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MATHEMATICAL MODELLING OF

TWO-SPECIES RELATIVISTIC FLUIDS∗

Sebastiano Giambò†

Abstract

An interface-capturing method is used to deduce equations govern-
ing fluid motion in a relativistic two-species flow. These kind of meth-
ods combine simple fluid flow equations, which are the balance law for
particle number and energy-momentum tensor conservation equation
for global fluid, the balance laws for particle number density of each
species, with extra equations. Since equations of multi-species rela-
tivistic fluid are not closed assigning laws of the state of each species,
closure equations are necessarily introduced. A model based on the ax-
iom of existence of a temperature and an entropy for the global fluid,
which verify an equation analogous to that holding in the case of a
simple fluid, is formulated. Weak discontinuities compatible with such
kind of mixture are also studied.

MSC: 83C99, 80A10, 80A17, 74J30, 76T99.
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nuity waves, nonlinear waves.
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4 Sebastiano Giambò

1 Introduction

A very large variety of scientific and technological problems are of a two-
species flow. Flows relevant in chemistry, petrolchemical industry, biology,
geophysics, nuclear processes or propulsion technology, for example, are often
considered as two-species flows.

There are several approaches to two-fluid flow processes [1, 2, 12, 23,
27, 36, 37, 39, 40, 41, 42, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62]. In one of these approaches, for example, the governing equations
are directly formulated according to conservation principles and treating
a two-fluid mixture as a set of interacting subregions of individual fluids.
Another of these approaches derives the governing equations from structural
continuum fluid models and the mathematical model is expressed in terms
of balance equations by treating a two-fluid mixture as one or two averaged
continua.

In recent years the dynamics of two-species relativistic fluids plays an
important role in areas of astrophysics, high energy particle beams, high
energy nuclear collisions and free-electron laser technology. So two-fluid
flows have received increasing attention and they are still the subject of
numerous investigations [3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 38, 43, 44, 45, 47, 48, 63]. For
some of these relativistic flows the hyperbolic aspects of the phenomenon
play a crucial role.

This is the motivation of our interest in a system of governing equations
for a two-species fluid, based on the physical balance of particle number and
energy-momentum tensor, taking into account the interface exchange. This
modeling approach is based on a relativistic two-species flow model, in which
a separate fluid is interacting with the other one by interfacial transfer.

In this paper, a capturing method, which is a relativistic extension of
the method introduced by Wackers and Koren [61] for classical compressible
two-fluid flow, is used.

In order to obtain a closed governing system, it is necessary to examine
the following problem. If we consider a simple relativistic fluid, the con-
servation equations for the particle number and for the energy tensor are
completed by the fluid state law that, for example, allows to express the
pressure in terms of the particle number and the internal energy density.
Whereas, the multi-species conservation equations can not be completed by
giving state laws to each species. Therefore, it is necessary to insert further
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closure equations.
The purpose of this paper, following Lagoutiére [40], Dellacherie and

Rency [23], is to consider same closure laws based on thermodynamic con-
siderations ensuring the hyperbolicity of the system and consists in bringing
to the case of two species and two pressures of the investigation done in
paper [30], in which we consider the case of a single species and two-phases
with single pressure.

Moreover, the weak discontinuities, propagating in this relativistic mix-
ture, are examined.

Finally, a special case in which each fluid-species is supposed to satisfy
the equation of state of a perfect gas is considered.

In what follows, the space-time is a four dimensional manifold V4, whose
normal hyperbolic metric ds2, with signature +,−,−,−, is expressed in
local coordinates in the usual form ds2 = gµνdx

µdxν ; the metric tensor is
assumed to be of class C1 and piecewise C2; the 4-velocity is defined as
uµ = dxµ/ds, which implies its unitary character uµuµ = 1; ∇µ is the
covariant differentiation operator with respect to the given metric; the units
are such that the velocity of light is unitary, i.e. c = 1.

2 Simple relativistic fluid

The standard equations for a simple relativistic fluid [11, 46] are the particle
number conservation

∇α(ruα) = 0 , (1)

and the total energy-momentum conservation

∇αTαβ = 0 , (2)

where uα is the 4-velocity, r is the particle number density and the stress-
energy tensor is given by

Tαβ = rfuαuβ − pgαβ ; (3)

here f is the relativistic specific enthalpy

f = 1 + h = 1 + ε+
p

r
=
ρ+ p

r
, (4)

where h = ε+ p/r is the “classical” specific enthalpy, ε the specific internal
energy, p the pressure and ρ = r(1 + ε) the energy density.
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Moreover, the spatial projection and the projection along uα of equation
(2) give, respectively,

rfuα∇αuβ − γαβ∂αp = 0 , (5)

uα∂αρ+ (ρ+ p)ϑ = 0 , (6)

where

ϑ = ∇αuα , (7)

and γαβ = gαβ − uαuβ is the projection tensor onto the 3-space orthogonal
to uα, i.e. the rest space of an observer moving with 4-velocity uα.

The five equations system (1), (5) and (6) in the six unknown variables
uα, r, ε, p is completed by an equation of state. For example, pressure p
can be expressed in terms of particle number density r and specific internal
energy ε:

p = p(r, ε) . (8)

Moreover, we state the general hypothesis that there exist two functions
T (r, ε) and S(r, ε) such that

TdS = dε+ pd
1

r
. (9)

More precisely, T is the temperature and S is the entropy of the fluid. This
last equation, well-known as the Gibbs’ equation, resumes the first and the
second principle of thermodynamics for a system subject to a reversible
transformation.

Using equations (6) and (9), it is possible to deduce that

∇α(ruα) = 0 ⇔ uα∂αS = 0 . (10)

3 The central hypothesis for a fluid mixture

Let us consider a two-species fluid mixture, flowing with a unique velocity.
Each fluid species has its own particle number density, rk, its specific internal
energy, εk, and its pressure, pk, that can be expressed in terms of rk and εk:

pk = pk(rk, εk) , (k = 1, 2) . (11)
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Also, let us suppose that each species k admits a thermodynamic tem-
perature, Tk = Tk(rk, εk), and an entropy density (strictly convex), Sk =
Sk(rk, εk), which satisfy the Gibbs’ relation:

TkdSk = dεk + pkd
1

rk
, (k = 1, 2) . (12)

Now, we introduce another field variable, the mass fraction Y of fluid 1,
which is defined by

Y =
r1

r
, (13)

where
r = r1 + r2 (14)

is the particle number density for the global fluid.
Let ε be the specific internal energy of the fluid mixture. Since it is an

extensive variable, we have

ε = Y1ε1 + Y2ε2 , (15)

with
Y1 = Y , Y2 = 1− Y , (16)

and we suppose that the equations (5) and (6), for a simple relativistic fluid
flow, are also valid for the two-species fluid model.

Using the partial densities rk (k = 1, 2), the balance laws for particle
number density of each species write as

∇α(rku
α) = 0 , (k = 1, 2) . (17)

Let us observe that, together with (14), equations (17) yields the balance
equation for the bulk particle number density (1).

Equation (17)1 can also be written as

∇α(Y ruα) = 0 , (18)

which, taking into account (1), gives the following equation

uα∂αY = 0 . (19)

Thus, searching for regular solutions, the mathematical study of the
model can be performed in terms of a set of 10 independent field variables,
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uα, r, ε1, ε2, p, p1, p2 and Y . The governing system (5), (6), (11), (13)
and (19) is a set of 8 equations in 10 unknown variables. Thus, two further
equations are needed in order to close the system.

According to Lagoutiére [40], a criterion for choosing this closure re-
lations is to suppose that there exists a priori the temperature T of the
mixture, function of all the thermodynamic variables of the problem, such
that

TDS = Dε+ pD
1

r
, (20)

where p and S, given by

S = Y S1 + (1− Y )S2 , (21)

are the pressure and the entropy of the whole fluid and D = uα∂α. This
hypothesis is called “central hypothesis”.

Multiplying (12) by Yk and summing over k, using (19) and the mixture
law (13), the following equation is obtained

Y1T1DS1 + Y2T2DS2 = Dε+ (p1 + p2)D
1

r
, (22)

and, for the central hypothesis (20), equation (22) gives the compatibility
conditions

Y1T1DS1 + Y2T2DS2 − TDS = (p1 + p2 − p)D
1

r
. (23)

Now, we assume an additional hypothesis: the closure relation must be
verify the vanishing of both sides of (23). So, it gets

Y1T1DS1 + Y2T2DS2 − TDS = 0 , (24)

p1 + p2 − p = 0 . (25)

It is noted that (25) implies that the pressure is closed

p = p1 + p2 , (26)

that is the well-known Dalton’s law.
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The last closure relation must be satisfy eq. (24). Hence, it is possible
impose one of the following closures

DS1

S1
=
DS2

S2
,

T1DS1 = T2DS2 ,

DS1 = DS2 , (27)

Y1DS1 = Y2DS2 ,

T1 = T2 .

Each closure relation defined above, by virtue of equation (24), allows to
define a temperature that verifies (20); respectively, we have

T =
1

S
(Y1S1T1 + Y2S2T2) ,

1

T
=
Y1

T1
+
Y2

T2
,

T = Y1T1 + Y2T2 , (28)

T =
1

2
(T1 + T2) ,

T = T1 = T2 .

Now, we consider system given by the following equations

∇α(ruα) = 0 ,

rfuα∇αuβ − γαβ∂αp = 0 ,

uα∂αε+ puα∂α
1

r
,

uα∂αY = 0 ,

ε = Y1ε1 + Y2ε2 ,

Y1 + Y2 = 1 ⇔ r = r1 + r2 ,

rk = Ykr ,

pk = pk(rk, εk) , (k = 1, 2) ,

(29)
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which we need add the two closure relations p = p1 + p2 and one of (27).
For each regular solution, the system (29), together with relations (26)

and (27), is equivalent to system which is obtained replacing expression of
energy (29)3 with relation

uα∂αS = 0 . (30)

In fact, by virtue of (20) and (21), we have

TDS = Dε+ pD
1

r
= 0 . (31)

Moreover, for every regular solution of the above system of evolution, we
deduce

(27)1 or (27)2 or (27)3 or (27)4 or (27)5 ⇔ DSk = 0 . (32)

Ultimately, the complete system of governing differential equations may
be written in terms of variables uα, r1, r2, S1, S2, Y as

rfuα∇αuβ − γαβ∂αp = 0 ,

∇α(r1u
α) = 0 ,

∇α(r2u
α) = 0 ,

uα∂αS1 = 0 ,

uα∂αS2 = 0 ,

uα∂αY = 0 ,

(33)

where
p = p1(r1, S1) + p2(r2, S2) . (34)

4 Weak discontinuities

In a domain Ω of space-time V4, let Σ be a regular hypersurface, not gener-
ated by the flow lines, being ϕ(xα) = 0 its local equation. We set Lα = ∂αϕ.
As it will be clear below, the hypersurface Σ is space-like, i.e. LαL

α < 0. In
the following, Nα will denote the normalized vector

Nα =
Lα√
−LβLβ

, NαNα = −1 . (35)
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We are interested in a particular class of solutions of system (33) namely,
weak discontinuity waves Σ across which the field variables uα, r1, r2, S1,
S2 and Y are continuous, but, conversely, jump discontinuities may occur in
their normal derivatives (at least one of the partial derivative suffers a jump
across Σ). In this case, if Q denotes any of these fields, then there exists
[11, 46] the distribution δQ, with support Σ, such that

δ̄[∇αQ] = NαδQ , (36)

where δ̄ is the Dirac measure defined by ϕ with Σ as support, square brackets
denote the discontinuity, δ being an operator of infinitesimal discontinuity;
δ behaves like a derivative insofar as algebraic manipulations are concerned.

