2], [3], [23], [24] and [25])

Ḟ = LF
Ḋ = H
Ḃ = Ξ
ρṅ = Gn

ρṗ = Gp

ρė = T · L + h
ȧ = γ

V̇ = V
j̇n = Jn

j̇p = Jp

q̇ = Q
∇̇n = N
∇̇p = P
∇̇θ = Θ
∇̇a = Γ,

(44)

where

Hi = εijkHk,j − (jni + jpi )− ρZvi, Ξi = −εijkEk,j , Gn = gn − jni,i,
Gp = gp − jpi,i, h = (jni + jpi )Ei − ρ̇

ρEiPi + EiṖi − qi,i + ρr,

γij = −Vijk,k +Aij ,
(45)
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(see eqn.s (5)1, (6)1, (8)4, (9)4, (17), (18) and (23) - (34)) and δ is defined
by eq. (43).
The constitutive functions θ, T, P, Jn, Jp, Q, A, V, gn and gp are defined
in the following way

θ : R×B → R++, T : R×B → Sym(V), P : R×B → V,

Jn : R×B → V, Jp : R×B → V, Q : R×B → V, A : R×B →W1,

V : R×B →W2, gn : R×B → R, gp : R×B → R.

The set (B,Π, θ,T,P,Jn,Jp,A,V,Q, gn, gp) defines the simple material
element for defective extrinsic semiconductors (see [24]).

Following standard procedures (see [3], [4] and [5]), in this geometrical
structure we are able to introduce an action s, called “entropy function”,
which is related to a reversible transformation between the initial and the
actual states b and bt, respectively, in the following way:

s(ρit, b, t) = −
∫ t

0

1
ρ
∇ · JSdτ, (46)

where JS is defined according to equation (20). Then, we get

s =
∫ t

0
− 1
ρθ
∇ · qdτ +

∫ t

0

1
ρθ2

q · ∇θdτ −
∫ t

0

1
ρ
∇ · kdτ. (47)

Using the internal energy balance equation and the relation L = ∇v = ḞF−1,
we obtain the following expression for ∇ · q

∇ · q = −ρė+ T · (ḞF−1) + (jn + jp) · E − ρ̇

ρ
E ·P + E · Ṗ, (48)

so that the final expression for the entropy function is calculated as an integral
along a path into the space R × B of all thermodynamic variables together
with the independent time variable

s(ρit, b, t) =
∫
δ

Ω, with

Ω = − 1
ρθ

(TF−T ) · dF− 1
ρθ

E · dD +
1
θ
de+

[
1
ρθ2

q · ∇θ − 1
ρθ

(jn + jp) · E
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+
1
ρ2θ

ρ̇E ·P +
ε0

ρθ
E · Ė− 1

ρ
∇ · k

]
dτ, (49)

where we have used the relation T · (ḞF−1) = (TF−T ) · Ḟ (being F−T =
(F−1)T and T denoting matrix transposition). In eq.(49) the entropy func-
tion defines a 1-form Ω in R × B called the entropy 1-form. In components
the entropy 1-form Ω becomes:

Ω = ωµdq
µ + ω0dt = ωAdq

A (A = 1, 2, ..., 16),

where
qA = (F,D,B, n, p, e,a,V , jn, jp,q,∇n,∇p,∇θ,∇a, t)

and
ωA =

[(
− 1
ρθ

TF−T
)
,

(
1
ρθ

E
)
, 0, 0, 0,

(
1
θ

)
, 0, 0, 0, 0, 0, 0,

0, 0, 0,
(

1
ρθ2

q · ∇θ − 1
ρθ

(jn + jp) · E +
1
ρ2θ

ρ̇E ·P +
ε0

ρθ
E · Ė− 1

ρ
∇ · k

)]
.

Thus, by external differentiation, a 2-form is obtained:

dΩ =
∂wA
∂qB

dqB ∧ dqA (A,B = 1, 2, ..., 16).

Since dΩ can be written in the following form

dΩ =
∑
B<A

∂wA
∂qB

dqB ∧ dqA +
∑
B>A

∂wA
∂qB

dqB ∧ dqA

=
∑
B<A

(
∂wA
∂qB

− ∂wB
∂qA

)
dqB ∧ dqA,

applying the closure conditions for the entropy 1-form, we obtain the neces-
sary conditions for the existence of the entropy function s during the pro-
cesses under consideration setting

∂wA
∂qB

=
∂wB
∂qA

.

In our case we have

∂e

(
− 1
ρθTF−T

)
= ∂F

(
1
θ

)
, ∂D

(
− 1
ρθTF−T

)
= ∂F

[
− 1
ρθE
]
,
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∂D
(

1
θ

)
= ∂e

[
− 1
ρθE
]
, ∂ωA

∂qB = 0 (A = 1, 2, 6, 16; B = 3, 4, 5, 7, ..., 15),

∂t

(
− 1
ρθTF−T

)
= ∂F

[
1
ρθ2 q · ∇θ− 1

ρθ (jn+jp) · E+ 1
ρ2θ ρ̇E ·P+ 1

ρθ ε0E · Ė−
1
ρ∇ · k

]
,

∂t
(

1
θ

)
= ∂e

[
1
ρθ2

q · ∇θ − 1
ρθ (jn+jp) · E+ 1

ρ2θ
ρ̇E ·P + 1

ρθ ε0E · Ė−
1
ρ∇ · k

]
,

∂t

[
− 1
ρθE

]
= ∂D

[
1
ρθ2 q · ∇θ − 1

ρθ (jn + jp) · E + 1
ρ2θ ρ̇E ·P + 1

ρθ ε0E · Ė−
1
ρ∇ · k

]
.

We remark that in semiconductor crystals ρ is practically constant, so
that all results derived in the paper containing the time derivative of ρ can
be disregarded. The above relations give the necessary conditions character-
izing a sort of "irrotationality" of the entropy 1-form during the analyzed
transformation. If the entropy 1-form in eq. (49) is closed and its coefficients
are regular, this form is exact and the existence of an upper-potential satisfy-
ing relation S(bt)−S(b) ≥ s is ensured, for all P it ∈ Π, with bt = ρit(b) [3].
Starting from the entropy 1-form it is possible to introduce and investigate
an extended thermodynamical phase space in a suitable way [26].
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A NEW LOOK AT THE LYAPUNOV
INEQUALITY∗

Constantin P. Niculescu†

Abstract

Given a Banach space E, it is proved that any function u in C2([a, b], E)
verifies the inequality

max {‖u(a)‖ , ‖u(b)‖}+
b− a

4

∫ b

a

‖u′′(t)‖ dt ≥ sup
t∈[a,b]

‖u(t)‖ .

The constant (b− a)/4 is sharp. Several applications are included.

MSC: Primary 26D10, 34B24; Secondary 26A24, 26A45, 46B20.

keywords: Sturm-Liouville problem, function of bounded variation, dif-
ferentiable function.

1 Introduction

The well-known Lyapunov inequality states that if q : [a, b]→ R is a contin-
uous function, then a necessary condition for the boundary value problem{

u′′ + qu = 0
u(a) = u(b) = 0,

(1)
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to have nontrivial solutions is that∫ b

a
|q(t)| dt > 4

b− a
. (2)

See the monograph [11] and the survey [3] (which also includes an excel-
lent account on the history of this result).

The following equivalent version of the Lyapunov inequality was proved
by Borg [2] (who attributes it to Beurling): for every twice continuously
differentiable function u : [a, b]→ R such that u(a) = u(b) = 0 and u(t) > 0
for t ∈ (a, b), we have ∫ b

a

|u′′(t)|
u(t)

dt >
4

b− a
. (3)

The aim of this paper is to embed (3) into a stronger inequality that
relates the values of a differentiable function on an interval, the values at the
endpoints and the total variation of its derivative:

Theorem 1. Let u : [a, b] → RN be a function which admits an integrable
second derivative. Then

max {‖u(a)‖ , ‖u(b)‖}+
b− a

4

∫ b

a

∥∥u′′(t)∥∥ dt ≥ sup
t∈[a,b]

‖u(t)‖ .

As usually, RN denotes here the Euclidean N -dimensional space.
The restriction to the case of functions taking values in RN is not essen-

tial. A similar result works for all functions taking values in an arbitrary
Banach space. This will be discussed in Section 4.

Theorem 1 has a very natural kinematic interpretation: Suppose a point
moves in the Euclidean space according to the law of motion u = u(t). Then
the difference between the maximum deviation from the origin during an
interval of time [a, b] and the maximum deviation at the endpoints of this
interval does not exceed

1
4

(elapsed time)× total variation of speed.

Recall that every differentiable function v : [a, b] → RN with integrable
derivative has bounded total variation and this is given by the formula∨b

a
v =

∫ b

a

∥∥v′(t)∥∥ dt.
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See [1], p. 104.
The proof of Theorem 1 will make clear that we can deal with other

boundary conditions and more general second order differential operators.
Some important remarks concerning the case of Neumann boundary condi-
tions can be found in [5].

Also, instead of the L1 norm in the left hand side and the sup norm in the
right hand side we may consider other pairs of Lp norms (with p ∈ [1,∞]).
All these questions will be discussed elsewhere.

2 Consequences of the main result

Theorem 1 has a number of interesting consequences even in the 1-dimensional
case. We start with the following stronger version of the inequality of Lya-
punov:

Corollary 1. (A. Wintner [14]). Let q = q(t) be a real-valued continuous
function defined on an interval [a, b]. A necessary condition for the equation
u′′ + q(t)u = 0 to have a nontrivial solution possessing (at least) two zeros
is that ∫ b

a
q+(t)dt >

4
b− a

.

Here q+ = sup {q, 0} denotes the positive part of q.

Proof: By Sturm’s Separation Theorem, since q+ ≥ q, the equation v′′ +
q+(t)v = 0 is a Sturm majorant for the equation u′′ + q(t)u = 0, and hence
has a nontrivial solution v with two zeros α < β in [a, b]. See [8], Corollary
3.1, p. 335. Lyapunov’s result follows now from Theorem 1, applied to the
restriction of v to [α, β]. In fact,

sup
t∈[α,β]

|v(t)| < β − α
4

∫ β

α
q+(t) |v(t)| dt

≤ b− a
4

(
sup
t∈[α,β]

|v(t)|

)∫ b

a
q+(t)dt,

and it remains to simplify both sides by supt∈[α,β] |v(t)|. �
Using a change of variable due to Hille [9], one can extend easily Corollary

1 to all second-order differential equations of the form

u′′ + g(t)u′ + f(t)u = 0,
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where f is continuous and g is continuously differentiable. In fact, the cor-
responding equation for v = u exp

(
1
2

∫ t
a g(s)ds

)
is in normal form,

v′′ + q(t)v = 0,

where q(t) = f(t)− 1
4g

2(t)− 1
2g
′(t).

Theorem 1 imposes an obstruction on the nonzero eigenvalues of the
operator Du = −u′′ + qu with Dirichlet boundary conditions:

Corollary 2. Suppose that q : [a, b]→ R is a continuous function, and f :
[a, b]×R→ R is a continuous function which admits an estimate of the form
|f(t, u)| ≤ ϕ(t) |u| for a suitable ϕ ∈ C([a, b],R) with ϕ > 0 on (a, b). Then
every eigenvalue of the regular Sturm-Liouville problem,{

−u′′ + qu = λf(t, u)
u(a) = u(b) = 0,

(4)

admits an estimate of the form

|λ| ≥
(

4
b− a

−
∫ b

a
|q| dt

)(∫ b

a
ϕdt

)−1

.

The linear case of the Sturm-Liouville problem (4) (that is, when f(t, u) =
ϕ(t)u) is presented in many books, for example in [8] and [13]. In this case the
spectrum −u′′+ qu consists of an increasing sequence of positive eigenvalues
λn with λn →∞.

Notice that Corollary 2 also works in the vector case (when u and f take
values in RN ).

Theorem 1 provides useful to establish Weierstrass type criteria of con-
vergence:

Corollary 3. Let (un)n be a sequence of real-valued twice differentiable func-
tions defined on an interval [a, b]. If:

i) this sequence is convergent at the endpoints; and
ii) the derivatives of second order u′′n are integrable and

lim
m,n→∞

∫ b

a

∣∣u′′m(t)− u′′n(t)
∣∣ dt = 0,

then the sequence (un)n is uniformly convergent.
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Moreover, if u is the limit of the sequence (un)n, and all derivatives u′′n
are bounded, then u is differentiable and

u′ = lim
n→∞

u′n uniformly.

Proof: The first part is a direct consequence of Theorem 1. The second part
follows from an old result due to Hadamard [7] (see also [12]): Let I be an
interval and let f : I → R be a twice differentiable bounded function, with
bounded second derivative. Then f ′ is also bounded and

∥∥f ′∥∥∞ ≤


2 ‖f‖∞
m(I)

+
m(I)

2
‖f ′′‖∞ , if m(I) ≤ 2

√
‖f‖L∞ / ‖f ′′‖∞

2
√
‖f‖∞ · ‖f ′′‖∞, if m(I) ≥ 2

√
‖f‖L∞ / ‖f ′′‖∞ and I 6= R√

2 ‖f‖∞ · ‖f ′′‖∞, if I = R.

Here m(I) denotes the length of I. �

3 The scalar case of Theorem 1

The scalar case of Theorem 1 is a consequence of the following more general
result:

Theorem 2. Let u : [a, b]→ R be a real-valued differentiable function whose
derivative has bounded variation. Then

max {|u(a)| , |u(b)|}+
b− a

4

∨b

a
u′ > sup

t∈[a,b]
|u(t)| ,

except for the affine functions, where equality holds true.

Proof: Step 1. We first consider the case where

u(a) = u(b) = 0. (5)

In this case (by replacing u by −u, if necessary) we may assume that |u|
attains its maximum at a point c ∈ (a, b) and

sup
t∈[a,b]

|u(t)| = u(c).
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Then by the Lagrange mean value theorem there are points t1 ∈ (a, c) and
t2 ∈ (c, b) such that

u(c) = u(c)− u(a) = u′(t1)(c− a)

and
u(c) = u(c)− u(b) = −u′(t2)(b− c).

Therefore ∨b

a
u′ ≥ sup

a<s1<c<s2<b

∣∣u′(s1)− u′(s2)
∣∣

≥ u′(t1)− u′(t2)

=
(

1
c− a

+
1

b− c

)
u(c)

≥ 4
b− a

sup
t∈[a,b]

|u(t)| , (6)

the last step being a consequence of the arithmetic mean - harmonic mean
inequality.