By virtue of (36), from system (33) we obtain the following linear homo-
geneous system in the distribution δuα, δr1, δr2, δS1, δS2 and δY :

rfLδuβ − γαβNα

[(
∂p1

∂r1

)
S1

δr1 +

(
∂p2

∂r2

)
S2

δr2

+

(
∂p1

∂S1

)
r1

δS1 +

(
∂p2

∂S2

)
r2

δS2

]
= 0 ,

Lδr1 + r1Nαδu
α = 0 ,

Lδr2 + r2Nαδu
α = 0 ,

LδS1 = 0 ,

LδS2 = 0 ,

LδY = 0 ,

(37)

where L = uαNα.
Moreover, from the unitary character of uα we get the relation

uαδu
α = 0 . (38)

Now, we focus on the normal speeds of propagation of the various waves
with respect to an observer moving with the mixture velocity uα. The normal
speed λΣ of propagation of the wave front Σ, described by a time-like world
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line having tangent vector field uα, that is with respect to the time direction
uα, is given by [11, 46]

λ2
Σ =

L2

`2
, `2 = 1 + L2 . (39)

The local causality condition, i.e. the requirement that the characteristic
hypersurface Σ has to be time-like or null (or, equivalently, that the normal
Nα has to be space-like or null, that is gαβNαNβ ≤ 0), is equivalent to the
condition 0 ≤ λ2

Σ ≤ 1.
From the above equations (37), we obtain as first the solution L = 0,

which represents a wave moving with the mixture.
For the corresponding discontinuities, we find

Nαδu
α = 0 ,

δp =

[(
∂p1

∂r1

)
S1

δr1 +

(
∂p2

∂r2

)
S2

δr2 +

(
∂p1

∂S1

)
r1

δS1

+

(
∂p2

∂S2

)
r2

δS2

]
= 0 . (40)

From system (37), we see that the coefficients characterizing the discon-
tinuities have 6 degrees of freedom and this correspond to 6 independent
eigenvectors relevant to L = 0 in the space of the field variables.

From now on we suppose L 6= 0. Equations (37)4, (37)5 and (37)6 give,
respectively, δS1 = δS2 = δY = 0, whereas equation (37)1, multiplied by
Nβ, gives us:

rfLNβδu
β + `2

[(
∂p1

∂r1

)
S1

δr1 +

(
∂p2

∂r2

)
S2

δr2

]
= 0 . (41)

Writing
pk = pk(rk, Sk) = pk[ρk(rk, Sk), Sk] (42)

and taking into account that

(
∂pk
∂rk

)
Sk

=

(
∂pk
∂ρk

)
Sk

(
∂ρk
∂rk

)
Sk

,

(
∂ρk
∂rk

)
Sk

= fk ,

(43)
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equation (41) gives

rfLNαδu
α + `2(f1λ

2
1δr1 + f2λ

2
2δr2) = 0 , (44)

where we denote

λ2
1 =

(
∂p1

∂ρ1

)
S1

, λ2
2 =

(
∂p2

∂ρ2

)
S2

. (45)

Consequently, (44), (37)2 and (37)3 represent a linear homogeneous sys-
tem in the 3 scalar distributions Nαδu

α, δr1 and δr2, which may be different
from zero only if the determinant of the coefficient vanishes.

Therefore, we obtain the equation

H = fL2 − ω`2 = 0 , (46)

where

ω =
2∑

k=1

Ykfk

(
∂pk
∂ρk

)
Sk

= Y1f1λ
2
1 + Y2f2λ

2
2 . (47)

Equation (46) corresponds to two hydrodynamical waves propagating in
such a two fluid system with speeds of propagation, λΣ, given by

rfλ2
Σ = r1f1λ

2
1 + r2f2λ

2
2 , (48)

where λ1 and λ2 represent the speeds of propagation of hydrodynamical
waves in each species.

Now, we assume that each species satisfies the equation of state of perfect
gases:

pk = (γk − 1)rkεk , k = 1, 2 , (49)

where
γk =

cpk
cVk

, k = 1, 2 , (50)

is the ratio between specific heats at constant pressure, cpk , and volume, cVk ,
of the k-th species.

So, we have

λ2
k =

γkpk
rkfk

. (51)

Therefore, from equation (48), the following expression for the velocity
of propagation is obtained

λ2
Σ =

1

rf
(γ1p1 + γ2p2) , (52)
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which coincides with expression (27) found in [31].

Acknowledgement. Supported by G.N.F.M. of I.N.d.A.M., by Tirrenoam-
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1 Introduction

We start with some notations. Let N be the set of all positive integer and
let ∆ respectively T be the sets defined by

∆ =
{

(m,n) ∈ N2, withm ≥ n
}

respectively

T =
{

(m,n, p) ∈ N3, withm ≥ n ≥ p
}
.

Let (X, d) be a metric space and V a real or complex Banach space. The
norm on V and on B (V ) (the Banach algebra of all bounded linear operators
on V ) will be denoted by ‖·‖ .

Definition 1 A mapping ϕ : ∆ × X → X is called a discrete evolution
semiflow on X if the following conditions hold:
s1) ϕ (n, n, x) = x, for all (n, x) ∈ N×X;
s2) ϕ (m,n, ϕ (n, p, x)) = ϕ (m, p, x), for all (m,n, p, x) ∈ T ×X.

Example 1 Let f : R+ → R be a bounded function and for s ∈ R+ we
denote fs (t) = f (t+ s) for all t ∈ R+. Then X = {fs, s ∈ R+} is a metric
space with the metric d (x1, x2) = sup

t∈R+

|x1 (t)− x2 (t)| .

The mapping ϕ : ∆×X → X defined by ϕ (m,n, x) = xm−n is a discrete
evolution semiflow.

Given a sequence (Am)m∈N with Am : X → B (V ) and a discrete evo-
lution semiflow ϕ : ∆ ×X → X, we consider the problem of existence of a
sequence (vm)m∈N with vm : N×X → X such that

vm+1(n, x) = Am(ϕ(m,n, x))vm(n, x)

for all (m,n, x) ∈ ∆×X. We shall denote this problem with (A,ϕ) and we
say that (A,ϕ) is a variational (nonautonomous) discrete-time system.

For (m,n) ∈ ∆ we define the application Φn
m : X → B (V ) by

Φn
m(x)v =

{
Am−1 (ϕ (m− 1, n, x)) . . . An+1 (ϕ (n+ 1, n, x))An(x)v, if m > n
v, if m = n.
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Remark 1 From the definitions of vm and Φn
m it follows that:

c1) Φm
m(x)v = v, for all (m,x, v) ∈ N×X × V ;

c2) Φp
m(x) = Φn

m (ϕ(n, p, x)) Φp
n(x), for all (m,n, p, x) ∈ T ×X;

c3) vm(n, x) = Φn
m(x)vn(n, x), for all (m,n, x) ∈ ∆×X.

Definition 2 A mapping Φ : ∆×X → B (V ) is called a discrete evolution
cocycle over discrete evolution semiflow ϕ : ∆ × X → X if the following
properties hold:
c1) Φ(n, n, x) = I (the identity operator on V), for all (n, x) ∈ N×X
and
c2) Φ(m, p, x) = Φ(m,n, (ϕ(n, p, x))Φ(n, p, x), for all (m,n, p, x) ∈ T ×X.
If Φ is a discrete evolution cocycle over discrete evolution semiflow ϕ, then
the pair S = (Φ, ϕ) is called a discrete skew-evolution semiflow on X.

Remark 2 From Remark 1 it results that the mapping

Φ : ∆×X → B (V ) , Φ(m,n, x)v = Φn
m(x)v

is a discrete evolution cocycle over discrete evolution semiflow ϕ.

The concept of evolution cocycle was introduced by Megan and Stoica in
[4]. It generalizes the classical notion of linear skew-product semiflows and
evolution operators.

There are two remarkable stability criteria regarding the uniform expo-
nential stability of solutions to the linear differential equations x′ = A(t)x
on the half line, due to Barbashin ([1]) and Datko ([3]).

In this work we consider the classical concept of uniform exponential
stability and a concept of nonuniform exponential stability introduced by
Barreira and Valls ([2]) for the general case of variational nonautonomous
discrete-time systems in Banach spaces.

The main goal of the paper is to present discrete-time versions of the
Barbashin’s and Datko’s theorems for these stability concepts.

Continuous time versions of these results were obtained by Megan and
Stoica in [9] and [10].
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We remark that our proofs are not discretizations of the proofs from [9]
and [10].

Other results about uniform exponential stability of discrete evolution
semiflows were obtained by Pham Viet Hai in [6], [7] and [8].

2 Uniform exponential stability

Let (A,ϕ) be a discrete variational system associated to the discrete evolu-
tion semiflow ϕ : ∆ ×X → X and to the sequence of mappings A = (Am),
where Am : X → B (V ), for all m ∈ N.

Definition 3 The system (A,ϕ) is said to be uniformly exponentially stable
(and denote u.e.s.) if there are the constants N ≥ 1 and α > 0 such that:

eα(m−n) ‖Φn
m(x)v‖ ≤ N ‖v‖

for all (m,n, x, v) ∈ ∆×X × V.

Remark 3 It is easy to see that (A,ϕ) is uniformly exponentially stable if
and only if there are N ≥ 1 and α > 0 with

eα(m−n) ‖Φp
m(x)v‖ ≤ N ‖Φp

n(x)v‖

for all (m,n, p, x, v) ∈ T ×X × V.

Example 2 Let C = C (R+,R) be the metric space of all continuous func-
tions x : R+ → R, with the topology of uniform convergence on compact
subsets of R+. C is metrizable relative to the metric given in Example 1

Let f : R+ → (0,∞) be a decreasing function with the property that
there exists lim

t→∞
f (t) = α > 0. We denote by X the closure in C of the

set {ft, t ∈ R+}, where ft (s) = f (t+ s), for all s ∈ R+. The mapping
ϕ : ∆ × X → X defined by ϕ (m,n, x) = xm−n is a discrete evolution
semiflow.