Step 2. We prove next (under the condition (5)) that the equality

b− a
4

∨b

a
u′ = sup

t∈[a,b]
|u(t)| (7)

occurs only for the function u identically zero. In fact, it suffices to show
that u|[a,c] equals the affine function g joining (a, 0) and (c, u(c)) and u|[c,b]
equals the affine function h joining (c, u(c)) and (b, 0). These equalities yield

g′(c) = u′−(c) = u′+(c) = h′(c)

whence u(c)
c−a = −u(c)

b−c . Therefore u(c) = 0 and this forces u ≡ 0.
The equality u|[a,c] = g (as well as the equality u|[c,b] = h) can be proved

by reductio ad absurdum. For example, if u(d) < g(d) for some point d ∈
(a, c), then by the Lagrange mean value theorem there is a t′ ∈ (d, c) such
that

u′(t′) =
u(c)− u(d)

c− d
>
u(c)− g(d)

c− d

=
g(c)− g(d)
c− d

=
u(c)
c− a

= g′(t1) = u′(t1).
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This yields to a contradiction since

∨b

a
u′ = u′(t1)− u′(t2) < u′(t′)− u′(t2)

=
∣∣u′(t′)− u′(t2)

∣∣ ≤∨b

a
u′;

the first equality is a consequence of (6) and (7).
The case where u(d) > g(d) for some point d ∈ (a, c) can be treated

similarly.
Step 3. In the general case we have to represent u as

u = (u− ϕ) + ϕ,

where ϕ is the affine function joining the points (a, u(a)) and (b, u(b)). Then
u−ϕ vanishes at the endpoints and the result established at Step 1 applies.
Therefore

sup
t∈[a,b]

|u(t)| ≤ sup
t∈[a,b]

|(u− ϕ) (t)|+ sup
t∈[a,b]

|ϕ(t)|

≤ b− a
4

∨b

a
(u− ϕ)′ + max {|u(a)| , |u(b)|}

=
b− a

4

∨b

a
u′ + max {|u(a)| , |u(b)|} ,

the equality being possible only when u− ϕ ≡ 0. �

4 The case of vector-valued functions

The proof of Theorem 1 can be reduced to the scalar case by linearization,
taking into account that

(
N∑
k=1

u2
k

)1/2

= sup

{
N∑
k=1

αkuk :
N∑
k=1

α2
k ≤ 1

}
.

Indeed, by assuming that Theorem 1 works in the case of scalar functions,
for every x ∈ [a, b] and every family (αk)Nk=1 of real numbers such that
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∑N
k=1 α

2
k ≤ 1 we have∣∣∣∣∣

N∑
k=1

αkuk(x)

∣∣∣∣∣ ≤ b− a
4

∫ b

a

(
N∑
k=1

|αk|
∣∣u′′k(t)∣∣

)
dt

+ max

{
N∑
k=1

|αk| |uk(a)| ,
N∑
k=1

|αk| |uk(b)|

}

≤ b− a
4

∫ b

a

∥∥u′′(t)∥∥ dt+ max {‖u(a)‖ , ‖u(b)‖} ,

that yields the conclusion of Theorem 1 in the Euclidean case.
It is worth to mention that Theorem 1 actually works in the general

framework of Banach spaces.

Theorem 3. Given a Banach space E, every twice differentiable function
u : [a, b] → E whose second derivative is (Bochner) integrable verifies the
inequality

max {‖u(a)‖ , ‖u(b)‖}+
b− a

4

∫ b

a

∥∥u′′(t)∥∥ dt ≥ sup
t∈[a,b]

‖u(t)‖ .

The constant (b− a)/4 is sharp.

Proof: In fact, according to a classical result due Weierstrass, there exists
a point t0 ∈ [a, b] such that

‖u(t0)‖ = sup
t∈[a,b]

‖u(t)‖ .

Then, by Theorem 1, for every norm-1 linear functional x′ in the dual space
E′ we have∣∣x′(u(t0))

∣∣ ≤ max
{∣∣x′ (u(a))

∣∣ , ∣∣x′ (u(b))
∣∣}+

b− a
4

∫ b

a

∣∣x′ (u′′(t))∣∣ dt
≤ max {‖u(a)‖ , ‖u(b)‖}+

b− a
4

∫ b

a

∥∥u′′(t)∥∥ dt.
The proof ends by taking the least upper bound in both sides over all x′ ∈ E′
with ‖x′‖ = 1, and using the following well-known consequence of the Hahn-
Banach extension theorem:

sup
x′∈E′, ‖x′‖=1

∣∣x′(u(t0))
∣∣ = ‖u(t0)‖ .

See [15], Corollary 2, p. 108. �
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5 Some open questions

The literature concerning the analogues of Lyapunov inequality for partial
differential equations already counts some important contributions. See for
example [4], [5] and [6]. It is thus natural to ask whether Theorem 1 admits
an extension to the case of functions of several variables.

Suppose that Ω is a bounded open subset Ω of RN . Does there exist a
second order differential operator A (which in the case of functions of one
real variable coincide with the second derivative) and a positive constant
c(Ω) (that depends only on the geometry of the domain Ω) such that every
real-valued continuous function u ∈ C(Ω̄)∩C2(Ω) with Au integrable verify
the inequality

max
x∈∂Ω

|u(x)|+ c (Ω)
∫

Ω
‖Au(x)‖ dx ≥ sup

x∈Ω̄

|u(x)|? (8)

Adrian Tudorascu (oral communication) provided a simple counterexam-
ple showing that the natural candidate for A, the Laplacian of u,

∆u =
N∑
k=1

∂2u

∂x2
k

,

fails even in the case where Ω is the unit ball in R2. However, the status of
(8) is open for Au =Hessu, where

Hessu =
(

∂2u

∂xj∂xk

)N
j,k=1

represents the Hessian matrix of u. Adrian Tudorascu and I have found some
consequences that make plausible a positive answer.

A final open question comes in connection with Corollary 3 above. We
do not know if the hypothesis regarding the boundedness of the derivatives
of second order is essential or not.

Acknowledgement. Research partially supported by CNCSIS Grant 420/2008.
We acknowledge helpful correspondence from Florin Popovici and Adrian Tu-
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Abstract

The Global Random Walk algorithm (GRW) performs a simulta-
neous tracking on a fixed grid of huge numbers of particles at costs
comparable to those of a single-trajectory simulation by the traditional
Particle Tracking (PT) approach. Statistical ensembles of GRW sim-
ulations of a typical advection-dispersion process in groundwater sys-
tems with randomly distributed spatial parameters are used to obtain
reliable estimations of the input parameters for the upscaled transport
model and of their correlations, input-output correlations, as well as
full probability distributions of the input and output parameters.
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1 Introduction

Models of passive scalar transport in highly heterogeneous media, such as
groundwater systems, turbulent atmosphere, or plasmas, are often based on
a stochastic partial differential equation for the concentration field c(x, t),

∂tc+ V∇c = D∇2c, (1)

with space variable drift V(x) which is a sample of a random velocity field,
and a local diffusion coefficient D which is assumed constant [9, 10, 14, 15, 7].
The normalized concentration solving (1) for the initial condition c(x, 0) =
δ(x−x0) is the probability density function of the diffusion process described
by the Itô stochastic ordinary differential equation

Xi(t) = x0i +
∫ t

0
Vi[X(t′)]dt′ +Wi(t), (2)

where i = 1, 2, 3, x0i = Xi(0) are deterministic initial positions and Wi are
the components of a Wiener process of mean zero and variance 2Dt [5].

In this paper we consider contaminant transport in saturated groundwa-
ter systems. The time-stationary random velocity field V(x) is, in this case,
the solution of the continuity and Darcy equations

∇V = 0, V = −K∇h, (3)

where K(x) is the hydraulic conductivity of the medium and h is the piezo-
metric head [7]. Dirichlet boundary conditions, consisting of constant heads
at the inlet and outlet boundaries of the domain, ensure the stationarity
in time of the velocity field V. The hydraulic conductivity K is supplied
by various interpretations of field-scale measurements in form of a spatially
distributed random parameter (random field) [2].

If the random velocity field, obtained by solving (3) for an ensemble of
realizations of the K field, has a finite correlation range then it can be shown
that, under certain conditions, the ensemble mean concentration is described
asymptotically by an upscaled model of form (1), with drift coefficient given
by the mean velocity and enhanced diffusion coefficients proportional with
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the velocity correlation lengths [6, 4]. Under less restrictive conditions, with
the only assumption that the first two spatial moments of the concentration
are finite at finite times, the mean concentration can still be described by an
equivalent Gaussian distribution with time variable diffusion coefficients [15],
referred to as the “macrodispersion” model in the hydrological literature [2].
Root-mean-square deviations of the solutions to (1), for fixed realizations of
the velocity field, from the predictions of the upscaled model are often used
to quantify the uncertainty in stochastic modeling of transport in random
environments [9, 12, 13, 14]. When the estimated mean-square uncertainty
is acceptably small, one considers that “ergodic conditions” are met and the
macrodispersion model can be successfully used to describe the transport
in a single realization of the groundwater formation [9]. Nevertheless, for
contamination risk assessments mean-square uncertainty assessments are not
enough and extreme values of the stochastic predictions are also required.
Such a task can be carried out by assessing the correlations and the full
probability distributions of the input/output parameters [1].

When solving advection-dominated transport problems associated to (1),
like the one considered here, with Péclet numbers Pe= Uλ/D = 100, where
U is the amplitude of the mean velocity and λ a correlation length, the chal-
lenge is to ensure the stability of the solutions and to avoid the numerical
diffusion [7]. Therefore, numerical solutions to the Itô equation (2), imple-
mented in so called Particle Tracking (PT) algorithms, are often used to
simulate trajectories of computational particles and to estimate concentra-
tions by particles densities. PT methods are stable, free of numerical dif-
fusion, thus suitable for advection-dominated transport problems. However,
since the computational costs increase linearly with the number of particles,
the estimated concentrations are too inaccurate for large-scale simulations
of transport in groundwater. Overcoming the limitations of the sequential
PT procedure, the Global Random Walk (GRW) has no limitations as con-
cerning the number of particles [9, 16]. As shown in Sect. 2.2 below, GRW
provides accurate simulations of the concentration field at costs comparable
to those of a single-trajectory PT simulation.

The paper is organized as follows. After recalling basic notions about
Euler schemes and PT methods in Section 2.1, we introduce in Section 2.2
the GRW algorithm as a weak numerical scheme for the Itô equation and in
Section 2.3 we present a two-dimensional GRW algorithm. A Monte Carlo
approach based on GRW is described in Section 3.1. Finally, in Section
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3.2 we demonstrate the ability of the GRW approach to produce a detailed
sensitivity and uncertainty numerical analysis of the macrodispersion model.

2 Numerical simulations of diffusion processes

2.1 Itô equation and Particle Tracking

Let us consider the one-dimensional Itô equation (2) and an equidistant time
discretization 0 < δt < · · · < kδt < · · · < Kδt = T . In most of its implemen-
tations, the PT simulation of the particle’s trajectory consists of an Euler
approximation Yt of the solution X(t), which is a continuous time process
satisfying the iterative scheme

Yk+1 = Yk + Vkδt+ δWk, (4)

where Yk = Ykδt, Vk = V (Yk), and δWk = Wk+1−Wk is the increment of the
Wiener process. While the strong convergence of order β > 0 of the Euler
scheme requires

lim
δt−→0

E (|Xt − Yt|) ≤ Cδtβ,

where E denotes the expectation, for the weak convergence of order β > 0,
it suffices that

lim
δt−→0

|E (g(Xt))− E (g(Yt))| ≤ Cδtβ,

for some functionals g(Xt) (e.g. moments E(Xm
t ), m ≥ 1).

For strong pathwise convergence, the Euler scheme (4) has to consider
the Wiener process specified in the Itô equation (2). For weak convergence,
when only the probability distribution is approximated, the increments of the
Wiener process can be replaced by random variables ξ with similar moments.
For weak Euler scheme of order β = 1 the first three moments of ξ have to
satisfy, for some constant M , the condition [5, Sect. 5.12]

|E(ξ)|+
∣∣E(ξ3)

∣∣+
∣∣E(ξ2)− δt

∣∣ ≤Mδt2.

Easily generated noise increments satisfying the above condition are the
two-states random variables

ξ : Ω −→ {−
√

2Dδt,+
√

2Dδt}, P{ξ = ±
√

2Dδt} =
1
2
. (5)
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2.2 Global Random Walk

As far as one approximates probability distributions and their moments the
trajectories of the weak Euler scheme are in fact not necessary. The probabil-
ity distribution of the surrogate random increments of the Wiener process (5)
is the limit over a large number of trials N of the relative frequency n/N of
occurrence of n heads or tails of an unbiased coin. This can also be thought
of as probability that a random walker takes unbiased left/right jumps of
constant length δx =

√
2Dδt on a lattice,

P{←} = P{→} = lim
N−→∞

n←

N
= lim

N−→∞

n→

N
=

1
2
, (6)

where n← and n→ are the number of walkers jumping to the first-neighbor
left site and to the first-neighbor right site, respectively.

The evaluation of the moments E(Xm
t ) within the numerical implemen-

tation of the weak Euler scheme consists of an arithmetic average, over an
ensemble of trajectories (4), of the position of the particles at a given time,
which approximates the stochastic average with respect to the probability
distribution, E(Xt) =

∫
xmP (t, dx). The latter average can also be esti-

mated by discretizing the integral on a regular grid of length L and space
step δx as a sum

∑L
i=1(iδx)mP (iδx), where the probability distribution at a

fixed time P (iδx) can be approximated by the relative frequency of occupa-
tion of the i-th lattice site, ni/N . Since, according to (5), the walkers cannot
be trapped at lattice sites, the occupancy number ni is the sum of numbers
of wlakers reaching the site i from the left, n→i , and from the right, n←i , i.e.
ni = n→i + n←i . One obtains thus the estimation of the m-th order moment
of Xt given by

E(Xm
t ) =

L∑
i=1

(iδx)m
(
n→i
N

+
n←i
N

)
. (7)

For large N , the random variables n→i and n←i occurring in (6-7) can be
well approximated as follows. If the number ni of walkers at the grid site i is
even then half of them jump to the left and half to the right, n←i = n→i = n/2.
If ni is odd then one walker is allocated to either n←i or to n→i with the
same probability, P{←} = P{→} = 1/2. One obtains in this way a GRW
algorithm for the Wiener process, described by equation (2) without drift
term [16]. Figure 1 illustrates the evolution of the number ni of random
walkers over the first three simulation steps, obtained with a straightforward
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MATLAB implementation of the above one-dimensional GRW algorithm.
The concentration at a given time (solution of (1)) can be simply estimated
as c(iδx) = ni/δx.