Let us consider the Banach space V = R and let A : X → B (V ) defined
by

A (x) v = e
−

1∫
0

x(τ)dτ

v
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for all (x, v) ∈ X × V.
Then we obtain

Φn
m(x)v =

 e
−
m−n∫
0

x(τ)dτ

v, if m > n
v, if m = n

for all (m,n, x, v) ∈ ∆×X × V . Because x(τ) ≥ α we have that

|Φn
m(x)v| ≤ e−α(m−n) |v|

for all (m,n, x, v) ∈ ∆×X × V , and hence (A,ϕ) is u.e.s.

A characterization of the uniform exponential stability property is given
by

Lemma 1 The system (A,ϕ) is uniformly exponentially stable if and only
if there exists a decreasing sequence of real numbers (an) with an → 0 such
that:

‖Φp
m(x)v‖ ≤ am−n ‖Φp

n(x)v‖

for all (m,n, p, x, v) ∈ T ×X × V.

Proof. Necessity. It is a simple verification for an = Ne−αn, where N and
α are given by Definition 3.
Sufficiency. If an → 0 then there exists k ∈ N∗ with ak < 1. Then, for every
(m,n) ∈ ∆ there exist p ∈ N and r ∈ [0, k) such that m = n+ pk + r.
From hypothesis and Remark 1 we obtain

‖Φn
m(x)v‖ =

∥∥∥Φn+pk
n+pk+r (ϕ(n+ pk, n, x)) Φn

n+pk(x)v
∥∥∥ ≤

≤ ar
∥∥∥Φn

n+pk(x)v
∥∥∥ ≤ a0 ∥∥∥Φn+(p−1)k

n+pk (ϕ(n+ (p− 1)k, n, x)) Φn
n+(p−1)k(x)v

∥∥∥ ≤
≤ a0ak

∥∥∥Φn
n+(p−1)k(x)v

∥∥∥ ≤ . . . ≤ a0apk ‖v‖ =

= a0a
m−n−r

k
k ‖v‖ ≤ a0eαke−α(m−n) ‖v‖ ≤ Ne−α(m−n) ‖v‖

for all (m,n, x, v) ∈ ∆×X × V , where N = 1 + a0e
αk and α = − ln ak

k .
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Theorem 1 For every system (A,ϕ) the following assertions are equivalent:
(i) (A,ϕ) is uniformly exponentially stable;
(ii) there exist d > 0 and D ≥ 1 such that:

∞∑
k=n

ed(k−n) ‖Φn
k(x)v‖ ≤ D ‖v‖

for all (n, x, v) ∈ N×X × V ;
(iii) there exists D ≥ 1 such that:

∞∑
k=n

‖Φn
k(x)v‖ ≤ D ‖v‖

for all (n, x, v) ∈ N×X × V.

Proof. (i) ⇒ (ii) It is a simple verification for d ∈ (0, α) and D = N
1−ed−α ,

where N and α are given by Definition 3.
(ii)⇒ (iii) It is obvious.
(iii)⇒ (i) From (iii) it results that

‖Φn
m(x)‖ ≤ D

for all (m,n, x) ∈ ∆×X.
Moreover,

(m− n+ 1) ‖Φn
m(x)v‖ =

m∑
k=n

‖Φn
m(x)v‖ ≤

≤
m∑
k=n

∥∥∥Φk
m(ϕ(k, n, x))

∥∥∥ ‖Φn
k(x)v‖ ≤

≤ D
m∑
k=n

‖Φn
k(x)v‖ ≤ D2 ‖v‖

for all (m,n, x, v) ∈ ∆×X × V . By Lemma 1 it results that (A,ϕ) is u.e.s.

Remark 4 The preceding theorem can be viewed as a Datko-type theorem for
the property of uniform exponential stability for discrete evolution semiflows.

A Barbashin-type theorem for uniform exponential stability of discrete
evolution semiflows is given by
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Theorem 2 The following statements are equivalent:
(i) the system (A,ϕ) is uniformly exponentially stable;
(ii) there are b > 0 and B ≥ 1 such that:

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))
∥∥∥ ≤ B

for all (m,n, x) ∈ ∆×X;
(iii) there exist b > 0 and B ≥ 1 with:

m∑
k=n

∥∥∥Φk
m(ϕ(k, n, x))

∥∥∥ ≤ B
for all (m,n, x) ∈ ∆×X.

Proof. (i) ⇒ (ii) If (A,ϕ) is u.e.s. then there are N ≥ 1 and α > 0 such
that for every b ∈ (0, α) we have

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))
∥∥∥ ≤ N m∑

k=n

e(b−α)(m−k) ≤ B

for all (m,n, x) ∈ ∆×X, where B = Neα−b

eα−b−1 .
(ii)⇒ (iii) It is obvious.
(iii)⇒ (i) From (iii) it results

‖Φn
m(x)‖ ≤ B

for all (m,n, x) ∈ ∆×X. Then

(m− n+ 1) ‖Φn
m(x)v‖ =

m∑
k=n

‖Φn
m(x)v‖ ≤

≤
m∑
k=n

∥∥∥Φk
m(ϕ(k, n, x))

∥∥∥ ‖Φn
k(x)‖ ‖v‖ ≤ B2 ‖v‖

for all (m,n, x, v) ∈ ∆×X×V . According to Lemma 1, it results that (A,ϕ)
is u.e.s.

Open problem. If (A,ϕ) is u.e.s. then there exist B ≥ 1 such that

m∑
k=n

∥∥∥Φk
m(ϕ(k, n, x))v

∥∥∥ ≤ B ‖v‖
for all (m,n, x, v) ∈ ∆×X × V. The converse implication is valid?
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3 Nonuniform exponential stability

Let (A,ϕ) be a discrete variational system associated to the discrete evolu-
tion semiflow ϕ : ∆ ×X → X and to the sequence of mappings A = (Am),
where Am : X → B (V ), for all m ∈ N.

Definition 4 The system (A,ϕ) is said to be (nonuniformly) exponentially
stable (and denote e.s.) if there are three constants N ≥ 1, α > 0 and β ≥ 0
such that:

eα(m−n) ‖Φn
m(x)v‖ ≤ Neβn ‖v‖

for all (m,n, x, v) ∈ ∆×X × V.

Remark 5 This concept of nonuniform exponential stability has been intro-
duced in the works of Barreira and Valls (see for example [2]).

Remark 6 Using the property (c2) from Remark 1 it is easy to see that
(A,ϕ) is exponentially stable if and only if there are N ≥ 1, α > 0 and
β ≥ 0 with

eα(m−n) ‖Φp
m(x)v‖ ≤ Neβn ‖Φp

n(x)v‖

for all (m,n, p, x, v) ∈ T ×X × V.

Remark 7 It is obvious that

u.e.s.⇒ e.s.

The following example shows that the converse implication is not valid.

Example 3 Let (X, d) be the metric space, V the Banach space and ϕ the
evolution semiflow given as in Example 2.

We define the sequence of mapings Am : X → B (V ) by

Am(x)v =
u(m)

u(m+ 1)
e
−

1∫
0

x(τ)dτ

v

for all (m,x, v) ∈ N × X × V , where the sequence u : N → R is given by
u(m) = emπ(1−cos

mπ
2

).
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We have, according to the definition of discrete evolution cocycle,

Φn
m(x)v =

 u(n)
u(m) e

−
m−n∫
0

x(τ)dτ

v, if m > n

v, if m = n.

We observe that

|Φn
m(x)v| = enπ(1−cos

nπ
2
)−mπ(1−cos mπ

2
)e
−
m−n∫
0

x(τ)dτ

|v| ≤

≤ e2nπe−α(m−n) |v|

for all (m,n, x, v) ∈ ∆×X × V , which prove that (A,ϕ) is e.s.

Let us suppose now that the system (A,ϕ) is u.e.s. Accordind to Remark
3, there exist N ≥ 1 and ν > 0 such that

nπ(1− cos
nπ

2
)−mπ(1− cos

mπ

2
)−

m−n∫
0

x(τ)dτ ≤ lnN − ν(m− n)

for all (m,n, x) ∈ ∆×X. If we consider n = 4k+ 2 and m = 4k+ 4, k ∈ N
we have that

8kπ + 4π ≤ lnN + 2x(0)− 2ν

which, for k → ∞, leads to a contradiction. This proves that (A,ϕ) is not
u.e.s.

A Datko-type theorem for nonuniform exponential stability of variational
nonautonomous discrete-time equations is given by

Theorem 3 The system (A,ϕ) is exponentially stable if and only if there
are c ≥ 0, d > 0 and D ≥ 1 such that:

∞∑
k=n

ed(k−n) ‖Φn
k(x)v‖ ≤ Decn ‖v‖

for all (n, x, v) ∈ N×X × V.
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Proof. Necessity. If (A,ϕ) is e.s. then there are N ≥ 1, α > 0 and β ≥ 0
such that for d ∈ (0, α) we have that

∞∑
k=n

ed(k−n) ‖Φn
k(x)v‖ ≤ Neβn

∞∑
k=n

e(d−α)(k−n) ‖v‖ = Decn ‖v‖

for all (n, x, v) ∈ N×X × V , where c = β and D = N
1−ed−α .

Sufficiency. We observe that from hypothesis it results that

ed(m−n) ‖Φn
m(x)v‖ ≤ Decn ‖v‖

for all (m,n, x, v) ∈ ∆×X × V , which shows that (A,ϕ) is e.s.

Another characterization of nonuniform exponential stability of varia-
tional nonautonomous discrete-time equations is given by

Lemma 2 The system (A,ϕ) is exponentially stable if and only if there are
b > c ≥ 0 and N ≥ 1 such that:

eb(m−n) ‖Φn
m(x)v‖ ≤ Necm ‖v‖

for all (m,n, x, v) ∈ ∆×X × V.

Proof. Necessity. If (A,ϕ) is e.s. then there are N ≥ 1, α > 0 and β ≥ 0
such that:

eb(m−n) ‖Φn
m(x)v‖ = e(α+β)(m−n) ‖Φn

m(x)v‖ ≤

≤ Neβneβ(m−n) ‖v‖ = Neβm ‖v‖ = Necm ‖v‖

for all (m,n, x, v) ∈ ∆×X × V , where b = α+ β > β = c.
Sufficiency. From hypothesis it results that

‖Φn
m(x)v‖ ≤ Necme−b(m−n) ‖v‖ =

= Necne−(b−c)(m−n) ‖v‖

for all (m,n, x, v) ∈ ∆×X × V.
Finally, we obtain that (A,ϕ) is e.s.

A Barbashin-type theorem for nonuniform exponential stability of vari-
ational nonautonomous discrete-time equations is given by
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Theorem 4 The the system (A,ϕ) is exponentially stable if and only if there
are b > c ≥ 0 and B ≥ 1 such that:

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))
∥∥∥ ≤ Becm

for all (m,n, x) ∈ ∆×X.