Figure 1: Distribution of N = 300 random walkers after the first three time
steps of the GRW simulation.

Unlike the discrete-time grid-free weak Euler scheme, the GRW algorithm
is a discrete time-space stochastic scheme. As follows from (5) the constant
amplitude δx of the random jumps ξ is related to the time step δt and the
diffusion coefficient D by

D =
δx2

2δt
. (8)

Since the numerical scheme is constrained by the relation (8), GRW is not
affected by numerical diffusion. GRW is also stable because the number
of random walkers N is conserved. Figure 2 shows the estimated mean
M = E(Xt) and diffusion coefficient D = [E(X2

t )−E(Xt)2]/(2t), computed
according to (7), as well as the final distribution of ni for a diffusion process
with D = 1 resulted from a GRW simulation with δx = 1 and δt = 0.5.
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It is also possible to simplify the GRW algorithm by completely removing
the randomness from the scheme. This is done by setting n←i and n→i to the
exact value of n/2. In this case N has no longer the meaning of a number
of random walkers and can be taken as an arbitrary positive real number,
for instance equal to 1. This deterministic GRW scheme is equivalent to the
finite-difference scheme for the heat equation and converges as δx2 for δx→ 0
[16]. Since according to relation (8) δx2 ∼ δt, the deterministic GRW has
the same order of convergence with the time step as the weak Euler scheme
of order β = 1. The convergence of the stochastic GRW simulation reaches
the same order only if the number of random walkers N is large enough to
smooth out the random fluctuations of ni. Figure 3 shows the dependence
on N of the absolute error eD(t) = |Dgrw(t)−D| and the convergence of the
norm ‖Dgrw −D‖ defined by

‖Dgrw −D‖2 =
T/δt∑
k=1

[Dgrw(kδt)−D]2 .

Figure 2: Estimation of the diffusion coefficient D(t) and of the mean M(t)
(left) and distribution of N = 300 random walkers after 200 time steps in
the GRW simulation (right).

Note that the GRW scheme described above is practically insensitive to
the number of random walkers N . Assuming that all L grid points contain
random walkers at all the computation time steps, one needs LT calls of
a uniformly-distributed random-numbers generator for the entire simulation.
Hence, the total computation time is of the order of that for the simulation of
a single trajectory of the Itô process by the weak Euler scheme. Since forN =
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Figure 3: Errors for the estimations of diffusion coefficients for increasing N
(left) and the convergence of the error norm (right).

1 the output of the simulation is the trajectory of a single random walker,
GRW can be thought of as a superposition of particle tracking procedures
for arbitrary large numbers of particles. Since the computational cost of a
simulation for N trajectories with the Euler scheme is of the order of NT , the
GRW algorithm achieves a speed-up of computations, with respect to PT,
of the order N/L. For example, while the convergence investigations with
GRW presented in Figure 3 were performed in about one second, similar
investigations with the Euler scheme required several minutes on the same
computer. In case of realistic simulations of diffusion processes, when very
large numbers of particles should be considered, e.g. N = 1024 (Avogadro’s
number), as well as large grids of the order of L = 106 nodes, a huge speed-
up of computations by a factor of 1018 can be achieved by using the GRW
algorithm.

2.3 Two-dimensional GRW algorithm

For a two-dimensional transport problem, the solution of the parabolic equa-
tion (1) is simulated with N particles undergoing advective displacements
and diffusive jumps according to the random walk law on a regular grid. The
concentration at a given time t = kδt and a point (x1, x2) = (i1δx1, i2δx2) is
given by

c(x1, x2, t) =
1

N∆1∆2

s1∑
i′1=−s1

s2∑
i′2=−s2

n(i1 + i′1, i2 + i′2, k), (9)
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where ∆l = 2slδxl, l = 1, 2, are the lengths of the symmetrical intervals
centered at xl and n(i1, i2, k) is the number of particles which at the time
step k lie at the grid point (i1, i2).

For constant diffusion coefficient D, the two-dimensional simulation con-
sists of repeating the one-dimensional procedure on each of the two spatial
directions [16, 11]. The one-dimensional GRW algorithm, which generalizes
the algorithm presented in Section 2.2 to account for advective displacements,
describes the scattering of the n(i, k) particles from (xi, tk) by

n(j, k) = δn(j, j + vj , k) + δn(j + vj − d, j, k) + δn(j + vj + d, j, k), (10)

where vj = Vjδt/δx are discrete displacements produced by the velocity field
and d describes the diffusive jumps. The quantities δn introduced in (10) are
Bernoulli random variables and describe respectively, the number of particles
which remain at the same grid site after an advective displacement and the
number of particles jumping to the left and to the right of the advected
position j + vj . The distribution of the particles at the next time (k + 1)δt
is given by

n(i, k + 1) =
∑
j

δn(i, j, k).

The average number of particles undergoing diffusive jumps and the average
number of particles remaining at the same node after the displacement vj
are given by the relations

δn(j + vj ± d, j, k) =
1
2
r n(j, k),

δn(j, j + vj , k) = (1− r) n(j, k),

where 0 ≤ r ≤ 1. The diffusion coefficient D is related to the grid steps by
the relation

D = r
(dδx)2

2δt
,

which generalizes (8) and ensures that the scheme does not produce numerical
diffusion.

Particularizing the above one-dimensional GRW algorithm for genuine
diffusion, i.e. letting vj = 0 in (10), one can easily see that the evolution of
the mean number of particles is described by

n(i, k + 1) =
r

2
n(i+ d, k) + (1− r)n(i, k) +

r

2
n(i− d, k). (11)
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which has the form of the explicit scheme for the heat equation. Since the
scheme (11) is consistent and, by condition r ≤ 1 (von Neumann’s criterion),
it is also stable, it converges with the order O(δx2). Moreover, as demon-
strated numerically in [16], the un-averaged GRW solution n(i, k) converges
as O(δx2) +O(N−1/2). Thus, for sufficiently large numbers of particles GRW
has the same order of convergence as the stable finite differences scheme.

It is worth noting that while for constant drift coefficients Vj the GRW
algorithm is still equivalent to a finite difference scheme, the equivalence fails
for space variable Vj . Indeed, in the latter case to the site i contribute not
only particles jumping from two symmetrical left and right sites, like in the
finite difference scheme (11), but also particles coming from distances vj ± d
which depend on the variable drift coefficient Vj . However, GRW remains
equivalent to a superposition of many PT schemes and this makes it suitable
for simulating advection-diffusion processes described by the parabolic equa-
tion (1). In fact, as shown in Section 2.2 above, GRW is a weak scheme for
solving Itô equations, which approximates the true probability distribution
(concentration) at all grid points and time steps, without solving for indi-
vidual trajectories. This is the essential feature which considerably increases
the performance of the GRW algorithm with respect to PT, where, after the
sequential simulation of particles trajectories, a post-processing is required to
count the contribution of the computational particles to the concentration,
estimated at given points in space and time steps.

The “reduced fluctuations” GRW algorithm generalizes the simple proce-
dure described in Section 2.2 by

δn(j + vj − d, j, k) =
{

n/2 if n is even
[n/2] + θ if n is odd,

where n = n(j, k) − δn(j, j + vj , k), [n/2] is the integer part of n/2 and θ
is a variable taking the values 0 and 1 with probability 1/2. Further, the
number of particles jumping in the opposite direction, δn(j, j + vj + d, k) is
determined by (10). This algorithm is appropriate for large scale problems,
for two reasons. Firstly, the diffusion front does not extend beyond the limit
concentration defined by one particle at a grid point, keeping a physical
significant shape (unlike in finite differences schemes, where a pure diffusion
front has a cubic shape of side ∼

√
2Dt ). Secondly, the reduced fluctuations

algorithm requires only a minimum number of calls of the random number
generator.
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A comparison with a PT code (done for the diffusion over ten time steps
of N particle starting at the center of a cubic grid) shows that while for the
GRW algorithm there were practically no limitations concerning the total
number of particles and the computation time was of about one second, PT
simulations for N = 109 particles already required a computing time of about
one hour and 256 processors on a CRAY T3E parallel machine [16].

To compute moments, as for instance the variance of particle displace-
ments s2ll = E(X2

l ) − E(Xl)2, l = 1, 2, a more accurate result is obtained if
instead of the concentration (9) one uses the point density of the number of
particles n(i1, i2, k):

1
(δx)2

s2ll(kδt) =
1
N

∑
i1,i2

i2l n(i1, i2, k)−

 1
N

∑
i1,i2

il n(i1, i2, k)

2

.

With this, the effective diffusion coefficients will be computed as

Deff
ll (kδt) = s2ll/(2kδt). (12)

Let us consider NX0
points uniformly distributed inside the initial plume,

N/NX0
particles at each initial point and let n(i1, i2, k; i01, i02) be the dis-

tribution of particles at the time step k given by the GRW procedure for a
diffusion process starting at (i01δx1, i02δx2). Writing the distribution for the
extended plume as

n(i1, i2, k) =
∑
i01,i02

n(i1, i2, k; i01, i02),

the averages defining the first two moments can be rewritten in the form

1
N

∑
i1,i2

αn(i1, i2, k) =
1

NX0

∑
i01,i02

NX0

N

∑
i1,i2

αn(i1, i2, k; i01, i02)

 , (13)

where α stands for il and i2l respectively. As follows from (13), the first two
moments E(Xl), and E(X2

l ), as well as the effective diffusion coefficients (12)
are averages over the trajectories of the diffusion process starting at given
initial positions and over the distribution of the initial positions.
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3 Sensitivity and uncertainty analysis

3.1 Monte Carlo simulations

To enable the simulation of large ensembles of transport realizations, a lin-
earization of the flow equation (3) was considered and the velocity samples
were generated, for given statistics of the hydraulic conductivity K, by the
Kraichnan’s randomization method [8], which has been successfully used in
numerical investigations on large scale behavior of the passive transport in
aquifers [3, 9, 10]. We considered a log-normally distributed conductivity K,
i.e. a normal lnK field with variance σ2 and exponential isotropic correlation
ρ(|x1−x2|) = σ2exp(−|x1−x2|/λ), where λ is the correlation length. For a
given pressure gradient between the inlet and outlet boundaries, which fixes
the value of the ensemble mean velocity U = |〈V〉|, the incompressible Darcy
flow, solution of equations (3), was approximated by a superposition of Np

periodic modes

Vi(x)=Uδi1 + Uσ

√
2
Np

Np∑
l=1

pi(ql) sin(ql · x + αl). (14)

The wave vectors ql are mutually independent random variables, with prob-
ability distribution proportional with the spectral density of the lnK field,
and the phases αl are random variables uniformly distributed in the interval
[0, 2π]. The functions pl are projectors which ensure the incompressibility of
the flow. It has been shown that Vi tends to a Gaussian random field when
Np →∞ [8]. It was also found that Np = 6400, which we fix in the following,
provides reliable approximations of the velocity field at the problem’s spatial
scale considered here [9, 3].

The mean velocity occurring in (14), which can be freely chosen, was set
to a typical value of U = 1 m/day. We also have chosen a typical local-
scale diffusion coefficient in (1), D = 0.01 m2/day, and λ = 1 m for the
correlation length of the lnK field, so that the Péclet number was set to
Pe= Uλ/D = 100. We conducted Monte Carlo simulations for two cases,
corresponding to two extreme degrees of heterogeneity: σ2 = 0.1, for which
the approximation (14) of the velocity field is accurate and the macrodisper-
sion model is expected to provide a reliable description of the mean behavior
of the transport process, and σ2 = 6, an extremely large value, for which (14)
is no longer close to the true solution of flow equations (3) but can however
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serve to illustrate the situation when the macrodispersion model might be
inadequate.

The behavior of a passive tracer, initially uniformly distributed in slabs of
dimensions 100λ×λ perpendicular to the mean flow direction, was simulated
over 2000 days for the low heterogeneity case σ2 = 0.1, in 1024 realizations
of the random field (14), and over 300 days, in 100 realizations in the highly
heterogeneous case σ2 = 6. The plume’s shapes in the two extreme cases are
compared in Figure 4. (Note that the spatial simulation domain was, in all
cases, large enough to avoid the influence of the boundaries.)

Figure 4: Plume contours for σ2 = 0.1 at t = 0, 100, 500 and 1000 days (left
panel) and for σ2 = 6 at t = 0, 10, and 100 days (right panel).

Monte Carlo estimates, by equal-weight (arithmetic) averages over the
corresponding ensembles of realizations, hereafter denoted by 〈· · · 〉, were
computed for the set of input parameters of the macrodispersion model,
consisting of longitudinal u = E(X1)/t and transverse v = E(X2)/t compo-
nents of the center of mass velocity, longitudinal Dx = Deff

11 and transverse
Dy = Deff

22 effective diffusion coefficients (12), for the only output parameter
considered here, consisting of the cross-section space average concentration
at the center of mass (hereafter denoted by c), as well as for their cross-
correlations, 〈uv〉, 〈uDx〉, 〈uDy〉, 〈vDx〉, 〈vDy〉, 〈DxDy〉, 〈uc〉, 〈vc〉, 〈Dxc〉,
and 〈Dyc〉. Probability densities of the parameters, approximated by his-
tograms, were summed-up to estimate cumulative probability distributions.
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3.2 Results

The left panel of Figure 5 shows that for low heterogeneity (σ2 = 0.1) the
only input-input relevant correlation is that between the longitudinal veloc-
ity of the center of mass and the transverse effective diffusion coefficient.
The sensitivity of the transverse dispersion to the mean longitudinal flow
indicates the increased role of the transverse dispersion for small mean flow
velocity. The results for the highly heterogeneous case (σ2 = 6) from the
right panel of Figure 5 show stronger correlations between the input param-
eters, which are expected to facilitate the uncertainty propagation and to
reduce the reliability of the macrodispersion model.

Figure 5: Correlations between input parameters of the macrodispersion
model (velocity components of center of mass, u and v, and dispersion coef-
ficients, Dx and Dy) for σ2 = 0.1 (left panel) and σ2 = 6 (right panel).

As expected, for low heterogeneity (left panel of Figure 6) there is a
strong correlation between the longitudinal effective diffusion coefficient and
the cross-section averaged concentration. This suggests that, when the only
output parameter of interest is the cross-section concentration, the macrodis-
persion model can be trusted as reliable for single-realizations of the transport
process, in agreement with other observations that the cross-section concen-
tration can be modeled as an one-dimensional advection-diffusion process
governed by the longitudinal effective diffusion coefficient [9]. The situation
is different for high heterogeneity (right panel of Figure 6), where the cross-
section concentration is also strongly correlated with the transverse effective
diffusion coefficient. Again, this result renders questionable the applicability
of the macrodispersion model to highly heterogeneous media.
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Figure 6: Correlations between input parameters u, v, Dx, and Dy, and
the output parameter c (the cross-section space average concentration at the
center of mass) for σ2 = 0.1 (left panel) and σ2 = 6 (right panel).

To illustrate the capability of the Monte Carlo approach based on GRW
simulations to produce a full statistical description of the transport process,
we present in Figure 7 the estimated cumulative probability distributions
of the cross section concentration at the plumes center of mass and of the
longitudinal velocity of the center of mass. In a forthcoming work, these prob-
ability distributions will be used as reference data in developing a probability
density function method similar to those used in modeling turbulent trans-
port [1]. The novelty of the new approach will consists of a three-dimensional
GRW solution of the equations governing the evolution of the concentration
probability density in the cartesian product between the physical space and
the concentration domain.

Acknowledgement. This work was supported by the Deutsche Forschungs-
gemeinschaft under Grant SU 415/1-2, Jülich Supercomputing Centre Project
No. JICG41, and Romanian Ministry of Education and Research under
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Figure 7: Probability distributions of the concentration estimated along the
longitudinal component of the center of mass c(xcm) (left panel) and of the
longitudinal component of the center of mass velocity as function of time
ucm(t) (right panel), for σ2 = 0.1.
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DEGENERATED HOPF BIFURCATIONS
IN A MATHEMATICAL MODEL OF

ECONOMICAL DYNAMICS ∗
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Abstract

It is assumed that the dynamics of the capital of a firm is governed
by a Cauchy problem for a system of two nonlinear ordinary differential
equations containing three real parameters. In this paper we determine
a k ≥ 3 order degenerated Hopf bifurcation point for this economical
model. To this aim the normal form technique is used.
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1 Introduction

The nonlinear dynamics theory enables us to understand and develop more
realistic processes and methods in economic models. The development of
the theory of singularities and the theory of bifurcation has completed the
multitude of ways at our disposal to analyze and represent more and more
complex dynamics, giving us the possibility of analyzing some systems which
were hard, if not impossible to approach by traditional methods. The study
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of nonlinear dynamics is of outmost interest because the economical sys-
tems are by excellence nonlinear systems. Many of these contain multiple
discontinuities and incorporate inherent instability being permanently under
shock actions, extern and intern perturbations.The classical methods based
on continuity, linearity and stability have been proven unstable for represent-
ing economic phenomena and processes with a higher degree of complexity.
The researchers are bound to follow these processes in a dynamic way, to
study qualitatively the changes that interfere with the implicated economic
variables as well as the results obtained with their help.There are several
models describing microeconomical dynamics. One of them is shown by the
subsequent model consisting in the Cauchy problem x(0) = x0, y(0) = y0 for
the system o.d.e. in R2.

1.1 Mathematical model

Let Kt be the capital of a firm at the time t and let Lt be the number of
workers. Then the production force reads yt = F (Kt, Lt). The dynamics
of the capital depends on the politics of firm development involving the net
profit πt, the dividends covering by shareholders δt (where δtπt represents
the dividends and (1 − δt)πt are the remaining investments), the capital
depreciation by a coefficient µt and the income obtained by liquidation of the
depreciated assets at the revenue costs λt. Let γt be the rate of change of
the capital, such that πt = γtyt. Then, according to Oprescu [6], Ungureanu
[7] {

K̇(t) = γt(1− δt)F (Kt, Lt)− µt(1− λt)Kt

L̇(t) = α1Kt + α2Lt − α0

where the dot over quantities represents the differentiation with respect to
time. Within this system K and L : R→ R are unknown functions depend-
ing on independent variable t (time), K− the capital of a firm and L- the
number of workers.

This study is made according to the simplifying assumption that the
parameters are considered constant µt = µ, δt = δ, γt = γ, λt = λ. If
yt = V Kα

t L
β
t and the production has an increasing physical efficiency, i.e.

α+ β > 1, the above equations become{
ẋ = cx2y + bx
ẏ = x+ α2y − 1

(1.1.1)
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where we choose α = 2, β = 1, x = β1Kt, y = β2Lt, β1 = α1/α0, β2 = 1/α0

for α0 6= 0, α1 6= 0, a = V γ(1− δ), b = −µ(1− λ), c = aα2
0/α1. In this way

the new state functions x and y are proportional to the capital and working
force respectively. In addition, the number of parameters was reduced from
eight to three.

1.2 Equilibrium points

Here α2,b,c ∈ R are constant economical parameters and x and y are two
economical state functions which are proportional to the capital and working
force respectively.

The dynamics generated by (1.1.1) strongly depends on the three param-
eters. However, it is qualitatively unchanged for parameters lying in some
areas of the parameter space. Correspondingly, for various points in these
areas, the phase portraits are topologically equivalent.

In phase portraits formation a particular influence is exercised by the
equilibria. They are the starting points in the study of the dynamical bifur-
cation (understood as a negation of the structural stability).

In the (x, y) phase plane they correspond to the equilibrium points de-
noted by u .

The following cases hold:

a) b = c = α2 = 0⇒ (1.1.1) has an infinity of equilibria u = (1, y0) ,∀y0 ∈ R
possessing the eigenvalues s1 = s2 = 0;

b) b = c = 0, α2 6= 0⇒ (1.1.1) has an infinity of equilibria u = (1− α2y0, y0),
∀ y0 ∈ R possessing the eigenvalues s1 = 0, s2 = α2;

c) b = α2 = 0, c 6= 0⇒ (1.1.1) has a unique equilibrium u = (1, 0) possessing
the eigenvalues s1,2 = ±

√
c for c > 0 and s1,2 = ±i

√
−c for c < 0;

d) c = α2 = 0, b 6= 0⇒ (1.1.1) has no equilibrium;

e) c = 0 , bα2 6= 0⇒ (1.1.1) has an equilibrium u =
(
0, α−1

2

)
possessing the

eigenvalues s1 = b, s2 = α2;

f) b = 0, cα2 6= 0 ⇒ (1.1.1) has two equilibria u1 = u2 =
(
0, α−1

2

)
and

u3 = (1, 0) possessing the eigenvalues s1 = 0,s2 = α2 and s1,2 =(
α2 ±

√
α2

2 + 4c
)
/2, respectively;
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Figure 1: The surface S

g) α2 = 0, bc 6= 0 ⇒ (1) has an equilibrium u = (1,−b/c) possessing the
eigenvalues s1,2 =

(
−b±

√
b2 + 4c

)
/2 ;

h) α2bc 6= 0⇒ (1.1.1) has three equilibria u1 =
(
0, α−1

2

)
,

u2 =
(
c+
√
c2+4bcα2

2c ,
c−
√
c2+4bcα2

2cα2

)
, u3 =

(
c−
√
c2+4bcα2

2c ,
c+
√
c2+4bcα2

2cα2

)
.

In the general case h), the three equilibria can never coincide, neither in
the limit b, c, α2 → ±∞ . However, two of them can coincide at the points
of the parameter space situated on a surface S (Figure 1). More exactly if
u1 = u2 = (1/2, 1/2α2) . Therefore S is a hyperboloid with two sheets. It has
the equation c = −4bα2, where bα2 6= 0 and , and its sheets are situated in
the octants characterized by c > 0, bα2 < 0, and c < 0, bα2 > 0, respectively.

In the domain determined by sheets of S and the plane on which it is
supported,(b, α2) , the system (1.1.1) has an equilibrium point. Outside this
domain, at the points which do not belong to S or the three planes b = 0,
c = 0, α2 = 0 , the system (1.1.1) possesses three equilibria.

We recall that on the sheets of S (1.1.1) possesses two equilibria and S
has no point in the plans of coordinates on the parameter space. We can have
two equilibria only on S and in the b = 0 plane without axes, one equilibrium
is double, namely u2 = u3 =

(
0, α−1

2

)
, and another one u2 = (1, 0) simple.

Let us notice that in this case c 6= 0.
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Let us define the domains D1 and D2 determined by the sheets of S and
the c = 0 plane (b > 0, α2 < 0 and b < 0, α2 > 0, respectively). The domains
D1 and D2 do not contain Oc axis. There are three equilibria only for points
of the parameter space situated outside the domains D1 and D2 .

System (1.1.1) can have one equilibrium only in the following three cases:
1) Points situated on the Oc axis without origin. In this case the equi-

librium is u2 = (1, 0);
2) The c = 0 plane without axis. In this case the equilibrium point is

u1 =
(
0, α−1

2

)
;

3) The α2 = 0 plane. In this case the equilibrium is u2 = (1,−b/c).
To points of the Ob axis without origin no equilibrium corresponds. For

points of the Oα2 axis including the origin there are an infinity of equilibria
situated on the straight-line x + α2y − 1 = 0. On the Oα2 axis without
origin the corresponding equilibria have the form (x0, (1− x0)/α2). Among
them there is u2 = (1, 0) (corresponding to x0 = 1), u1 = u3 =

(
0, α−1

2

)
(corresponding to x0 = 0) and u2 = u3 = (1/2, 1/2α2) (corresponding to
x0 = 1/2). It follows that to the points of the Oα2 axis without origin the
same equilibria u1and u2 = u3 correspond as for the points of S.

The half axes α2 > 0 and α2 < 0 consist of accumulation points for S.
This is true both when S is considered as a topologic subspace of R3 and
when S possesses the above property concerning the equilibria (i.e. u2 = u3).

However, for points of the Oα2 axis without origin, apart from the equi-
libria u1 and u2 = u3, there exists an infinity of other equilibria depending
on the initial datum.

Finally, to the origin of the parameters space an infinity of equilibria of
the form (1, y0)corresponds. Among them, there is also the point u2 = (1, 0)
(corresponding to y0 = 0 ).

2 Nonhyperbolic singularities of Hopf type

2.1 Normal forms

Using the eigenvalues and the eigenvectors of the nonhyperbolic point of equi-
librium u3 corresponding to the values of parameters α2 = b, c < −4b2, we
put the system (1.1.1) in the normal form and emphasises that it corresponds
to a degenerated Hopf singularity.
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Proposition 2.2.1. Up to terms of degree greater than three system{
ẋ = cx2y + bx,
ẏ = x+ by − 1

(2.1.1)

has around the equilibrium u3 = ( c−
√

∆
2c , c+

√
∆

2bc ) not= (u, v), where ∆ = c2 +
4b2c, the normal form {

ẋ5 = irx5 + Cx2
5y5,

ẏ5 = −iry5 + Cx5y
2
5.

Proof. We carry the point u3 at the origin by means of the change of
coordinates x1 = x− u, y1 = y − v. Then (2.1.1) becomes{

ẋ1 = −bx1 + cu2y1 + cvx2
1 + 2cux1y1 + cx2

1y1,
ẏ1 = x1 + by1.

(2.1.1)′

The matrix associated to the system linearized around the point (x1, y1) =

(0, 0) is Q =
(
−b cu2

1 b

)
and it admits the purely imaginary eigenvalues

s1,2 = ±i
√
−c−4b2+

√
c2+4bc

2
not= ±ir. Hence u3 is a Hopf singularity. Let

p = (s1−b, 1) be an eigenvector of Q corresponding to the eigenvalue s1 = ir.
Then, p may be written in the form p = q + it where q = (−b, 1),and t =

(r, 0). The matrix P =
(
r −b
0 1

)
is nonsingular and so, we may perform

the transformation(
x2

y2

)
= P−1

(
x1

y1

)
=

1
r

(
1 b
0 r

)(
x1

y1

)
and obtain a system in (x2, y2). As the linearized system corresponding
at (x2, y2) has not a matrix in a diagonal form we perform the change(
x3

y3

)
= Mc

(
x2

y2

)
whereMc =

(
0, 5 0, 5
−0, 5i 0, 5i

)
. Therefore,

(
x3

y3

)
=

McP
−1

(
x1

y1

)
. As Mc is a matrix in the complex field it follows that

x3, y3 ∈ C namely x3 = y3, (y3 is the complex conjugate of y3). We have
x3 = 1

r [x1 + (b+ ir)y1], y3 = 1
r [x1 + (b− ir)y1] or, x1 = r+ib

2 x3 + r−ib
2 y3,

y1 = i
2(y3 − x3). Thus, (2.1.1) becomes



Degenerated HOPF bifurcations in a mathematical model 241

{
ẋ3 = irx3 + T

2 ,

ẏ3 = −iry3 + T
2 ,

(2.1.2)

where T = a20x
2
3 +a20y

2
3 +a11x3y3 +a30x

3
3 +a30y

3
3 +a21x

2
3y3 +a21x3y

2
3, a20 =

bc−5b
√

∆
4r + i

√
∆, a11 = b(

√
∆−c)
2r , a21 = ci(c−2b2−

√
∆+4irb)

8r , a30 = −ci(r+ib)2
4r .

In order to eliminate the nonresonant terms of second degree it is nec-
essary to complete the following table, where Λm,i = (m · s) − si and
hm,1 = Xm,i

(m·s)−si
, s = (s1, s2) [1].

Table 2.1

m1 m2 Xm,1 Xm,2 Λm,1 Λm,2 hm,1 hm,2
2 0 a20

2
a20
2 ir 3ir a20

2ir
a20
6ir

1 1 a11
2

a11
2 −ir ir −a11

2ir
a11
2ir

0 2 a20
2

a20
2 −3ir −ir −a20

6ir −a20
2ir

It follows the transformation

(
x3

y3

)
=
(
x4

y4

)
+
(

a20
2ir x

2
4 − a11

2ir x4y4 − a20
6ir y

2
4

a20
6ir x

2
4 + a11

2ir x4y4 − a20
2ir y

2
4

)
,

which introduced in (2.1.2), leads to the system

{
ẋ4 = irx4 +Ax3

4 +Ay3
4 + Cx2

4y4 + Cx4y
2
4,

ẏ4 = −iry4 +Ax3
4 +Ay3

4 + Cx2
4y4 + Cx4y

2
4,

(2.1.3)

where A = 6a2
20+a11a20+6ira30

12ir and C = 2a20a20−3a11a20+3a2
11+6ira21

12ir .

In order to reduce the nonresonant terms of order three (2.1.3) we use
the table.
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Table 2.2

m1 m2 Xm,1 Xm,2 Λm,1 Λm,2 hm,1 hm,2
3 0 A A 2ir 4ir A

2ir
A

4ir

2 1 C C 0 2ir − C
2ir

1 2 C C −2ir 0 − C
2ir −

0 3 A A −4ir −2ir − A
4ir − A

2ir

Thus we obtain the transformation(
x4

y4

)
=
(
x5

y5

)
+

(
A

2irx
3
5 − C

2irx5y
2
5 − A

4iry
3
5

A
4irx

3
5 + C

2irx
2
5y5 − A

2iry
3
5

)
leading to the system{

ẋ5 = irx5 + Cx2
5y5,

ẏ5 = −iry5 + Cx5y
2
5.