Proof. Necessity. If (A,ϕ) is e.s. then by Definition 4 it follows that there
are N ≥ 1, α > 0 and β ≥ 0 such that for every b ∈ (β, α+ β) we have

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))
∥∥∥ ≤ Ne(b−α)m m∑

k=n

e(α+β−b)k ≤ Becm

for all (m,n, x) ∈ ∆×X, where c = β and B = N eα+β−b

eα+β−b−1 .
Sufficiency. By hypothesis it follows that there exist B ≥ 1 and b > c ≥ 0
such that

eb(m−n) ‖Φn
m(x)‖ ≤ Becm

for all (m,n, x) ∈ ∆×X. By Lemma 2 it follows that (A,ϕ) is e.s.

Open problem. If (A,ϕ) is e.s. then there exist B ≥ 1 and b > c ≥ 0 such
that

m∑
k=n

eb(m−k)
∥∥∥Φk

m(ϕ(k, n, x))v
∥∥∥ ≤ Becm ‖v‖

for all (m,n, x, v) ∈ ∆×X × V. The converse implication is true?
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Abstract

In this paper, Liapunov-type integral inequalities has been obtained
for an even order dynamic equations on time scales. As an applications,
an estimate for the number of zeros of an oscillatory solution and a cri-
terion for disconjugacy of an even order dynamic equation is obtained
in an interval [a, σ(b)]T.
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1 Introduction

The theory of time scales, which has recently received a lot of attention,
was introduced by Hilger [12] in his Ph. D. thesis in 1988 in order to unify
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continuous and discrete analysis. Several authors have expounded on various
aspects of this new theory; see the survey paper of Agarwal et. al. [1]
and references cited therein and a book on the subject of time scales by
Bohner and Peterson [2]. A time scale T is an arbitrary closed subset of
the reals, and the cases when this time scale is equal to the reals or to
the integers represents the classical theories of differential equations and
difference equations respectively.

In [13], Russian mathematician Liapunov proved that If y(t) is a non-
trivial solution of

y′′ + p(t)y = 0 (1.1)

with y(a) = 0 = y(b), where a, b ∈ R with a < b and y(t) 6= 0 for t ∈ (a, b),
then ∫ b

a
|p(t)|dt > 4

b− a
(1.2)

holds, where p ∈ L1
loc.

This result has found applications in differential and difference equations
in the study of various properties of solutions of (1.1) and it is useful tools
in oscillation theory, disconjugacy and eigenvalue problems (see [ 4 - 14]).

Bohner et al. [2] extended the Liapunov inequality (1.2) on time scale T
for the dynamic equation

y∆∆(t) + p(t)yσ(t) = 0, (1.3)

where p(t) is a positive rd-continious function defined on T. They proved,
by using the quadratic functional equation

F (y) =

∫ b

a
[(y∆(t))2 − p(t)(yσ)2]∆t = 0,

that if y(t) is a nontrivial solution of (1.3) with y(a) = 0 = y(b)(a < b), then∫ b

a
p(t)∆t >

(b− a)

f(d)
,

where f : T → R is defined by f(t) = (t − a)(t − b) and d ∈ T such that
f(d) = max{f(t) : t ∈ [a, b]}. In particular, using the fact that, a < c < b
and

1

c− a
+

1

b− c
=

(a+ b− 2c)2

(b− a)(c− a)(b− c)
+

4

b− a
>

4

b− a
,



34 Saroj Panigrahi

they obtained ∫ b

a
p(t)∆t >

4

b− a
.

Consider the 2n-order dynamic equation

y∆2n
+ p(t)yσ = 0, (1.4)

on an arbitrary time scales T, where p is a real rd-continuous function defined
on [0,∞)T = [0,∞) ∩ T and σ(t) is the forward jump operator defined by
σ(t) = inf{s ∈ T : s > t}.

The main objective of this paper is to determine (i) the lower bound for
the distance between consecutive zeros of the solutions, (ii) the number of
zeros of solutions of (1.4) over an interval [0, T ]T, and (ii) establish some
sufficient condition for the disconjugacy of (1.4) on an interval [a, σ(b)]T.

Note that (1.4) in its general form involves some different types of dif-
ferential and difference equations depending on the choice of time scales T.
For example, when T = R, (1.4) becomes a even order differential equation.
When T = Z, (1.4) is an even order difference equation. When T = hZ, then
(1.4) becomes a generalized difference equation and when T = qN, then (1.4)
becomes a quantum difference equation. Note also that results in this paper
can be applied on the time scales T = N2 = {t2 : t ∈ N}, T2 = {

√
n : n ∈ N0},

T3 = { 3
√
n : n ∈ N0} and when T = Tn = {tn : n ∈ N0}, where {tn} is a set

of harmonic numbers.
Let T is bounded below and t0 = minT. We say that a solution y of (1.4)

has a zero at t in case y(t) = 0. We say that y(t) has a generalized zero in
(t, σ(t)), if t is right-scattered and y(t)y(σ(t)) < 0. We say that t = t0 is a
generalized zero (GZ) of order greater than k of y if

y∆j
(t0) = 0, j = 0, 1, ..., k − 1.

We say (1.4) is disconjugate on IT = [a, σ(b)]T = [a, σ(b)] ∩ T, if there is no
nontrivial solution of (1.4) with 2n (or more) generalized zero in IT.

A nontrivial solution of (1.4) is called oscillatory if it has infinitely many
(isolated) generalized zeros in [t0,∞)T; otherwise it is called nonoscillatory.

The organizations of the paper is as follows. Section 2 will give some
preliminaries on time scales. In Section 3, Liapunov- type integral inequality
has been derived for even order dynamic equations. As an application, a
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criterion for disconjugacy is obtained in an interval [a, σ(b)]T and an estimate
for the number of zeros of an oscillatory solutions of (1.4) on an interval
[0, T ]T.

2 Preliminaries on Time Scales

A time scale T is an arbitrary nonempty closed subset of real numbers IR.
On any time scale we define the “forward and backward jump operators” by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.

We make the convention:

inf φ = supT, supφ = inf T.

A point t ∈ T is said to be left dense if ρ(t) = t, right dense if σ(t) = t,
left scattered if ρ(t) < t, right scattered if σ(t) > t. The points that are
simultaneously right-dense and left-dense are called dense.

The mappings µ, ν : T→ [0,+∞) defined by

µ(t) = σ(t)− t

and

ν(t) = t− ρ(t)

are called, respectively, the forward and backward graininess functions.
If T has a right- scattered minimum m, then define Tk = T \ {m};

otherwise Tk = T. If T has left-scattered maximum M , then define Tk =
T \ {M}; otherwise Tk = T. Finally, put Tkk = Tk ∩ Tk. For a function
f : T→ R, t ∈ Tk the delta derivative is defined by

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
,

if f is continuous at t and t is right-scattered. If t is right-dense, then
derivative is defined by

f∆(t) = lim
s→t+

f(σ(t))− f(s)

t− s
= lim

s→t+
f(t)− f(s)

t− s
,
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provided this limit exists.

A function f : T → IR is said to be rd-continuous if it is continuous at
each right dense point and if there exists a finite left limit at all left dense
points. The set of rd-continuous functions is denoted by Crd(T, IR). The
derivative and the shift operator σ are related by the formula

fσ = f + µf∆, where fσ = f ◦ σ.

Let f be a real-valued function defined on an interval [a, b]. We say
that f is increasing, decreasing, nonincreasing, and nondecreasing on [a, b]
if t1, t2 ∈ [a, b] and t2 > t1 imply f(t2) > f(t1), f(t2) < f(t1), f(t2) ≤
f(t1), f(t2) ≥ f(t1), respectively. Let f be a differentiable function on [a, b].
Then f is increasing, decreasing, nonincreasing, and nondecreasing on [a, b]
if f∆(t) > 0, f∆(t) < 0, f∆(t) ≤ 0, f∆(t) ≥ 0, for all t ∈ [a, b), respectively.

We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g of two differentiable func-
tions f and g:

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),

and (
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

For a, b ∈ T and a differentiable function f , the Cauchy integral of f∆ is
defined by ∫ b

a
f∆(t)∆t = f(b)− f(a).

The integration by parts formula read as∫ b

a
f∆(t)g(t)∆t = f(b)g(b)− f(a)g(a) +

∫ b

a
fσ(t)g∆(t)∆t,

and infinite integrals are defined as∫ ∞
a

f(s)∆s = lim
t→∞

∫ t

a
f(s)∆s.
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A function f → R is called convex on IT, if

f(λt+ (1− λ)s) ≤ λf(t) + (1− λ)f(s), (2.1)

for all t, s ∈ IT and λ ∈ [0, 1] such that λt+ (1− λ)s ∈ IT. The function f is
strictly convex on IT if the inequality (2.1) is strict for distinct t, s ∈ IT and
λ ∈ (0, 1).

The function f is concave (respectively, strictly concave) on IT, if −f is
convex (respectively, strictly convex).

A function that is both convex and concave on IT is called affine on IT.

Theorem 2.1. Let f : IT → R be a delta differentiable function on IkT. If
f∆ is nondecreasing (nonincreasing) on IkT, then f is convex (concave) on
IT.

Theorem 2.2. (Rolle’s Theorem [2]) Let y(t) be a continuous on [t1, t2],
and assume that y∆ is continuous on (t1, t2). If y(t1) = 0 and y has a GZ
at t2, then there exists c ∈ (t1, t2) such that y∆ has GZ at c.

Theorem 2.3. (Holder’s Inequality ) Let a, b ∈ T. For rd- continuous
f, g : [a, b]→ IR we have∫ b

a
|f(t)g(t)|∆t ≤

{∫ b

a
|f(t)|p∆t

} 1
p
{∫ b

a
|g(t)|q∆t

} 1
q

,

where p > 1 and q = p/(p− 1).

The special case p = q = 2 reduces to the Cauchy-Schwarz Inequality.

Theorem 2.4. Let a, b ∈ T. For rd- continuous f, g : [a, b]→ IR, we have∫ b

a
|f(t)g(t)|∆t ≤

{∫ b

a
|f(t)|2∆t

} 1
2
{∫ b

a
|g(t)|2∆t

} 1
2

.

3 Main Results

In this work, we establish the Liapunov-type inequality for an even order
dynamic equation of the form

y∆2n
+ p(t)yσ = 0, (3.1)

where p ∈ Crd([0,∞)T,R).
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Theorem 3.1. Let y(t) be a solution of (3.1) on IT satisfying y∆2i
(a) = 0 =

y∆2i
(σ(b)), i = 0, 1, 2, ..., n− 1 and y(t) 6= 0 for t ∈ (a, σ(b)), then∫ σ(b)

a
|p(t)|∆t > 22n

(σ(b)− a)2n−1
. (3.2)

Proof. Since y(t) is a nontrivial solution of (3.1), we deduce that M is
defined (note that y(t) is continuous by Theorem 1.16(i) in [2]) and M =
|y(τ)| = max{y(t)| : t ∈ IT}.