(2.1.4)

In this system we retained terms up to the third degree. Thus we ob-
tained the normal form in C. Obviously the second equation is the conjugate
of the first, therefore, up to terms of the third degree the normal form is
(2.1.4)1.

Theorem 2.1.1 The Hopf singularity u3 is degenerated of order k ≥ 2.
Proof. Taking into account the expressions of a20, a11, a21, r, ∆ a direct

computation leads us to the expression of C :
C = − ic

48r3

(
16b4 + 5b2c− c2 + c

√
∆− 7b2

√
∆
)
. Since c < −4b2 it fol-

lows that 16b4 + 5b2c− c2 + c
√

∆− 7b2
√

∆ < −4b2− c2− 3b2
√

∆ < 0, hence
C 6= 0 and C is purely imaginary. Then (2.1.4) has the follow normal form,
according to Arrowsmith [1]:(

0 −β
β 0

)(
y1

y2

)
+

[(N−1)/2]∑
k=1

(y2
1 + y2

2)k
{
ak

(
y1

y2

)
+ bk

(
−y2

y1

)}
+

O
(
|y|N+1

)
, β =

√
detA,N ≥ 3, [.] represents integer part and ak, bk ∈ R

where a1 = 0 and b1 = ImC 6= 0, whence the conclusion of the theo-
rem.(Figure 1)

Corollary 2.1.1 The first Liapunov coefficient associated to system (2.1.1)′

is null (ReC = 0).
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Figure 2: Local phase portrait in the degenerated Hopf bifurcation, for
α2 = b = −0.1, c = −0.04.

2.2 Computation of the Liapunov coefficients

Proposition 2.2.1. The system (2.1.1)′ is topologically equivalent to system


ẋ2 = −ry2 + cvrx2

2 + (2cu− 2vb)x2y2 + cvb2−2cub
r y2

2 + crx2
2y2

−2cbx2y
2
2 + cb2

r y
3
2,

ẏ2 = rx2.

(2.2.1)

Proof. The transformation of coordinates{
x1 = rx2 − by2,
y1 = y2

carries system (2.1.1)′ in (2.2.1). In this conditions, according to Chow
and Wang [2] there exists a smooth function F (x) = r

2(x2
2 + y2

2) +O(|x, y|3)
such that

〈gradF,X0〉 =
m∑
i=1

Vi(x2
2 + y2

2)i+1 +O(|x, y|m+1) (2.2.2)
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where X0 is the vector field corresponding to (2.2.1), and Vi are the Liapunov
coefficients.

Proposition 2.2.2. For the system (2.2.1) we have V1 = 0 and

V2 =− b2c2

24r2

[
13c2 + 78b2c+ 5bc+ 104b4 − 90b3 − (3b+ 52b2 + 13c)

√
c2 + 4b2c

]
.

Proof. We look for F to the form F (x) = r
2(x2

2 + y2
2) +

∑
i+j=k

∑
k>3

cijx
i
2y
j
2.

Therefore, we have

〈gradF,X0〉 = r2x2y2 + r
∑
i+j=3

jcijx
i+1
2 yj−1

2 − r2x2y2 − r
∑
i+j=4

icijx
i−1
2 yj+1

2 +

cvr2x3
2 + cvr

∑
i+j=3

icijx
i+1
2 yj2 + 2c(u− vb)rx2

2y2 +

2c(u− vb)
∑
i+j=4

icijx
i
2y
j+1
2 +

cvb2 − 2cub
r

rx2y
2
2 +

cvb2 − 2cub
r

y2
2

∑
i+j=3

icijx
i−1
2 yj+2

2 + cr2x3
2y2 +

cr
∑
i+j=4

icijx
i+1
2 yj+1

2 − 2cbrx2
2y

2
2 − 2cb

∑
i+j=3

icijx
i
2y
j+2
2 +

cb2x2y
3
2 +

cb2

r

∑
i+j=4

icijx
i−1
2 yj+3

2

Identifying the monomials of degree three coefficients in (2.2.2) we obtain
the following system in unknowns cij , i+ j = 3 :


rc21 + cvr2 = 0,
−rc12 = 0,
3rc03 − 2rc21 + cvb2 − 2cub = 0,
2rc12 − 3rc30 + 2cru− 2cvbr = 0.

The solution of this system reads c12 = 0, c21 = −cvr, c03 = 2cub−cvb2−2r2cv
3r ,

c30 = 2cu−2cvb
3 .

Identifying the monomials of degree four coefficients in (2.2.2) we obtain
the following system in unknowns cij , i+ j = 4 and V1
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

rc31 + 3cvrc30 = V1,

−rc13 + cvb2−2cub
r c12 = V1,

4rc04 − 2rc22 + 2c(u− vb)c12 + 2 cvb
2−2cub
r c21 + cb2 = 0,

3rc13 − 3rc31 + cvrc12 + 4c(u− vb)c21 + 3 cvb
2−2cub
r c30 − 2cbr = 2V1,

2rc22 − 4rc40 + 2cvrc21 + 6c(u− vb)c30 + cr2 = 0,

the solution of which is V1 = 0, c13 = 0, c31 = −2c2uv + 2c2v2b, c04 =
c22
2 + 2c2v2b2−4c2uvb−cb2

4r , c40 = c22
2 + 4c2u2−8c2uvb+4c2v2b2−2c2v2r2+cr2

4r .

Remark 2.2.1. The result V1 = 0 represents a new proof for Theorem
2.1.1.

Identifying the monomials of degree five coefficients in (2.2.2) we obtain
the following system in unknowns cij , i+ j = 5



rc41 + 4cvrc40 = 0,
rc14 + cvb2−2cub

r c13 + cb2

r c12 = 0,
5rc05 − 2rc23 + 2c(u− vb)c13 + 2 cvb

2−2cub
r c22 − 2bcc12 + 2cb2

r c21 = 0
4rc14 − 3rc32 + cvrc13 + 4c(u− vb)c22 + 3 cvb

2−2cub
r c31 + crc12

−4cbc21 + 3cb2

r c30 = 0,
3rc23 − 4rc41 + 2cvrc22 + 6c(u− vb)c31 + 4 cvb

2−2cub
r c40

+2crc21 − 6bcc30 = 0,
2rc32 − 5rc50 + 3cvrc31 + 8c(u− vb)c40 + 3crc30 = 0

whence
c14 = 0,
c41 = −4cvc40,
c23 =

[
1
3r (−16cvr − 4 cvb

2−2cub
r )c40 − 2cvrc22 − 6c(u− vb)c31 − 2crc21

+6cbc30] ,
c32 =

[
1

3r2
4cr(u− vb)c22 + 6c3v3b3 − 18c3v2ub2 + 12c3vu2b+ 4c2vbr2

+2c2ub2 − 2c2vb3
]
,

c50 = 1
5r [2rc32 + 3cvrc31 + 8c(u− vb)c40 + 3crc30] ,

c05 = 2
5c23 − 2cb2

5r2
c21 − 2

5r2
(cvb2 − 2cub)c22.

By identifying the coefficients of the monomials of degree six in (2.2.2)
we obtain the following system in unknowns V2 and cij , i+ j = 6
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

rc51 + 5cvrc50 = V2,

−rc15 + cvb2−2cub
r c14 + cb2

r c13 = V2

2rc42 − 6rc60 + 4cvrc41 + 10c(u− vb)c50 + 4crc40 = 0
3rc33 − 5rc51 + 3cvrc32 + 8c(u− vb)c41 + 5 cvb

2−2cub
r c50

+3crc31 − 8cbc40 = 3V2,

4rc24 + 2cvrc23 + 6c(u− vb)c32 − 4rc42 + 4 cvb
2−2cub
r c41+

2crc22 − 6bcc31 + 4cb2

r c40 = 0,
5rc15 − 3rc33 + cvrc14 + 4c(u− vb)c23 + 3 cvb

2−2cub
r c32 + crc13

−4cbc22 + 3cb2

r c31 = 3V2,

6rc06 − 2rc24 + 2c(u− vb)c14 + 2 cvb
2−2cub
r c23 − 2bcc13 + 2cb2

r c22 = 0.

Since c15 = −V2
r , c51 = V2

r − 5cvrc50, by replacing the found value for 3rc33

from the sixth equation in the fourth equation and taking into account the
found values for cij , i+ j = 5, we have

V2 = − b
2c2

24r2
13c2 + 78b2c+ 5bc+ 104b4 − 90b3

−(3b+ 52b2 + 13c)
√
c2 + 4b2c.

The set V2 = 0 intersects the domain
{
α2 = b, c < −4b2

}
along a curve

γ3 the existence of which is proved by studying the sign of V2 in the domain
considered, and also by numerical methods (figure 3).

It is important to remark that the equilibrium ū3 exists also on the half-
axis c < 0 and in this case b = 0 implies V2 = 0. The curve γ3 and the
negative half-axis c < 0 divide the interior of the parabola α2 = b, c = −4b2

in three regions:

U1 =
{

(b, b, c)| c < 0,−
√
−c
2 < b < 0

}
,

U2 = {(b, b, c)| c < 0, 0 < b < b(c)} ,
U3 =

{
(b, b, c)| c < 0, b(c) < b <

√
−c
2

}
,

where α2 = b, b = b(c) are the equations of the curve γ3. It is easy to see
that V2 < 0 on U1 ∪ U2, V2 > 0 on U3. As V2 = 0 on γ3 and on the half-axis
c < 0 it follows
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Figure 3: The sign of V2 in
{
α2 = b, c < −4b2

}
.

Theorem 2.2.1 The point of equilibrium ū3 is locally a Bautin bifurca-
tion with the Liapunov coefficient V2 < 0 for (α2, b, c) ∈ U1 ∪ U2, a Bautin
bifurcation with the Liapunov coefficient V2 > 0 for (α2, b, c) ∈ U3, and a de-
generated Hopf bifurcation of order k ≥ 3 for a point of γ3 or of the negative
half-axis c < 0.

2.3 Conclusions

From economic point of view, the variation of capitalK and labor L over time
it can be observed, starting from the initial significant data corresponding
to some points in the parameter space. Therefore, there are situations when
the system considered enable a periodic solution appropriate to a cyclical
economic evolution. Negative phenomena such as production shortage and
increase of unemployment rate and also the positive ones, featured by refur-
bishment of production capacities that could induce the growth of demand for
consumption goods and determination of employment level, can be relieved.
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ASYNCHRONOUS SYSTEMS:
ω−LIMIT SETS, INVARIANCE

AND BASINS OF ATTRACTION∗
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Abstract

The asynchronous systems are the non-deterministic real time-
binary models of the asynchronous circuits from electrical engineering.
Autonomy means that the circuits and their models have no input.
Regularity means analogies with the dynamical systems, thus such sys-
tems may be considered to be the real time dynamical systems with a
’vector field’ Φ : {0, 1}n → {0, 1}n. Universality refers to the case when
the state space of the system is the greatest possible in the sense of the
inclusion. The purpose of this paper is that of defining, by analogy with
the dynamical systems theory, the ω−limit sets, the invariance and the
basins of attraction of the universal regular autonomous asynchronous
systems.
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1 Introduction

We denote by B = {0, 1} the binary Boole algebra, endowed with the discrete
topology and with the usual algebraical laws:

0 1
1 0

,
· 0 1
0 0 0
1 0 1

,
∪ 0 1
0 0 1
1 1 1

,
⊕ 0 1
0 0 1
1 1 0

Table 1

The real numbers set R is the time set and t ∈ R are the time instants.
The R → B functions give the deterministic1 real time-binary models

of the digital electrical signals and they are not studied in literature. An
asynchronous circuit without input, considered as a collection of n signals,
should be deterministically modelled by a function x : R→ Bn called state.
We have however several parameters related with the asynchronous circuit
that are either unknown, or perhaps variable or simply ignored in modeling
such as the temperature, the tension of the mains and the delays that occur
in the computation of the Boolean functions. For this reason, instead of a
function x we have in general a set X of functions x, called state space, or
non-deterministic2 autonomous asynchronous system, where each function x
represents a possibility of modeling the circuit. When X is constructed by
making use of a ’vector field’ Φ : Bn → Bn, the system X is called regular.
The universal regular autonomous asynchronous systems are the Boolean
dynamical systems and they can be identified with Φ.

We give in Figure 1 at a) the example of the NAND gate defined by
φ : B2 → B, ∀(µ1, µ2) ∈ B2, φ(µ1, µ2) = µ1µ2 and at b) the example of
an autonomous circuit made with two such devices and characterized by
Φ : B2 → B2, ∀(µ1, µ2) ∈ B2, (Φ1(µ1, µ2),Φ2(µ1, µ2)) = (µ2, µ1µ2).

The dynamics of these asynchronous systems3 is described by the so called
state portraits, see Figure 1 c) where the arrows show the increase of time.
For any i ∈ {1, 2}, the coordinate µi is underlined if Φi(µ1, µ2) 6= µi and
it is called unstable, or enabled, or excited in this case. The coordinates µi

1’Deterministic’ means that each signal is modeled by exactly one R → B function.
2’Non-deterministic’ means that each signal is modeled by several xi : R → B functions

or, equivalently, that each circuit is modeled by several functions x ∈ X.
3The systems are (vaguely) the models of the circuits.
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Figure 1: a) The NAND gate, b) Example of system using the NAND gate,
c) The state portrait of the system from b)

that are not underlined satisfy by definition Φi(µ1, µ2) = µi and are called
stable, or disabled, or not excited. Three arrows start from the point (0, 0)
where both coordinates are unstable, showing the fact that Φ1(0, 0) may
be computed first, Φ2(0, 0) may be computed first or Φ1(0, 0),Φ2(0, 0) may
be computed simultaneously and similarly for the point (1, 1). Note that
the two possibilities of defining the system, state portrait and formula, are
equivalent. Note also that the system was identified with the function Φ.

The existence of several possibilities of changing the state of the sys-
tem (three possibilities in (0, 0) and (1, 1), one possibility in (1, 0), no pos-
sibility in (0, 1)) is the key characteristic of asynchronicity, as opposed to
synchronicity where the coordinates Φi(µ) are always computed simultane-
ously, i ∈ {1, ..., n} for all µ ∈ Bn and the system’s run is: µ,Φ(µ), (Φ ◦
Φ)(µ), ..., (Φ ◦ ... ◦ Φ)(µ), ...