First we prove for i = 0, 1, ..., n− 1,

|y∆2i
(t)| ≤

(
σ(b)− a

4

)∫ σ(b)

a
|y∆2i+2

(s)|∆s. (3.3)

Infact,

|y∆2i
(t)| =

∣∣∣∣ ∫ σ(t)

a
y∆2i+1

(s)∆s

∣∣∣∣ ≤ ∫ t

a
|y∆2i+1

(s)|∆s

and

|y∆2i
(t)| = | − y∆2i

(t)| ≤
∫ σ(b)

t
|y∆2i+1

(s)|∆s.

Therefore

|y∆2i
(t)| ≤ 1

2

∫ t

a
|y∆2i+1(s)

(s)|∆s. (3.4)

Since y∆2i
(a) = y∆2i

(σ(b)) = 0, then there exists τi ∈ (a, σ(b))T such that

y∆2i+1
(τi) = 0, for i = 0, 1, ..., n− 1 and hence

|y∆2i+1
(t)| =

∣∣∣∣ ∫ t

τi

y∆2i+2
(s)∆s

∣∣∣∣ ≤ ∫ t

τi

|y∆2i+2
(s)|∆s ≤

∫ σ(b)

τi

|y∆2i+2
(s)|∆s

and

|y∆2i+1
(t)| =

∣∣∣∣− y∆2i+1
(t)

∣∣∣∣ ≤ ∫ τi

t
|y∆2i+2

(s)|∆s ≤
∫ τi

a
|y∆2i+2

(s)|∆s.

Therefore again summing up these last two inequalities, we obtain

|y∆2i+1
(t)| ≤ 1

2

∫ σ(b)

a
|y∆2i+2

(s)|∆s. (3.5)
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Thus substituting (3.5) in (3.4), we obtain

|y∆2i
(t)| ≤ 1

2

∫ σ(b)

a
|y∆2i+1

(s)|∆s ≤ 1

2

∫ σ(b)

a

(
1

2

∫ σ(b)

a
|y∆2i+2

(ξ)|∆ξ
)

∆s

=

(
σ(b)− a

4

)∫ σ(b)

a
|y∆2i+2

(s)|∆s.

Hence Eq.(3.3) is proved.

From (3.3),

0 < |y(τ)| ≤
(
σ(b)− a

4

)∫ σ(b)

a
|y∆2

(s)|∆s

=

(
σ(b)− a

4

)∫ σ(b)

a

[(
σ(b)− a

4

)∫ σ(b)

a
|y∆6

(ξ)|∆ξ
]
∆s

=
(σ(b)− a)3

24

∫ σ(b)

a
|y∆4

(s)|∆s

≤ (σ(b)− a)3

24

∫ σ(b)

a

[(
σ(b)− a

4

)∫ σ(b)

a
|y∆6

(ξ)|∆ξ
]
∆s

=
(σ(b)− a)5

26

∫ σ(b)

a
|y∆6

(s)|∆s

≤ ... ≤ (σ(b)− a)2n−1

22n

∫ σ(b)

a
|y∆2n

(s)|∆s

≤ (σ(b)− a)2n−1

22n

∫ σ(b)

a
| − p(s)yσ(s)|∆s

≤ (σ(b)− a)2n−1

22n
|y(τ)|

(∫ σ(b)

a
|p(s)|∆s

)
,

which yields (3.2). Hence proof of the Theorem 3.1 is complete.

Remark 3.2. It is easy to see that the Theorem 3.1 holds for the dynamic
equation

y∆2n
+ (−1)kp(t)yσ = 0,

where k ∈ Z.
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Remark 3.3. If n = 1, then the above equation (3.1) reduces to

y∆2
+ p(t)yσ = 0. (3.6)

If y(t) is a solution of (3.6) satisfying y(a) = 0 = y(σ(b)) (a < σ(b)) and
y(t) 6= 0 for t ∈ (a, σ(b)), then∫ σ(b)

a
|p(t)|∆t > 4

(σ(b)− a)
.

This is same as obtained by [2].

Remark 3.4. If n = 1 and T = R, then the inequality (3.2) reduces to the
Liapunov inequality (1.2).

In the following we obtain an estimate for the number of zeros of an
oscillatory solution of (3.1) on an interval [0, T ]T.

Theorem 3.5. If y(t) is a solution of (3.1), which has N zeros {tk}Nk=1 in
the interval [0, T ], where 0 < a ≤ t1 < t2 < .... < tN ≤ σ(b) ≤ T, then

T 2n−1

∫ T

o
|p(t)|∆t > 22n(N − 12n). (3.7)

Proof. From Theorem 3.1 it follows that∫ tk+1

tk

|p(t)|∆t > 22n

(tk+1 − tk)2n−1

for k = 1, 2, ..., N − 1. Hence,∫ T

0
|p(t)|∆t ≤

N−1∑
k=1

∫ tk+1

tk

|p(t)|∆t > 22n
N−1∑
k=1

1

(tk+1 − tk)2n−1
. (3.8)

Since f(u) = u−2n+1 is convex for u > 0, we have for xk = tk+1− tk > 0, k =
1, 2, ..., N − 1,

N−1∑
k=1

f(xk) > (N − 1)f

(∑N−1
k=1 xk
N − 1

)
,

that is,

N−1∑
k=1

1

(tk+1 − tk)2n−1
> (N − 1)f

(
tN − t1
N − 1

)
=

(N − 1)2n

(tN − t1)2n−1
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≥ (N − 1)2n

T 2n−1
. (3.9)

Hence (3.7) follows from (3.8) and (3.9).

Theorem 3.6. If ∫ σ(b)

a
|p(t)|∆t < 22n

(σ(b)− a)2n−1
,

then Eq.(3.1) is disconjugate on [a, σ(b)]T.

Proof. Suppose, on the contrary, that Eq.(3.1) is not disconjugate on
[a, σ(b)]T. By defination, there exists a nontrivial solution of Eq.(3.1), which
has at least 2n - generalized zeros (counting multiplicities) in [a, σ(b)]T.

Case I. One of the generalized zeros (counting multiplicities of order n
) is at the left end point a, that is,

y∆2i
(a) = 0 : i = 0, 1, ..., n− 1,

the other is at σ(b0) ∈ (a, σ(b)), that is

y∆2i
(σ(b0)) = 0 : i = 0, 1, ..., n− 1.

Therefore, by using Theorem 3.1, we obtain∫ σ(b0)

a
|p(t)|∆t > 22n

(σ(b0)− a)2n−1
,

which is a contradiction to (3.1).
Case II. None of the generalized zero at the left end point a. Then y

has two generalized zeros (counting multiplicities of order n) both at σ(a0)
and σ(b0) with σ(a0) < σ(b0) in (a, σ(b)), then∫ σ(b0)

σ(a0)
|p(t)|∆t > 22n

(σ(b0)− σ(a0))2n−1
,

that is, ∫ σ(b)

a
|p(t)|∆t > 22n

(σ(b)− a)2n−1
,

which is a contradiction to (3.1). Hence the proof of the theorem is complete.
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Theorem 3.7. If y(t) is a solution of

y∆2n ± λp(t)y = 0,

with y∆2i
(a) = 0 = y∆2i

(σ(b)); i = 0, 1, ..., n − 1, and y(t) 6= 0 for t ∈
[a, σ(t)]T, where p ∈ Crd([0,∞)T,R) and λ ∈ R be an eigenvalue, then

|λ| ≥ 22n(∫ σ(b)
a |p(t)|∆t

)
(σ(t)− a)2n−1

.

The proof of the Theorem 3.7 follows from the Theorem 3.1.
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In this paper, we investigate the leader-follower synchronization of
coupled second-order linear harmonic oscillators with the presence of
random noises and time delays. The interaction topology is modeled
by a weighted directed graph and the weights are perturbed by white
noise. On the basis of stability theory of stochastic differential delay
equations, algebraic graph theory and matrix theory, we show that the
coupled harmonic oscillators can be synchronized almost surely with
random perturbation and time delays. Numerical examples are pre-
sented to illustrate our theoretical results.
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1 Introduction

Synchronization, as an emergent collective phenomenon of a population of
units with oscillatory behaviors, is one of the most intriguing in nature and
plays a significant role in a variety of disciplines such as biology, sociology,
physics, chemistry and technology [2, 20, 26, 28]. One celebrated model for
synchronization is the Kuramoto model [12], which is described by a system
of structured ordinary differential equations and often used to model synchro-
nization of oscillators in different fields of physics, engineering and biology.
The original Kuramoto formulation assumes full connectivity of the network,
that is, the interaction topology is a complete graph. Recent works general-
ize the Kuramoto model to nearest neighbor interaction and the underlying
topologies may be general networks, see e.g. [1, 13, 21]. Wireless sensor net-
work is also a field where synchronization is an important problem to deal
with. Many distributed applications on wireless networks require accurate
clock synchronization, see e.g. [4, 27]. Another classical model for synchro-
nization is the harmonic oscillator network [3, 23, 29], which is the very
subject of the present paper. Recently, Ren [23] investigates synchronization
of coupled second-order linear harmonic oscillators with local interaction.
Due to the linear structure, the ultimate trajectories to which each oscilla-
tor converges over directed fixed networks are shown explicitly and milder
convergence conditions than those in the case of Kuramoto model [13] are
derived.

Since noise is ubiquitous in nature, technology, and society [26], the mo-
tion of oscillator is inevitably subject to disturbance in the environments.
In biological and communication networks, time delay is also unavoidable
due to finite communication speed [31, 32]. Although random noise and time
delay have been considered extensively in exploring synchronization and con-
sensus problems by means of theoretical and numerical methods, they have
seldom been analytically treated in synchronization of coupled harmonic os-
cillators. Motivating this idea, the objective of this paper is to deal with
leader-following synchronization conditions for coupled harmonic oscillators
over general directed topologies with the presence of noise perturbation and
communication time delays. The main tools used here are borrowed from al-
gebraic graph theory, matrix theory and stochastic differential delay equation
theory.

The synchronization of harmonic oscillator networks treated here are re-
lated to the second-order consensus dynamics, see e.g. [14, 17, 24, 30, 31, 32].
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In the literature regarding consensus problems, agents are usually considered
to be governed by first-order dynamics (see [19] and references therein). The
second-order consensus problems are more challenging and especially mean-
ingful for the implementation of coordination and control in networked sys-
tems. A continuous-time average consensus algorithm for double-integrator
dynamics over undirected network topologies is proposed in [30]. Ref. [24]
extends the results of [30] to the case of directed interaction. In [31], the
authors address a second-order consensus problem with time delays and di-
rected fixed topology. Ref. [32] derives a necessary and sufficient condition
for the second-order consensus with the communication delay, that is, the un-
derlying topology contains a directed spanning tree. Ref. [14] analyzes the
discrete-time consensus problem with nonuniform time delay and switching
topologies. With a selected Lyapunov-Razumikhim function, the authors in
[17] present sufficient consensus conditions for a locally passive multi-agent
system over a packet-switched communication network with the presence of
packet time-delay. In contrast to the above works, where the consensus equi-
librium for the velocities of agents is a constant, the positions and velocities
are synchronized to achieve oscillating motion by utilizing harmonic oscillator
schemes (c.f. Remark 4 below).