Our present aim is to show how the well-known concepts of ω−limit set,
invariance and basin of attraction from the dynamical systems theory, by
real to binary translation, may be integrated in the asynchronous systems
theory.
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2 Preliminaries

Notation 1. χA : R → B is the notation of the characteristic function of

the set A ⊂ R: ∀t ∈ R, χA(t) =
{

1, t ∈ A
0, t /∈ A .

Notation 2. We denote by Seq the set of the sequences t0 < t1 < ... < tk <
... of real numbers that are unbounded from above.

Definition 3. The sequence α : N → Bn,∀k ∈ N, αk = α(k) is called
progressive if the sets {k|k ∈ N, αki = 1} are infinite for all i ∈ {1, ..., n}.
We denote the set of the progressive sequences by Πn.

Definition 4. The functions ρ : R→ Bn of the form ∀t ∈ R,

ρ(t) = α0χ{t0}(t)⊕ α
1χ{t1}(t)⊕ ...⊕ α

kχ{tk}(t)⊕ ... (1)

where α ∈ Πn and (tk) ∈ Seq are called progressive and their set is denoted
by Pn.

Definition 5. Let be the function Φ : Bn → Bn. i) For ν ∈ Bn we define
Φν : Bn → Bn by ∀µ ∈ Bn, Φν(µ) = (ν1µ1 ⊕ ν1Φ1(µ), ..., νnµn ⊕ νnΦn(µ)).

ii) The functions Φα0...αk : Bn → Bn are defined for k ∈ N and α0, ..., αk ∈
Bn iteratively: ∀µ ∈ Bn, Φα0...αkαk+1

(µ) = Φαk+1
(Φα0...αk(µ)).

iii) The function Φρ : Bn × R → Bn that is defined in the following
way Φρ(µ, t) = µχ(−∞,t0)(t) ⊕ Φα0

(µ)χ[t0,t1)(t) ⊕ Φα0α1
(µ)χ[t1,t2)(t) ⊕ ... ⊕

Φα0...αk(µ)χ[tk,tk+1)(t)⊕ ...is called flow, motion or orbit (of µ ∈ Bn). We
have assumed that ρ ∈ Pn is like at (1).

iv) The set Orρ(µ) = {Φρ(µ, t)|t ∈ R} is also called orbit (of µ).

Remark 6. The function Φν shows how an asynchronous iteration of Φ
is made: for any i ∈ {1, ..., n}, if νi = 0 then Φi is not computed, since
Φν
i (µ) = µi and if νi = 1 then Φi is computed, since Φν

i (µ) = Φi(µ).
The definition of Φα0...αk generalizes this idea to an arbitrary number k+1

of asynchronous iterations, with the supplementary request that each coordi-
nate Φi is computed infinitely many times in the sequence µ,Φα0

(µ),Φα0α1
(µ),

...,Φα0...αk(µ), ... whenever α ∈ Πn.
The sequences (tk) ∈ Seq make the pass from the discrete time N to the

continuous time R and each ρ ∈ Pn shows, in addition to α ∈ Πn, the time
instants tk when Φ is computed (asynchronously). Thus Φρ(µ, t), t ∈ R is
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the continuous time computation of the sequence µ, Φα0
(µ), Φα0α1

(µ), ...,
Φα0...αk(µ), ... made in the following way: if t < t0 nothing is computed, if
t ∈ [t0, t1), Φα0

(µ) is computed, if t ∈ [t1, t2),Φα0α1
(µ) is computed, ..., if

t ∈ [tk, tk+1),Φα0...αk(µ) is computed, ...
When α runs in Πn and (tk) runs in Seq we get the ’unbounded de-

lay model’ of computation of the Boolean function Φ, represented in discrete
time by the sequences µ,Φα0

(µ),Φα0α1
(µ), ...,Φα0...αk(µ), ... and in continu-

ous time by the orbits Φρ(µ, t) respectively. We shall not insist on the non-
formalized way that the engineers describe this model; we just mention that
the ’unbounded delay model’ is a reasonable way of starting the analysis of
a circuit in which the delays occurring in the computation of the Boolean
functions Φ are arbitrary positive numbers. If we restrict suitably the ranges
of α and (tk) we get the ’bounded delay model’ of computation of Φ and if
both α, (tk) are fixed, then we obtain the ’fixed delay model’ of computation
of Φ, determinism.

Theorem 7. Let α ∈ Πn, (tk) ∈ Seq be arbitrary and the function ρ(t) =
α0χ{t0}(t)⊕α1χ{t1}(t)⊕...⊕αkχ{tk}(t)⊕..., ρ ∈ Pn. The following statements
are true:

a) {αk|k ≥ k1} ∈ Πn for any k1 ∈ N;
b) (tk) ∩ (t′,∞) ∈ Seq for any t′ ∈ R;
c) ρχ(t′,∞) ∈ Pn for any t′ ∈ R;
d) ∀µ ∈ Bn,∀µ′ ∈ Bn, ∀t′ ∈ R,Φρ(µ, t′) = µ′ =⇒ ∀t ≥ t′,Φρ(µ, t) =

Φρχ(t′,∞)(µ′, t).

Proof. a) If {k|k ∈ N, αki = 1} is infinite, then {k|k ≥ k1, α
k
i = 1} is also

infinite, ∀i ∈ {1, ..., n}.
b) If t0 < t1 < t2 < ... is unbounded from above, then any sequence of

the form tk1 < tk1+1 < tk1+2 < ... is unbounded from above, k1 ∈ N.
c) This is a consequence of a) and b).
d) We presume that t′ < t0. In this situation µ = µ′, ρ = ρχ(t′,∞) and the

statement is obvious, so that we may assume now that t′ ≥ t0. In this case,
some k1 ∈ N exists with t′ ∈ [tk1 , tk1+1) and µ′ = Φα0...αk1 (µ). Because

ρχ(t′,∞)(t) = αk1+1χ{tk1+1}(t)⊕ α
k1+2χ{tk1+2}(t)⊕ ...,

Φρχ(t′,∞)(µ′, t) = µ′χ(−∞,tk1+1)(t)⊕ Φαk1+1
(µ′)χ[tk1+1,tk1+2)(t)

⊕Φαk1+1αk1+2
(µ′)χ[tk1+2,tk1+3)(t)⊕ ...
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we get
∀t ∈ [t′, tk1+1),

Φρ(µ, t) = Φα0...αk1 (µ),

Φρχ(t′,∞)(µ′, t) = µ′ = Φα0...αk1 (µ);

∀t ∈ [tk1+1, tk1+2),

Φρ(µ, t) = Φα0...αk1αk1+1
(µ),

Φρχ(t′,∞)(µ′, t) = Φαk1+1
(µ′) = Φαk1+1

(Φα0...αk1 (µ)) = Φα0...αk1αk1+1
(µ);

...

The statement of the Theorem holds.

Theorem 8. Let be µ ∈ Bn, ρ ∈ Pn and τ ∈ R. The function ρ′(t) = ρ(t−τ)
is progressive and we have Φρ′(µ, t) = Φρ(µ, t− τ).

Proof. We put ρ under the form

ρ(t) = α0χ{t0}(t)⊕ ...⊕ α
kχ{tk}(t)⊕ ...,

α ∈ Πn, (tk) ∈ Seq and we note that

ρ′(t) = ρ(t− τ) = α0χ{t0+τ}(t)⊕ ...⊕ αkχ{tk+τ}(t)⊕ ...

where (tk + τ) ∈ Seq. We infer

Φρ′(µ, t) = µχ(−∞,t0+τ)(t)⊕ Φα0
(µ)χ[t0+τ,t1+τ)(t)⊕ ...

...⊕ Φα0...αk(µ)χ[tk+τ,tk+1+τ)(t)⊕ ... = Φρ(µ, t− τ).

Definition 9. The universal regular autonomous asynchronous sys-
tem that is generated by Φ : Bn → Bn is by definition ΞΦ = {Φρ(µ, ·)|µ ∈
Bn, ρ ∈ Pn}; any x(t) = Φρ(µ, t) is called state (of ΞΦ), µ is called initial
value (of x), or initial state (of ΞΦ) and Φ is called generator function
(of ΞΦ).
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Remark 10. The asynchronous systems are non-deterministic in general,
due to the uncertainties that occur in the modeling of the asynchronous cir-
cuits. Non-determinism is produced, in the case of ΞΦ, by the fact that the
initial state µ and the way ρ of iterating Φ are not known.

Definition 11. Let v : N → Bn, x : R → Bn be some functions. If ∃k′ ∈
N, ∀k ≥ k′, v(k) = v(k′), we say that the limit lim

k→∞
v(k) exists and we

use the notation lim
k→∞

v(k) = v(k′). Similarly, if ∃t′ ∈ R, ∀t ≥ t′, x(t) =

x(t′),we say that the limit lim
t→∞

x(t) exists and we denote lim
t→∞

x(t) = x(t′).

Sometimes lim
k→∞

v(k), lim
t→∞

x(t) are called the final values of v, x.

Theorem 12. [7] ∀µ ∈ Bn,∀µ′ ∈ Bn,∀ρ ∈ Pn, lim
t→∞

Φρ(µ, t) = µ′ =⇒
Φ(µ′) = µ′, if the final value of Φρ(µ, ·) exists, it is a fixed point of Φ.

Proof. Let µ ∈ Bn, µ′ ∈ Bn, ρ ∈ Pn be arbitrary and fixed. The hypothesis
states the existence of t′ ∈ R with

∀t ≥ t′,Φρ(µ, t) = µ′

thus, from Theorem 7 d),

∀t ≥ t′,Φρχ(t′,∞)(µ′, t) = µ′.

We infer that ∀i ∈ {1, ..., n}, ∃t′′ > t′ such that

ρi(t′′) = ρiχ(t′,∞)(t
′′) = 1,

Φ
ρχ(t′,∞)

i (µ′, t′′) = Φi(µ′) = µ′i.

Theorem 13. [7] ∀µ ∈ Bn,∀µ′ ∈ Bn, ∀ρ ∈ Pn, (Φ(µ′) = µ′ and ∃t′ ∈
R,Φρ(µ, t′) = µ′) =⇒ ∀t ≥ t′,Φρ(µ, t) = µ′,meaning that if the fixed point µ′

of Φ is accessible, then it is the final value of Φρ(µ, ·).

Proof. Let µ ∈ Bn, µ′ ∈ Bn, ρ ∈ Pn be arbitrary and fixed. From the
hypothesis and Theorem 7 d) we infer

∀t ≥ t′,Φρ(µ, t) = Φρχ(t′,∞)(µ′, t)
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Figure 2: ∃ρ ∈ P2, ωρ((1, 0)) = {(0, 0), (0, 1)} and ∃ρ′ ∈ P2, ωρ′((1, 0)) =
{(1, 1)}

thus ∀i ∈ {1, ..., n}, ∃ε > 0,∀t ∈ [t′, t′ + ε),Φ
ρχ(t′,∞)

i (µ′, t) can take one of
the values µ′i and Φi(µ′). But µ′i = Φi(µ′), wherefrom the previous property
takes place for arbitrary ε and

∀t ≥ t′,Φρ(µ, t) = µ′.

Corollary 14. ∀µ ∈ Bn, ∀ρ ∈ Pn,Φ(µ) = µ =⇒ ∀t ∈ R,Φρ(µ, t) = µ.

Proof. From Theorem 13, with µ = µ′, where t′ may be chosen such that
∀t < t′, ρ(t) = 0.

3 ω−limit sets

Definition 15. For µ ∈ Bn and ρ ∈ Pn, the set ωρ(µ) = {µ′|µ′ ∈ Bn,∃(tk) ∈
Seq, lim

k→∞
Φρ(µ, tk) = µ′} is called the ω−limit set of the orbit Φρ(µ, ·).

Remark 16. The previous definition agrees with the usual definitions of the
ω−limit sets of the real time or discrete time dynamical systems see [2] page
5, [5] page 26, [1] page 20.

Example 17. In Figure 2, we consider

ρ(t) = (1, 1)χ{0}(t)⊕ (0, 1)χ{1}(t)⊕ (1, 1)χ{2}(t)⊕ (0, 1)χ{3}(t)⊕ ...,

ρ′(t) = (1, 1)χ{0}(t)⊕ (1, 1)χ{1}(t)⊕ (1, 1)χ{2}(t)⊕ ...

and we have

Φρ((1, 0), t) = (1, 0)χ(−∞,0)(t)⊕ (0, 0)χ[0,1)(t)⊕ (0, 1)χ[1,2)(t)
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⊕(0, 0)χ[2,3)(t)⊕ (0, 1)χ[3,4)(t)⊕ ...,

Φρ′((1, 0), t) = (1, 0)χ(−∞,0)(t)⊕ (0, 0)χ[0,1)(t)⊕ (1, 1)χ[1,∞)(t),

thus ωρ((1, 0)) = {(0, 0), (0, 1)}, ωρ′((1, 0)) = {(1, 1)}.

Theorem 18. For any µ ∈ Bn and any ρ ∈ Pn, we have:
a) ωρ(µ) 6= ∅;
b) ∀t′ ∈ R, ωρ(µ) ⊂ {Φρ(µ, t)|t ≥ t′} ⊂ Orρ(µ);
c) ∃t′ ∈ R, ωρ(µ) = {Φρ(µ, t)|t ≥ t′} and any t′′ ≥ t′ fulfills ωρ(µ) =

{Φρ(µ, t)|t ≥ t′′};
d) ∀t′ ∈ R, ∀t′′ ≥ t′, {Φρ(µ, t)|t ≥ t′} = {Φρ(µ, t)|t ≥ t′′} implies ωρ(µ) =

{Φρ(µ, t)|t ≥ t′};
e) we presume that ωρ(µ) = {Φρ(µ, t)|t ≥ t′}, t′ ∈ R. Then ∀µ′ ∈

ωρ(µ),∀t′′ ≥ t′, if Φρ(µ, t′′) = µ′ we get ωρ(µ) = {Φρχ(t′′,∞)(µ′, t)|t ≥ t′′} =
Orρχ(t′′,∞)

(µ′) = ωρχ(t′′,∞)
(µ′).

Proof. We put ρ ∈ Pn under the form

ρ(t) = α0χ{t0}(t)⊕ ...⊕ α
kχ{tk}(t)⊕ ...

where α ∈ Πn and (tk) ∈ Seq. We ask, without loosing the generality, that
α0 = (0, ..., 0) ∈ Bn, hence Φρ(µ, t0) = µ and Orρ(µ) = {Φρ(µ, tk)|k ∈ N}.

a) If Orρ(µ) = {µ1, ..., µp}, p ∈ {1, ..., 2n}, we denote with I1, ..., Ip ⊂ N
the sets

Ij = {k|k ∈ N,Φρ(µ, tk) = µj}, j = 1, p.