On the other hand, the leader-following consensus problem of a group of
second-order dynamics agents is one of the main research topics in agent-
based problems, as is the setup considered in this paper (see also Remark 1
below). An algorithm for distributed estimation of the active leader’s unmea-
surable state variables is introduced in [9]. By a Lyapunov-based approach,
it is shown that the followers will track the leader when the undirected inter-
agent topology is a connected graph. Ref. [10] further extends the result to
directed switching topologies. The varying-velocity leader and time-varying
delays are considered in [22]. In [8], a distributed observers design is proposed
to achieve the leader-following in an undirected switching network topology.
However, random noise issues are typically not addressed in the above works.

The rest of the paper is organized as follows. In Section 2, we pro-
vide some preliminaries and present the coupled harmonic oscillator network
model. In Section 3, we analyze the synchronization stability of this model
and give sufficient conditions for almost surely convergence. Numerical ex-
amples are given in Section 4 to validate our theoretical results. Finally, the
conclusion is drawn in Section 5.
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2 Problem formulation

By convention, R represents the real number set; In is an n × n identity
matrix. For any vector x, xT denotes its transpose and ‖x‖ its Euclidean
norm. For a matrix A, denote by ‖A‖ the operator norm of A, i.e. ‖A‖ =
sup{‖Ax‖ : ‖x‖ = 1}. Re(z) denotes the real part of z ∈ C.

Throughout the paper we will use the following concepts on graph theory
(see e.g. [6]) to capture the topology of the network interactions.

Let G = (V, E ,A) be a weighted directed graph with the set of vertices
V = {1, 2, · · · , n} and the set of arcs E ⊆ V ×V. The vertex i in G represents
the ith oscillator, and a directed edge (i, j) ∈ E means that oscillator j can
directly receive information from oscillator i. The set of neighbors of vertex
i is denoted by Ni = {j ∈ V| (j, i) ∈ E}. A = (aij) ∈ Rn×n is called the
weighted adjacency matrix of G with nonnegative elements and aij > 0 if and
only if j ∈ Ni. The in-degree of vertex i is defined as di =

∑n
j=1 aij . The

Laplacian of G is defined as L = D −A, where D = diag(d1, d2, · · · , dn). A
directed graph G is called strongly connected if there is a directed path from
i to j between any two distinct vertices i, j ∈ V. If there exists a directed
path from vertex i to vertex j, then i is said to be reachable for j. If a vertex
i is reachable for every other vertex in G, then we say i is globally reachable
in G. In this case, we also say that G has a directed spanning tree with root
i.

Consider n coupled harmonic oscillators connected by dampers and each
attached to fixed supports by identical springs with spring constant k. The
resultant dynamical system can be described as

ẍi + kxi +
∑
j∈Ni

aij
(
ẋi − ẋj

)
= 0, i = 1, · · · , n (1)

where xi ∈ R denotes the position of the ith oscillator, k serves as a pos-
itive gain, and aij characterizes interaction between oscillators i and j as
mentioned before.

Here we study a leader-follower version of the above system, and more-
over, communication time delay and stochastic noises during the propagation
of information from oscillator to oscillator are introduced. In particular, we
consider the dynamical system of the form:
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ẍi(t) + kxi(t) +
∑
j∈Ni

aij
(
ẋi(t− τ)− ẋj(t− τ)

)
+ bi

(
ẋi(t− τ)− ẋ0(t− τ)

)
+
[ ∑
j∈Ni

σij
(
ẋi(t− τ)− ẋj(t− τ)

)
+ ρi

(
ẋi(t− τ)− ẋ0(t− τ)

)]
ẇi(t) = 0,

i = 1, · · · , n, (2)

ẍ0(t) + kx0(t) = 0, (3)

where τ is the time delay and x0 is the position of the virtual leader, labeled
as oscillator 0, which follows Equation (3) describing an undamped harmonic
oscillator. We thus concern another directed graph G ⊃ G associated with the
system consisting of n oscillators and one leader. Let B = diag(b1, · · · , bn) be
a diagonal matrix with nonnegative diagonal elements and bi > 0 if and only
if 0 ∈ Ni. Let W (t) := (w1(t), · · · , wn(t))T be an n-dimensional standard
Brownian motion. Hence, ẇi(t) is one-dimensional white noise. To highlight
the presence of noise, it is natural to assume that σij > 0 if j ∈ Ni, and
σij = 0 otherwise; ρi > 0 if 0 ∈ Ni, and ρi = 0 otherwise. Also let Aσ =
(σij) ∈ Rn×n and Bσ = diag(ρ1, · · · , ρn) be two matrices representing the
intensity of noise. Moreover, let σi =

∑n
j=1 σij , Dσ = diag(σ1, · · · , σn), and

Lσ = Dσ −Aσ.

Remark 1. Consensus problems of self-organized groups with leaders have
broad applications in swarms, formation control and robotic systems, etc.; see
e.g. [8, 9, 10, 16, 18, 22]. In multi-agent systems, the leaders have influence
on the followers’ behaviors but usually independent of their followers. One
therefore transfers the control of a whole system to that of a single agent,
which saves energy and simplifies network control design [5, 11]. Most of the
existing relevant literatures assume a constant state leader, while our model
serves to be an example of oscillating state leader on this stage.

Let ri = xi and vi = ẋi for i = 0, 1, · · · , n. By denoting r = (r1, · · · , rn)T
and v = (v1, · · · , vn)T , we can rewrite the system (2), (3) in a compact form
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as:

dr(t) = v(t)dt, (4)
dv(t) =

[
− kr(t)− (L+B)v(t− τ) +Bv0(t− τ)1

]
dt

+
[
− (Lσ +Bσ)v(t− τ) +Bσv0(t− τ)1

]
dW, (5)

dr0(t) = v0(t)dt, dv0(t) = −kr0(t)dt, (6)

where 1 denotes an n × 1 column vector of all ones (with some ambiguity;
however, the right meaning would be clear in the context).

Remark 2. Note that vi depends on the information from its in-neighbors
and itself. In the special case that time delay τ = 0 and Aσ = Bσ = 0,
algorithms (4)-(6) are equivalent to algorithms (12) and (13) in [23].

3 Convergence analysis

In this section, the convergence analysis of systems (4)-(6) is given and we
show that n coupled harmonic oscillators (followers) are synchronized to the
oscillating behavior of the virtual leader with probability one.

Before proceeding, we introduce an exponential stability result for the fol-
lowing n-dimensional stochastic differential delay equation (for more details,
see e.g. [7])

dx(t) = [Ex(t) + Fx(t− τ)]dt+ g(t, x(t), x(t− τ))dW (t), (7)

where E and F are n × n matrices, g : [0,∞) × Rn × Rn → Rn×m which
is locally Lipschitz continuous and satisfies the linear growth condition with
g(t, 0, 0) ≡ 0, W (t) is an m-dimensional standard Brownian motion.

Lemma 1.([15]) Assume that there exists a pair of symmetric positive def-
inite n × n matrices P and Q such that P (E + F ) + (E + F )TP = −Q.
Assume also that there exist non-negative constants α and β such that

trace[gT (t, x, y)g(t, x, y)] ≤ α‖x‖2 + β‖y‖2 (8)

for all (t, x, y) ∈ [0,∞)×Rn×Rn. Let λmin(Q) be the smallest eigenvalue of
Q. If

(α+ β)‖P‖+ 2‖PF‖
√
2τ(4τ(‖E‖2 + ‖F‖2) + α+ β) < λmin(Q),
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then the trivial solution of Equation (7) is almost surely exponentially stable.

We need the following lemma for Laplacian matrix.
Lemma 2.([25]) Let L be the Laplacian matrix associated with a directed
graph G. Then L has a simple zero eigenvalue and all its other eigenvalues
have positive real parts if and only if G has a directed spanning tree. In
addition, L1 = 0 and there exists p ∈ Rn satisfying p ≥ 0, pTL = 0 and
pT 1 = 1.

Let {
r0(t) := cos(

√
kt)r0(0) +

1
k sin(

√
kt)v0(0),

v0(t) := −
√
k sin(

√
kt)r0(0) + cos(

√
kt)v0(0).

Then it is easy to see that r0(t) and v0(t) solve (6). Let r∗ = r − r01,
v∗ = v− v01. Invoking Lemma 2, we can obtain an error dynamics of (4)-(6)
as follows

dε(t) = [Eε(t) + Fε(t− τ)]dt+Hε(t− τ)dW (t), (9)

where

ε =

(
r∗

v∗

)
, E =

(
0 In
−kIn 0

)
,

F =

(
0 0
0 −L−B

)
, H =

(
0 0
0 −Lσ −Bσ

)
and W (t) is an 2n-dimensional standard Brownian motion.

Now we present our main result as follows.
Theorem 1. Suppose that vertex 0 is globally reachable in G. If

‖H‖2‖P‖+ 2‖PF‖
√
8τ2[(k ∨ 1)2 + ‖F‖2] + 2τ‖H‖2 < λmin(Q), (10)

where k ∨ 1 := max{k, 1}, P and Q are two symmetric positive definite
matrices such that P (E+F )+(E+F )TP = −Q. Then, by using algorithms
(4)-(6), we have

r(t)− r0(t)1→ 0, v(t)− v0(t)1→ 0

almost surely, as t→∞. Here, r0 and v0 are given as above.

Proof. Clearly, it suffices to prove the trivial solution ε(t; 0) = 0 of (9) is
almost surely exponential stable.
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Let {λi : i = 1, · · · , n} be the set of eigenvalues of −L−B. Since vertex
0 is globally reachable in G, from Lemma 2 it follows that −L−B is a stable
matrix, that is, Re(λi) < 0 for all i.