Because I1 ∪ ...∪ Ip = N, some of these sets are infinite, let them be without
loosing the generality I1, ..., Ip′ , p

′ ≤ p. We infer ωρ(µ) = {µ1, ..., µp
′}.

b) For t′ ∈ R, we define

k1 =
{

0, t′ < t0
k, t′ ∈ [tk, tk+1)

and we obtain

ωρ(µ) = {µ1, ..., µp
′} = {Φρ(µ, tk)|k ∈ I1 ∪ ... ∪ Ip′}

= {Φρ(µ, tk)|k ∈ (I1 ∪ ... ∪ Ip′) ∩ [k1,∞)}

⊂ {Φρ(µ, tk)|k ∈ (I1 ∪ ... ∪ Ip) ∩ [k1,∞)} = {Φρ(µ, t)|t ≥ t′}
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⊂ {Φρ(µ, tk)|k ∈ I1 ∪ ... ∪ Ip} = {µ1, ..., µp} = Orρ(µ).

c) If p′ = p, then ∀t′ ∈ R, ωρ(µ) = {Φρ(µ, t)|t ≥ t′} = Orρ(µ) from b)
and the property holds, thus we can assume that p′ < p. In this case we
define

k′′ = min{k|k ∈ N, ∀k′ ≥ k, k′ ∈ I1 ∪ ... ∪ Ip′}
= 1 + max(Ip′+1 ∪ ... ∪ Ip)

for which we have
(Ip′+1 ∪ ... ∪ Ip) ∩ [k′′,∞) = ∅

and t′ = tk′′ fulfills

ωρ(µ) = {µ1, ..., µp
′} = {Φρ(µ, tk)|k ∈ I1 ∪ ... ∪ Ip′}

= {Φρ(µ, tk)|k ∈ (I1 ∪ ... ∪ Ip′) ∩ [k′′,∞)}

= {Φρ(µ, tk)|k ∈ (I1 ∪ ... ∪ Ip) ∩ [k′′,∞)} = {Φρ(µ, t)|t ≥ t′};

any t′′ ≥ t′ gives

ωρ(µ)
b)
⊂ {Φρ(µ, t)|t ≥ t′′} ⊂ {Φρ(µ, t)|t ≥ t′} = ωρ(µ).

d) Let be t′ ∈ R such that ∀t′′ ≥ t′,

{Φρ(µ, t)|t ≥ t′} = {Φρ(µ, t)|t ≥ t′′} (2)

and we claim that in this case we have

∀µ′ ∈ {Φρ(µ, t)|t ≥ t′},∃(t′k) ∈ Seq,∀k ∈ N,Φρ(µ, t′k) = µ′. (3)

We assume against all reason that (3) is false, meaning that

∃µ′ ∈ {Φρ(µ, t)|t ≥ t′}, the set {tk|k ∈ N,Φρ(µ, tk) = µ′} is finite.

Then ∃t′′ > max{max{tk|k ∈ N,Φρ(µ, tk) = µ′}, t′} that fulfills
µ′ ∈ {Φρ(µ, t)|t ≥ t′} \ {Φρ(µ, t)|t ≥ t′′}, contradiction with (2). The truth
of (3) shows that µ′ ∈ ωρ(µ), i.e. {Φρ(µ, t)|t ≥ t′} ⊂ ωρ(µ). For all t′′ ≥ t′

we have then

ωρ(µ)
b)
⊂ {Φρ(µ, t)|t ≥ t′′} = {Φρ(µ, t)|t ≥ t′} ⊂ ωρ(µ).
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e) We note that for t′′ ≥ t′ and Φρ(µ, t′′) = µ′ we can write

ωρ(µ) = {Φρ(µ, t)|t ≥ t′} c)= {Φρ(µ, t)|t ≥ t′′}
Theorem 7 d)

= {Φρχ(t′′,∞)(µ′, t)|t ≥ t′′} = {Φρχ(t′′,∞)(µ′, t)|t ∈ R}
= Orρχ(t′′,∞)

(µ′).

The fact that ∀t′′′ ≥ t′′,

{Φρχ(t′′,∞)(µ′, t)|t ≥ t′′} Theorem 7 d)
= {Φρ(µ, t)|t ≥ t′′} c)= {Φρ(µ, t)|t ≥ t′}

c)
= {Φρ(µ, t)|t ≥ t′′′} Theorem 7 d)

= {Φρχ(t′′,∞)(µ′, t)|t ≥ t′′′}
shows, by taking into account d), that

{Φρχ(t′′,∞)(µ′, t)|t ≥ t′′} = ωρχ(t′′,∞)
(µ′).

Remark 19. If in Theorem 18 e) we take t′′ ∈ R arbitrarily, the equation

ωρ(µ) = ωρχ(t′′,∞)
(Φρ(µ, t′′)) (4)

is still true. Indeed, for sufficiently great t′′′, the terms in (4) are equal with

{Φρ(µ, t)|t ≥ t′′′} = {Φρχ(t′′,∞)(Φρ(µ, t′′), t)|t ≥ t′′′}.

Theorem 20. For arbitrary µ ∈ Bn,ρ ∈ Pn the following statements are
true:

a) lim
t→∞

Φρ(µ, t) exists ⇐⇒ card(ωρ(µ)) = 1;

b) if ∃µ′ ∈ Bn, ωρ(µ) = {µ′}, then lim
t→∞

Φρ(µ, t) = µ′ and Φ(µ′) = µ′;

c) if ∃µ′ ∈ Bn,Φ(µ′) = µ′ and µ′ ∈ Orρ(µ), then ωρ(µ) = {µ′}.

Proof. a) Let µ ∈ Bn,ρ ∈ Pn be arbitrary. We get

lim
t→∞

Φρ(µ, t) exists⇐⇒ ∃µ′ ∈ Bn,∃t′ ∈ R,∀t ≥ t′,Φρ(µ, t) = µ′

⇐⇒ ∃µ′ ∈ Bn,∃t′ ∈ R, {Φρ(µ, t)|t ≥ t′} = {µ′}
⇐⇒ ∃µ′ ∈ Bn, ωρ(µ) = {µ′} ⇐⇒ card(ωρ(µ)) = 1.

b) We assume that ∃µ′ ∈ Bn, ωρ(µ) = {µ′}, i.e. ∃µ′ ∈ Bn, ∃t′ ∈
R, {Φρ(µ, t)|t ≥ t′} = {µ′} in other words lim

t→∞
Φρ(µ, t) = µ′. The fact that

Φ(µ′) = µ′ results from Theorem 12.
c) This is a consequence of Theorem 13.



260 Şerban Vlad

Theorem 21. Let be µ ∈ Bn, ρ ∈ Pn, τ ∈ R. The function ρ′ ∈ Pn, ρ′(t) =
ρ(t− τ) fulfills ωρ(µ) = ωρ′(µ).

Proof. We use Theorem 8 and we infer the existence of t′ ∈ R such that

ωρ(µ) = {Φρ(µ, t)|t ≥ t′} = {Φρ(µ, t− τ)|t− τ ≥ t′}

= {Φρ′(µ, t)|t ≥ t′ + τ} = ωρ′(µ).

4 P-invariant and n-invariant sets

Theorem 22. We consider the function Φ : Bn → Bn and let be the set
A ∈ P ∗(Bn). For any µ ∈ A, the following properties are equivalent

∃ρ ∈ Pn, Orρ(µ) ⊂ A, (5)

∃ρ ∈ Pn, ∀t ∈ R,Φρ(µ, t) ∈ A, (6)

∃α ∈ Πn, ∀k ∈ N,Φα0...αk(µ) ∈ A (7)

and the following properties are also equivalent

∀ρ ∈ Pn, Orρ(µ) ⊂ A, (8)

∀ρ ∈ Pn, ∀t ∈ R,Φρ(µ, t) ∈ A, (9)

∀α ∈ Πn, ∀k ∈ N,Φα0...αk(µ) ∈ A, (10)

∀λ ∈ Bn,Φλ(µ) ∈ A. (11)

Proof. (9)=⇒(11) Let µ ∈ A, λ ∈ Bn and the function ρ ∈ Pn be arbitrary,

ρ(t) = α0 · χ{t0}(t)⊕ ...⊕ α
k · χ{tk}(t)⊕ ... (12)

with α ∈ Πn and (tk) ∈ Seq. We define

ρ′(t) = λ · χ{t′}(t)⊕ α0 · χ{t′+t0}(t)⊕ ...⊕ α
k · χ{t′+tk}(t)⊕ ...

where t′ ∈ R is arbitrary and we can see that ρ′ ∈ Pn. (9) implies Φλ(µ) =
Φρ′(µ, t′) ∈ A.
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(11)=⇒(9) Let µ ∈ A and ρ ∈ Pn be arbitrary, given by (12), with
α ∈ Πn, (tk) ∈ Seq. We get by induction on k :

t < t0 : Φρ(µ, t) = µ ∈ A,
t ∈ [t0, t1) : Φρ(µ, t) = Φα0

(µ) ∈ A from (11),

...

t ∈ [tk−1, tk) : Φα0...αk−1
(µ) ∈ A due to the hypothesis of the induction,

t ∈ [tk, tk+1) : Φρ(µ, t) = Φαk(Φα0...αk−1
(µ)) ∈ A from (11),

...

The rest of the implications are obvious.

Definition 23. The set A ∈ P ∗(Bn) is called a p-invariant (or p-stable)
set of the system ΞΦ if it fulfills for any µ ∈ A one of (5),..., (7) and it is
called an n-invariant (or n-stable) set of ΞΦ if it fulfills ∀µ ∈ A one of
(8),..., (11).

Remark 24. In the previous terminology, the letter ’p’ comes from ’possibly’
and the letter ’n’ comes from ’necessarily’. Both ’p’ and ’n’ refer to the
quantification of ρ. Such kind of p-definitions and n-definitions recalling
logic are caused by the fact that we translate ’real’ concepts into ’binary’
concepts and the former have no ρ parameters, thus after translation ρ may
appear quantified in two ways. The obvious implication is n-invariance =⇒
p-invariance.

Example 25. Let Φ : B2 → B2 be defined by ∀µ ∈ B2,Φ(µ1, µ2) = (µ1, µ2)
and ρ(t) = (1, 1)·χ{0,1,2,...}(t). The set A = {(0, 1), (1, 0)} fulfills ∀µ ∈ A,∀t ∈
R,Φρ(µ, t) ∈ A i.e. it satisfies (6):

Φρ((0, 1), t) = (0, 1) · χ(−∞,0)(t)⊕ (1, 0) · χ[0,1)(t)⊕

⊕(0, 1) · χ[1,2)(t)⊕ (1, 0) · χ[2,3)(t)⊕ ...

Φρ((1, 0), t) = (1, 0) · χ(−∞,0)(t)⊕ (0, 1) · χ[0,1)(t)⊕

⊕(1, 0) · χ[1,2)(t)⊕ (0, 1) · χ[2,3)(t)⊕ ...

see Figure 3; A = {(0, 0), (1, 1)} satisfies the same invariance property.
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Figure 3: The sets {(0, 1), (1, 0)} and {(0, 0), (1, 1)} are p-invariant

Figure 4: The sets {(0, 0), (0, 1)} and {(1, 0), (1, 1)} are n-invariant

Example 26. We define the function Φ : B2 → B2 by ∀µ ∈ B2, Φ(µ1, µ2)
= (µ1, µ2), see Figure 4. We notice that the sets A = {(0, 0), (0, 1)} and A =
{(1, 0), (1, 1)} are n-invariant, as they fulfill ∀µ ∈ A,∀ρ ∈ P2, Orρ(µ) = A.

Theorem 27. Let be µ ∈ Bn and ρ′ ∈ Pn.
a) If Φ(µ) = µ, then {µ} is an n-invariant set and the set Eq of the fixed

points of Φ is also n-invariant;
b) the set Orρ′(µ) is p-invariant and

⋃
ρ∈Pn

Orρ(µ)4 is n-invariant;

c) the set ωρ′(µ) is p-invariant.

Proof. a) From Corollary 14 we have that

∀ρ ∈ Pn,∀t ∈ R,Φρ(µ, t) = µ ∈ {µ}.

Furthermore, we infer ∀µ′ ∈ Eq, ∀ρ ∈ Pn, ∀t ∈ R,

Φρ(µ′, t) = µ′ ∈ Eq.

4 S
ρ∈Pn

Orρ(µ) = {µ′|∃ρ ∈ Pn, µ′ ∈ Orρ(µ)}.



Universal regular autonomous asynchronous systems 263

b) Let be µ′ ∈ Orρ′(µ), thus t′ ∈ R exists such that µ′ = Φρ′(µ, t′). Then
∀t ∈ R,

Φρ′·χ(t′,∞)(µ′, t) =
{

Φρ′(µ, t), t > t′

µ′, t ≤ t′ ∈ Orρ′(µ).

We have proved that Orρ′(µ) is p-invariant.
We remark the equality⋃

ρ∈Pn

Orρ(µ) =
⋃
α∈Πn

{Φα0...αk(µ)|k ∈ N}

and let us take an arbitrary µ′ ∈
⋃

ρ∈Pn
Orρ(µ). If µ′ = µ then the statement

of the theorem is proved, thus we can assume that µ′ 6= µ, µ′ = Φα0...αk(µ),
α0, ..., αk ∈ Bn. For any ρ′′ ∈ Pn,

ρ′′ = β0 · χ{t′0} ⊕ ...⊕ β
k · χ{t′k} ⊕ ...

β ∈ Πn, (t′k) ∈ Seq and any t ∈ R, we have that Φρ′′(µ′, t) is an ele-
ment of the sequence Φα0...αk(µ), Φα0...αkβ0

(µ), ..., Φα0...αkβ0...βk
′
(µ), ... where

α0, ..., αk, β0, ..., βk
′
, ... ∈ Πn. The conclusion is that Φρ′′(µ′, t) ∈

⋃
ρ∈Pn

Orρ(µ).

c) This is a consequence of Theorem 18 e).

5 The basin of p-attraction and the basin of
n-attraction

Theorem 28. We consider the set A ∈ P ∗(Bn). For any µ ∈ Bn, the fol-
lowing statements are equivalent

∃ρ ∈ Pn, ωρ(µ) ⊂ A, (13)

∃ρ ∈ Pn, ∃t′ ∈ R,∀t ≥ t′,Φρ(µ, t) ∈ A, (14)

∃α ∈ Πn, ∃k′ ∈ N, ∀k ≥ k′,Φα0...αk(µ) ∈ A (15)

and the following statements are equivalent, too

∀ρ ∈ Pn, ωρ(µ) ⊂ A, (16)

∀ρ ∈ Pn, ∃t′ ∈ R,∀t ≥ t′,Φρ(µ, t) ∈ A, (17)

∀α ∈ Πn, ∃k′ ∈ N, ∀k ≥ k′,Φα0...αk(µ) ∈ A. (18)
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Proof. (13)=⇒(14) We presume that (13) is true. Some t′ exists with

ωρ(µ) = {Φρ(µ, t)|t ≥ t′}

and we conclude that ∀t ≥ t′,

Φρ(µ, t) ∈ ωρ(µ) ⊂ A.

(14)=⇒(13) As t′′ ∈ R exists with

ωρ(µ) = {Φρ(µ, t)|t ≥ t′′},

from the truth of (14) we have that

ωρ(µ) ⊂ {Φρ(µ, t)|t ≥ max{t′, t′′}} ⊂ A.

Definition 29. The basin (or kingdom, or domain) of p-attraction or
the p-stable set of the set A ∈ P ∗(Bn) is given by W (A) = {µ|µ ∈ Bn,∃ρ ∈
Pn, ωρ(µ) ⊂ A}; the basin (or kingdom, or domain) of n-attraction
or the n-stable set of the set A is given by W (A) = {µ|µ ∈ Bn,∀ρ ∈
Pn, ωρ(µ) ⊂ A}.

Remark 30. Definition 29 makes use of the properties (13) and (16). We
can make use also in this Definition of the other equivalent properties from
Theorem 28.

In Definition 29, one or both basins of attraction W (A),W (A) may be
empty.

Theorem 31. We have:
i) W (Bn) = W (Bn) = Bn;
ii) if A ⊂ A′, then W (A) ⊂W (A′) and W (A) ⊂W (A′) hold.

Definition 32. When W (A) 6= ∅, A is said to be p-attractive and for
any non-empty set B ⊂ W (A), we say that A is p-attractive for B and
that B is p-attracted by A; A is by definition partially p-attractive if
W (A) /∈ {∅,Bn} and totally p-attractive whenever W (A) = Bn.

The fact that W (A) 6= ∅ makes us say that A is n-attractive and in
this situation for any non-empty B ⊂W (A), A is called n-attractive for B
and B is called to be n-attracted by A; we use to say that A is partially
n-attractive if W (A) /∈ {∅,Bn} and totally n-attractive if W (A) = Bn.
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Figure 5: Invariant sets and basins of attraction

Example 33. We consider the system from Figure 5. The set A = {(0, 0, 0)}
is neither p-invariant, nor n-invariant: W (A) = W (A) = ∅.

The set A = {(0, 0, 0), (1, 1, 0), (1, 1, 1)} is p-invariant but not n-invariant:
W (A) = B3\{(0, 0, 1)}, W (A) = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.

We take A = {(1, 1, 0), (1, 1, 1), (0, 0, 1)} which is both p-invariant and
n-invariant. A is totally p-attractive, W (A) = B3 and it is not totally n-
attractive, since W (A) = B3 \ {(0, 1, 1), (1, 0, 1)}.

The set A = {(1, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1), (1, 0, 1)} is p-invariant,
n-invariant, totally p-attractive and totally n-attractive because W (A) =
W (A) = B3.

Example 34. The set Bn is totally p-attractive and totally n-attractive (The-
orem 31 i)).

Theorem 35. Let A ∈ P ∗(Bn) be some set. If A is p-invariant, then A ⊂
W (A) and A is also p-attractive; if A is n-invariant, then A ⊂W (A) and A
is also n-attractive.

Proof. Let µ ∈ A be arbitrary. The existence of ρ ∈ Pn such that Orρ(µ) ⊂ A
(from the p-invariance of A) and the inclusion ωρ(µ) ⊂ Orρ(µ) show that
ωρ(µ) ⊂ A, thus µ ∈W (A). As µ was arbitrary, we get that A ⊂W (A) and
finally that W (A) 6= ∅. A is p-attractive.

Remark 36. The previous Theorem shows the connection that exists between
invariance and attractiveness. If A is p-attractive, then W (A) is the greatest
set that is p-attracted by A and the point is that this really happens when A
is p-invariant. The other situation is dual.

Theorem 37. Let be A ∈ P ∗(Bn). If A is p-attractive, then W (A) is p-
invariant and if A is n-attractive, then W (A) is n-invariant.
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Proof. If A is p-attractive then W (A) 6= ∅ and we prove that W (A) is p-
invariant. Let µ ∈ W (A) be arbitrary and fixed. From the definition of
W (A) some ρ ∈ Pn exists with the property that ωρ(µ) ⊂ A. We show that

∀t′ ∈ R,Φρ(µ, t′) ∈W (A),

i.e.
∀t′ ∈ R, ∃ρ′ ∈ Pn, ωρ′(Φρ(µ, t′)) ⊂ A.

Indeed, we fix arbitrarily some t′ ∈ R. With

ρ′ = ρχ(t′,∞)

we can write, from Remark 19, equation (4) that

ωρ′(Φρ(µ, t′)) = ωρχ(t′,∞)
(Φρ(µ, t′)) = ωρ(µ) ⊂ A.

We prove now that W (A), which is non-empty from the n-attractiveness
of A, is also n-invariant. The property

∀µ′ ∈W (A), ∀ρ′ ∈ Pn, Orρ′(µ′) ⊂W (A),

that is equivalent with

∀µ′ ∈W (A),∀ρ′ ∈ Pn,∀µ′′ ∈ Orρ′(µ′), µ′′ ∈W (A)

and with
∀µ′ ∈ Bn, ∀ρ ∈ Pn, ωρ(µ′) ⊂ A =⇒

=⇒ ∀ρ′ ∈ Pn,∀µ′′ ∈ Orρ′(µ′),∀ρ′′ ∈ Pn, ωρ′′(µ′′) ⊂ A,

means the following. Let µ′ ∈ Bn and ρ′′ ∈ Pn be arbitrary and fixed. The
hypothesis states that for any

ρ = α0 · χ{t0} ⊕ ...⊕ α
k · χ{tk} ⊕ ...

α ∈ Πn, (tk) ∈ Seq we have

∃k1 ∈ N, {Φα0...αk(µ′)|k ≥ k1}(= ωρ(µ′)) ⊂ A. (19)

We consider arbitrarily the function ρ′ ∈ Pn,

ρ′ = α′0 · χ{t′0} ⊕ ...⊕ α
′k · χ{t′k} ⊕ ...
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α′ ∈ Πn, (t′k) ∈ Seq and the point µ′′ ∈ Orρ′(µ′), thus k′ ∈ N exists with the
property

µ′′ = Φα′0...α′k
′
(µ′).

We put ρ′′ under the form

ρ′′ = α′′0 · χ{t′′0} ⊕ ...⊕ α
′′k · χ{t′′k} ⊕ ...

α′′ ∈ Πn, (t′′k) ∈ Seq. The sequence

Φα′′0...α′′k(µ′′) = Φα′′0...α′′k(Φα′0...α′k
′
(µ′)) = Φα′0...α′k

′
α′′0...α′′k(µ′),

k ∈ N fulfills the property (19), thus

∃k2 ∈ N, {Φα′′0...α′′k(µ′′)|k ≥ k2}(= ωρ′′(µ′′)) ⊂ A.

Corollary 38. If the set A ∈ P ∗(Bn) is p-invariant, then W (A) is p-
invariant and if A is n-invariant, then the basin of n-attraction W (A) is
n-invariant.

Proof. These result from Theorem 35 and Theorem 37.

6 Discussion

Some notes on the terminology:
- universality means the greatest in the sense of inclusion. Any X ⊂ ΞΦ

is a system, but we did not study such systems in the present paper;
- regularity means the existence of a generator function Φ, i.e. analogies

with the dynamical systems theory;
- autonomy means here that no input exists. We mention the fact that

autonomy has another non-equivalent definition also, a system is called au-
tonomous if its input set has exactly one element;

- asynchronicity refers (vaguely) to the fact that we work with real time
and binary values. Its antonym synchronicity means that ’discrete time’ (and
binary values) in which the iterates of Φ are: Φ,Φ ◦ Φ, ...,Φ ◦ ... ◦ Φ, ... i.e.
in the sequence Φα0

,Φα0α1
, ...,Φα0...αk , ... all αk are (1, ..., 1), k ∈ N. That is

the discrete time of the dynamical systems.
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Our concept of invariance from Definition 23 reproduces the point of view
expressed in [4], page 11, where the dynamical system S = (T,X,Φ) is given,
with T = R the time set, X the state space and Φ : T×X → X the flow: the
set A ⊂ X is said to be invariant for the system S if ∀x ∈ A, ∀t ∈ T,Φt(x) ∈
A. This idea coincides with the one from [5], page 27 where the state space
X is a differentiable manifold M.

In [3], page 92 the set A ⊂ X is called globally invariant via Φ if ∀t ∈
T,Φt(A) = A, recalling the situation of Example 26 and Figure 4. In [6],
page 3, the global invariance and the invariance of A ⊂ X are defined like at
[3] and [4].

We mention also the definition of invariance from [1], page 19. Let P =
(T,X,Φ) be a process, where T = R, X is the state space and Φ : T×X → X
is the flow of P ; we have denoted T = {(t′, t)|t′, t ∈ T, t ≤ t′}. Then A ⊂ X is
invariant relative to Φ if Φt′,t(A) ⊂ A for any (t′, t) ∈ T . This last definition
agrees itself with ours in the special case when t′ = 0 but it is more general
since it addresses systems which are not time invariant.

Stability is defined in [5], page 27 where M is a differentiable manifold
and the evolution operator Φt : M →M, t ∈ T is given. The subset A ⊂M is
stable for Φ if for any sufficiently small neighborhood U of A a neighborhood
V of A exists such that ∀x ∈ V,∀t ≥ 0,Φt(x) ∈ U. In our case when M = Bn

has the discrete topology, A ⊂ Bn and U = V = A, this comes to the
invariance of A.

In [4], page 16 the closed invariant set A ⊂ X is called stable for (T,X,Φ)
if i) for any sufficiently small neighborhood U ⊃ A there exists a neighbor-
hood V ⊃ A such that ∀t > 0,∀x ∈ V,Φt(x) ∈ U and ii) there exists a
neighborhood W ⊃ A such that ∀x ∈ W,Φt(x)→ A as t→∞. We see that
i) is the same request like at [5] and ii) brings nothing new (item i) means
Orρ(µ)⊂A, thus a stronger request than item ii) which is ωρ(µ)⊂A in our case).

In a series of works ([5], page 27), either the set A ⊂M is called asymp-
totically stable if it is stable and attractive, where M is a differentiable
manifold, or ([3], page 112, [6], page 5) the fixed point x0 ∈ X is called
asymptotically stable if it is stable and attractive. We interpret stability as
invariance and stating that A or x0 is stable and attractive means that it is
invariant and a weaker property than invariance takes place (see Theorem
35) and finally asymptotic stability means invariance too.

In [2], page 132 the statement is made that many times, in applications,
by stability is understood attractiveness. This would mean, in the conditions



Universal regular autonomous asynchronous systems 269

of Theorem 35, weakening of the invariance request and we cannot accept
this point of view.

In literature, [2] defines at page 6 the basin of attraction of a chaotic
attractor A ⊂ X as the set of the points whose ω−limit set is contained in
A. This was reproduced at (13) and (16), where A ∈ P ∗(Bn) was considered
however arbitrary.

The work [3] defines at page 124 the kingdom of attraction of an attractive
set A ⊂ X as the greatest set of points of X whose dynamic ends (for t→∞)
in A; when the kingdom of attraction is an open set, it is called basin of
attraction. For us, all the subsets A ⊂ Bn are open in the discrete topology
of Bn.

In [3], page 123 the invariant set A ⊂ X is called attractive set for
B ⊂ X if the distance between A and Φt(B) tends to 0 for t → ∞; a set A
is attractive if B 6= ∅ exists that is attracted by A. A slightly different idea
is expressed in [6], page 4 where the invariant set A is called attractive for B
if lim
t→∞

Φt(B) = A. Unlike these definitions, in Definition 32 the set A ⊂ Bn

is not required to be invariant and the statement B ⊂ W (A) showing that
B is p-attracted by A, i.e. ∀µ ∈ B, ∃ρ ∈ Pn, ωρ(µ) ⊂ A, reproduces the fact
that the distance between A and Φt(B) tends to 0 for t→∞.

In [5], page 27 M is a differentiable manifold and the subset A ⊂ M
is called attractive for Φ if a neighborhood U of A exists such that ∀x ∈
U, lim

t→∞
Φt(x) ∈ A; in this case we say that U is attracted by A. We have

reached (13), (16) and the requests of attractiveness W (A) 6= ∅,W (A) 6= ∅
from Definition 32.

In [2], page 5 a closed invariant set A ⊂ X is called attractive if a neigh-
borhood U of A exists such that ∀x ∈ U,∀t ≥ 0,Φt(x) ∈ U and Φt(x) → A

when t → ∞. Then the set
⋃
t≤0

Φt(U) is called the basin (the domain) of

attraction of the set A.
In [6], page 4 the open set W (A) ⊂ X representing the greatest set of

points of X which is attracted by the attractive set A is called basin of
attraction. This definition represents exactly W (A),W (A) from Definition
29 in the circumstances that (Definition 32) the attractiveness of A means
that the previous sets are non-empty.

We have the definition of the basin of attraction from [5], page 27: the
maximal set attracted by an attractor A ⊂ X (invariant set, attractive for
one of its neighborhoods) is called the kingdom of attraction of A; when the
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kingdom of attraction is an open set, it is called basin of attraction. We
conclude, related with the real to binary translation of this definition, that
if A ∈ P ∗(Bn) is p-invariant, then it is p-attractive for itself and thus an
’attractor’; its basin of attraction W (A) is non-empty in this case and it is
the maximal set attracted by A.

We note that the stable manifold of the equilibrium point x0 ∈ X is
defined in [6], page 4 and [3], page 93 for the dynamical system (T,X,Φ) by
W (x0) = {x ∈ X| lim

t→∞
Φt(x) = x0}. In [4], page 46 the terminology of stable

set is used for this concept and [6] mentions this terminology too. Thus, by
replacing x0 ∈ X with A ⊂ Bn and lim

t→∞
Φt(x) = x0 with ωρ(µ) ⊂ A we

get for W (A),W (A) the alternative terminology of stable sets (i.e. invariant
sets) of A.
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