Let µ be an eigenvalue of matrix E + F and ϕ = (ϕT1 , ϕ
T
2 )
T be an asso-

ciated eigenvector. We thus have(
0 In
−kIn −L−B

)(
ϕ1

ϕ2

)
= µ

(
ϕ1

ϕ2

)
,

which yields (−L − B)ϕ1 = µ2+k
µ ϕ1 and ϕ1 6= 0. Hence µ satisfies µ2 −

λiµ + k = 0. The 2n eigenvalues of E + F are shown to be given by

µi± =
λi±
√
λ2i−4k
2 for i = 1, · · · , n. Since Re(λi) < 0, we get Re(µi−) =

Re
(λi−√λ2i−4k

2

)
< 0 for i = 1, · · · , n. From µi+µi− = k it follows that µi+

and µi− are symmetric with respect to the real axis in the complex plane.
Accordingly, Re(µi+) < 0 for i = 1, · · · , n; furthermore, E + F is a stable
matrix. By Lyapunov theorem, for all symmetric positive definite matrix Q
there exists a unique symmetric positive definite matrix P such that

P (E + F ) + (E + F )TP = −Q. (11)

On the other hand, we have trace(εTHTHε) ≤ ‖H‖2‖ε‖2. Therefore, (8)
holds with α = 0 and β = ‖H‖2. Note that ‖E‖ = k ∨ 1. We then complete
our proof by employing Lemma 1. 2
Remark 3. Note that the result of Theorem 1 is dependent of the choice
of matrices P and Q. From computational points of view, the solution to
Lyapunov matrix equation (11) may be expressed by using Kronecker product;
‖H‖ = ‖Lσ +Bσ‖ and ‖F‖ = ‖L+B‖ hold.
Remark 4. The algorithms (4)-(6) can also be applied to synchronized mo-
tion coordination of multi-agent systems, as indicated in [23] (Section 5).

When deviations between oscillator states exist, we may exploit the fol-
lowing algorithm to take the place of Equation (5):

dv(t) =
[
− k(r(t)− δ)− (L+B)v(t− τ) +Bv0(t− τ)1

]
dt

+
[
− (Lσ +Bσ)v(t− τ) +Bσv0(t− τ)1

]
dW, (12)

where δ = (δ1, · · · , δn)T is a constant vector denoting the deviations. Simi-
larly, we obtain the following result.
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Corollary 1. Suppose that vertex 0 is globally reachable in G, and condition
(10) holds, then by using algorithms (4), (6) and (12), we have

r(t)− δ − r0(t)1→ 0, v(t)− v0(t)1→ 0

almost surely, as t→∞. Here, r0 and v0 are defined as in Theorem 1.

4 Numerical examples

In this section, we provide numerical simulations to illustrate our results.

We consider a network G consisting of five coupled harmonic oscillators
including one leader indexed by 0 and four followers as shown in Fig. 1.
We assume that aij = 1 if j ∈ Ni and aij = 0 otherwise; bi = 1 if 0 ∈ Ni
and bi = 0 otherwise. Note that vertex 0 is globally reachable in G. For
simplicity, we take the noise intensity matrices Lσ = 0.1L and Bσ = 0.1B.
We take Q = I8 with λmin(Q) = 1. By straightforward calculation, it is
obtained that ‖H‖ = 0.2466 and ‖F‖ = 2.4656. Two different gains k are
explored as follows:

Firstly, we take k = 0.6 such that ‖E‖ = 1 > k. We solve P from Equa-
tion (11) and get ‖P‖ = 8.0944 and ‖PF‖ = 4.1688. Hence the condition
(10) in Theorem 1 is satisfied by taking time delay τ = 0.002. Thus, the
oscillator states are synchronized successfully as shown in Fig. 2 and Fig. 3
with initial values given by ε(0) = (−5, 1, 4,−3,−8, 2,−1.5, 3)T .

Secondly, we take k = 2 such that ‖E‖ = k > 1. In this case we
obtain ‖P‖ = 8.3720, ‖PF‖ = 7.5996 and the condition (10) is satisfied by
taking time delay τ = 0.001. Thereby the oscillator states are synchronized
successfully as shown in Fig. 4 and Fig. 5 with the same initial values given
as above.

We see that the value of k not only has an effect on the magnitude and
frequency of the synchronized states (as implied in Theorem 1), but also
affects the shapes of synchronization error curves ‖r∗‖ and ‖v∗‖.
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Figure 1: Directed network G for five coupled harmonic oscillators involving
one leader. G has 0− 1 weights.

5 Conclusion

This paper is concerned with synchronization of coupled harmonic oscillators
with stochastic perturbation and time delays. Based on the stability theory
of stochastic differential delay equations, we have shown that the coupled
second-order linear harmonic oscillators are synchronized (i.e. follow the
leader) with probability one provided the leader is globally reachable and
the time delay is less than a certain critical value. Numerical simulations are
presented to illustrate our theoretical results. Since we only investigate the
case when the time delay is constant and the network topology is fixed, how
to consider the time-varying delay and topology is our future research.
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Figure 2: Synchronization error ‖r∗‖ for k = 0.6 and τ = 0.002.

Figure 3: Synchronization error ‖v∗‖ for k = 0.6 and τ = 0.002.
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Figure 4: Synchronization error ‖r∗‖ for k = 2 and τ = 0.001.

Figure 5: Synchronization error ‖v∗‖ for k = 2 and τ = 0.001.
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Abstract

In this paper, oscillatory and asymptotic behaviour of solutions of
a class of nonlinear fourth order neutral differential equations with
several delay of the form

(r(t)(y(t) + p(t)y(t− τ))′′)′′ +
m∑
i=1

qi(t)G(y(t− αi)) = 0

and

(E) (r(t)(y(t) + p(t)y(t− τ))′′)′′ +
m∑
i=1

qi(t)G(y(t− αi)) = f(t)

are studied under the assumption∫ ∞

0

t

r(t)
dt =∞
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for various ranges of p(t). Using Schauder’s fixed point theorem, suf-
ficient conditions are obtained for the existence of bounded positive
solutions of (E). The results obtained in this paper generalize the re-
sults existing in the literature.

Mathematics Subject Classification 2000: 34 C 10, 34 C 15

Keywords: Neutral differential equations, nonlinear, oscillation, several
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1 Introduction

Consider the fourth order nonlinear neutral delay differential equations with

several delays of the form

(r(t)(y(t) + p(t)y(t− τ))′′)′′ +
m∑
i=1

qi(t)G(y(t− αi)) = 0, (1.1)

and its associated forced equations

(r(t)(y(t) + p(t)y(t− τ))′′)′′ +
m∑
i=1

qi(t)G(y(t− αi)) = f(t), (1.2)

where r ∈ C([0,∞), [0,∞)), p ∈ C([0,∞),R), qi ∈ C([0,∞), [0,∞)) for i =

1, ....,m, f ∈ C([0,∞),R), G ∈ C(R,R) is nondecreasing with uG(u) > 0,

for u 6= 0 , τ > 0, αi > 0 for i = 1, ...,m.

The object of this work is to study oscillatory and asymptotic behaviour

of solution of (1.1) and (1.2) under the assumption

(H1)

∫ ∞
0

t

r(t)
dt =∞.

In [11], Parhi and Tripathy have studied the oscillatory and asymptotic

behaviour of the fourth order nonlinear neutral delay differential equations

of the form

(r(t)(y(t) + p(t)y(t− τ))′′)′′ + q(t)G(y(t− α)) = 0,
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and

(r(t)(y(t) + p(t)y(t− τ))′′)′′ + q(t)G(y(t− α)) = f(t)

respectively under the same assumption (H1). If r(t) = 1,m = 1 and

q1(t) = q(t), then (H1) is satisfied and equation (1.1) and (1.2) reduce to,

respectively,

(y(t) + p(t)y(t− τ))(iv) + q(t)G(y(t− α)) = 0, (1.3)

and its associated forced equation

(y(t) + p(t)y(t− τ))(iv) + q(t)G(y(t− α)) = f(t). (1.4)

In recent papers [9, 10] Parhi and Rath studied oscillatory and asymptotic

behavior of solution of higher order neutral differential equations

(y(t) + p(t)y(t− τ))(n) + q(t)G(y(t− α)) = 0, (1.5)

and its associated forced equations

(y(t) + p(t)y(t− τ))(n) + q(t)G(y(t− α) = f(t). (1.6)

Clearly, equations (1.3) and (1.4) are particular cases of equations (1.5)

and (1.6) respectively. However, equations (1.1) and (1.2) cannot be termed,

in general, as particular cases of equations (1.5) and (1.6). Most of the results

in [10] hold when n is even. Therefore, it is interesting to study the more

general equations (1.1) and (1.2) under (H1). It is interesting to observe that

the nature of the function r(t) influences the behaviour of solutions of (1.1)

and (1.2). This behaviour can be easily observed in case of the homogeneous

equation (1.1). By the use of new Lemma 1.4 which has been proved in

Section 1, we have shown that all the solutions of (1.1) are oscillatory in

Theorem 2.3. The results obtained in this papers are new and generalize the

existing results in the literature ( see [8–11]).

Moreover, the delay differential equations play an important role in mod-

elling virtually every physical, technical, or biological process, from celestial
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motion, to bridge design, to interactions between neurons. Differential equa-

tions such as those used to solve real-life problem may not necessarily be di-

rectly solvable, that is do not have closed form solutions. Instead, solutions

can be approximated by using numerical methods.

By a solution of (1.1)/(1.2) we understand a function y ∈ C([−ρ,∞),R)

such that y(t) + p(t)y(t− τ) is twice continuously differentiable, r(t)(y(t) +

p(t)y(t− τ))′′ is twice continuously differentiable and (1.1)/(1.2) is satisfied

for t ≥ 0, where ρ = max{τ, αi} for i = 1, ....,m, and sup{|y(t)| : t ≥ t0} > 0

for every t0 ≥ 0. A solution of (1.1)/(1.2) is said to be oscillatory if it has

arbitrarily large zeros; otherwise, it is called nonoscillatory.

We need the following lemmas for our use in the sequel.

Lemma 1.1. [11] Let (H1) hold. Let u be a twice continuously differentiable

function on [0,∞) such that r(t)u′′(t) is twice continuously differentiable and

(r(t)u′′(t))′′ ≤ 0 for large t. If u(t) > 0 ultimately, then one of the cases (a)

and (b) holds for large t, and if u(t) < 0 ultimately, then one of the cases

(b), (c), (d) and (e) holds for large t, where

(a) u′(t) > 0, u′′(t) > 0, and (r(t)u′′(t))′ > 0

(b) u′(t) > 0, u′′(t) < 0, and (r(t)u′′(t))′ > 0

(c) u′(t) < 0, u′′(t) < 0, and (r(t)u′′(t))′ > 0

(d) u′(t) < 0, u′′(t) < 0, and (r(t)u′′(t))′ < 0

(e) u′(t) < 0, u′′(t) > 0, and (r(t)u′′(t))′ > 0.

Lemma 1.2. [11] Let the conditions of Lemma 1.1 hold. If u(t) > 0

ultimately, then u(t) > RT (t)(r(t)u′′(t))′ for t ≥ T ≥ 0, where RT (t) =∫ t

T

(t− s)(s− T )

r(s)
ds.

Lemma 1.3. [3] Let F, G, P : [t0,∞)→ R and c ∈ R be such that F (t) =

G(t)+P (t)G(t−c), for t ≥ t0+max{0, c}. Assume that there exists numbers

P1, P2, P3, P4 ∈ R such that P (t) is one of the following ranges:

(1) P1 ≤ P (t) ≤ 0, (2) 0 ≤ P (t) ≤ P2 < 1, (3) 1 < P3 ≤ P (t) ≤ P4.
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Suppose that G(t) > 0 for t ≥ t0, lim inf
t→∞

G(t) = 0 and that lim
t→∞

F (t) =

L ∈ R exists. Then L = 0.

Lemma 1.4. If qi ∈ C([0,∞), [0,∞)) for i = 1, ....,m and

lim inf
t→∞

∫ t

t−ρ

m∑
i=1

qi(s)ds >
1

e
, (1.7)

then

x′(t) +

m∑
i=1

qi(t)x(t− αi) ≤ 0, (1.8)

cannot have an eventually positive solution for t ≥ 0.

Proof. Assume for the sake of contradiction, the inequation (1.8) has an

eventually positive solution x(t) for t ≥ t0. Then there exists t∗i ≥ t0 + αi

for every i such that for t ≥ t∗ = max
i=1,2,...,m

{t∗i }, and

x(t) > 0, x(t− αi) > 0 for i = 1, ...,m.

From (1.8) we get

x′(t) ≤ −
m∑
i=1

qi(t)x(t− αi)

≤ 0.

Therefore,

x(t− αi) ≥ x(t), for i = 1, ....,m. (1.9)

From (1.7) it follows that there exists c > 0 and t1 > t∗ such that∫ t

t−αi

m∑
i=1

qi(s)ds ≥ c >
1

e
, (1.10)
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for t ≥ t1 and i = 1, 2, . . .m. From (1.8) and (1.9) it follows that

x′(t) ≤ −
m∑
i=1

qi(t)x(t− αi)

≤ −x(t)
m∑
i=1

qi(t).

Therefore

x′(t)

x(t)
+

m∑
i=1

qi(t) ≤ 0.

Integrating the preceeding inequality from t− αi to t, we obtain

ln
x(t)

x(t− αi)
≤ −

∫ t

t−αi

m∑
i=1

qi(s)ds ≤ −c,

ln
x(t)

x(t− αi)
+ c ≤ 0, (1.11)

for t ≥ t1 + αi. It is easy to verify that

ec ≥ ec (1.12)

for c ∈ R. From (1.11) and (1.12) it follows that

ecx(t) ≤ x(t− αi). (1.13)

Repeating the above procedure, it follows from induction that for any posi-

tive integer k

(ec)kx(t) ≤ x(t− αi), (1.14)

for t ≥ max
i=1,2,...m

{t1 + 2αi}. Choose k such that

(
2

c

)2

< (ec)k (1.15)
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which is possible as ec > 1. Fix t̃ ≥ max
i=1,2,...,m

{t1 + kαi}. From (1.10) it

follows that there exists a ξi ∈ (t̃, t̃+ αi) for every i such that∫ ξi

t̃

m∑
i=1

qi(s)ds ≥
c

2
,

∫ t̃+ρ

ξi

m∑
i=1

qi(s)ds ≥
c

2
.

Integrating (1.8) from [t̃, ξi] and [ξi, t̃+ αi], we have

x(ξi)− x(t̃) +

∫ ξi

t̃

m∑
i=1

qi(s)x(s− αi)ds ≤ 0, (1.16)

x(t̃+ αi)− x(ξi) +

∫ t̃+αi

ξi

m∑
i=1

qi(s)x(s− αi)ds ≤ 0. (1.17)

As x(t) > 0 and is non-increasing, ignoring the first term from (1.16) and

(1.17) we have

−x(t̃) +

∫ ξi

t̃

m∑
i=1

qi(s)x(s− αi)ds ≤ 0, (1.18)

and

−x(ξi) +

∫ t̃+αi

ξi

m∑
i=1

qi(s)x(s− αi)ds ≤ 0. (1.19)

Again using the fact that x(t) decreasing in (1.18) and (1.19) we get

−x(t̃) + x(ξi − αi)
∫ ξi

t̃

m∑
i=1

qi(s)ds ≤ 0,

and

−x(ξ) + x(t̃)

∫ t̃+αi

ξi

m∑
i=1

qi(s)ds ≤ 0.

Therefore,

−x(t̃) + x(ξi − αi)
c

2
< 0. (1.20)
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Similarly from (1.19), we obtain

−x(ξi) + x(t̃)
c

2
< 0. (1.21)

From (1.20) and (1.21), it follows that

x(ξi)

x(ξi − αi)
>
( c

2

)2
, for i = 1, 2, . . . ,m

which in turns implies

(ec)k ≤
(

2

c

)2

,

which is a contradiction to (1.15). Hence the Lemma is proved.

Theorem 1.5. ( [3], Schauder’s fixed point theorem) Let M be a closed,

convex and non-empty subset of Banach Space X. Let T : M → M be a

continuous function such that TM is relatively compact subset of X. Then

T has at least one fixed point in M . That is, there exists an x ∈ M such

that Tx = x.

2 Homogeneous Oscillations

In this section, sufficient conditions are obtained for oscillatory and asymp-

totic behaviour of all solutions or bounded solutions of (1.1) under the as-

sumption (H1).

Theorem 2.1. Let 0 ≤ p(t) ≤ p < ∞, τ ≤ αi, i = 1, 2, ...,m, and (H1)

hold. If

(H2) there exists λ > 0 such that G(u) +G(v) ≥ λG(u+ v), u > 0, v > 0;

(H3) G(u)G(v) = G(uv) for u, v ∈ R;

(H4) G is sublinear and

∫ c

0

du

G(u)
<∞ for all c > 0;
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(H5)

∫ ∞
T+ρ

m∑
i=1

Qi(t)G(RT (t− αi))dt = ∞, Qi(t) = min{qi(t), qi(t− τ)}; i =

1, ...,m for t ≥ τ
hold, then every solution of (1.1) oscillates.

Proof. Assume that (1.1) has a nonoscillatory solution on [t0,∞), t0 ≥ 0

and let it be y(t). Hence y(t) > 0 or < 0 for t ≥ t0. Suppose that y(t) > 0

for t ≥ t0. Setting

z(t) = y(t) + p(t)y(t− τ), (2.1)

we obtain

0 < z(t) ≤ y(t) + py(t− τ), (2.2)

and

(r(t)z′′(t))′′ = −
m∑
i=1

qi(t)G(y(t− αi)) ≤ 0, 6≡ 0 (2.3)

for t ≥ t0 + ρ. By the Lemma 1.1, any one of the cases (a) and (b) holds.

Upon using (H2) and (H3), Eq.(1.1) can viewed as

0 = (r(t)z′′(t))′′ +
m∑
i=1

qi(t)G(y(t− αi)) +G(p)(r(t− τ)z′′(t− τ))′′

+ G(p)
m∑
i=1

qi(t− τ)G(y(t− τ − αi))

≥ (r(t)z′′(t))′′ +G(p)(r(t− τ)z′′(t− τ))′′

+ λ

m∑
i=1

Qi(t)G(y(t− αi) + ay(t− αi − τ))

= (r(t)z′′(t))′′ +G(p)(r(t− τ)z′′(t− τ))′′ + λ
m∑
i=1

Qi(t)G(z(t− αi))

for t ≥ t1 > t0 + 2ρ. Therefore

0 ≥ (r(t)z′′(t))′′ +G(p)(r(t− τ)z′′(t− τ))′′

+ λ

m∑
i=1

Qi(t)G(RT (t− αi)(r(t− αi)z′′(t− αi))′)
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due to Lemma 1.2, for t ≥ T + ρ > t1. Hence

0 ≥ (r(t)z′′(t))′′ +G(p)(r(t− τ)z′′(t− τ))′′

+ λ
m∑
i=1

Qi(t)G(RT (t− αi))G((r(t− αi)z′′(t− αi))′).

Using the fact that (r(t)z′′(t)′ is decreasing, we obtain

λ

m∑
i=1

Qi(t)G(RT (t− αi)) ≤ −[G((r(t)z′′(t))′)]−1(r(t)z′′(t))′′

−G(p)[G((r(t−τ)z′′(t−τ))′)]−1(r(t−τ)z′′(t−τ))′′

Because lim
t→∞

(r(t)z′′(t))′ <∞, then using (H4) the above inequality becomes

∫ ∞
T+ρ

m∑
i=1

Qi(t)G(RT (t− αi))dt <∞,

which contradicts (H5).

Finally, we suppose that y(t) < 0 for t ≥ t0. Hence putting x(t) = −y(t)

for t ≥ t0, we obtain x(t) > 0 and

(r(t)(x(t) + p(t)x(t− τ))′′)′′ +
m∑
i=1

qi(t)G(x(t− αi)) = 0.

Proceeding as above, we get a contradiction. This completes the proof of

the theorem.

Theorem 2.2. Let 0 ≤ p(t) ≤ p <∞. Suppose (H1), (H2) hold. If

(H
′
3) G(u)G(v) ≥ G(uv) for u, v > 0;

(H6) G(−u) = −G(u), u ∈ R;

(H7)

∫ ∞
τ

m∑
i=1

Qi(t)dt =∞

hold, then every solution of (1.1) oscillates.
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Proof. Let y(t) be a non-oscillatory solution of (1.1). Let y(t) > 0 for

t ≥ t0. The proof for the case y(t) < 0, t ≥ t0, is similar. Setting z(t) as in

(2.1), we obtain (2.2) and (2.3) for t ≥ t0+ρ. From Lemma 1.1 it follows that

one of the cases (a) and (b) holds. In both the cases (a) and (b), z(t) > 0

and z′(t) > 0, implies that z(t) > k > 0 for t ≥ t1 > t0 + ρ. Proceeding as in

the proof of Theorem 2.1 we obtain

0 ≥ (r(t)z′′(t))′′ +G(p)(r(t− τ)z′′(t− τ))′′ + λ

m∑
i=1

Qi(t)G(z(t− αi))

≥ (r(t)z′′(t))′′ +G(p)(r(t− τ)z′′(t− τ))′′ + λ

m∑
i=1

Qi(t)G(k)

for t ≥ t2 > t1 + ρ. Because lim
t→∞

(r(t)z′′(t))′ < ∞, integrating the above

inequality from t2 to ∞, we obtain∫ ∞
t2

m∑
i=1

Qi(t)dt <∞,

which contradicts (H7). Hence the theorem is proved.

Theorem 2.3. Let 0 ≤ p(t) ≤ p < 1. Suppose that (H1), (H3) hold and

τ ≤ αi, i = 1, 2, ...m. If

(H8) lim inf
|x|→0

G(x)

x
≥ γ > 0,

and

(H9) lim inf
t→∞

∫ t

t−αi

m∑
i=1

G(RT (s− αi))qi(s)ds > (eγG(1− p))−1

hold, then all the solutions of (1.1) oscillate.

Remark 2.4. (H9) implies that

(H10)

∫ ∞
T+αi

m∑
i=1

G(RT (s− αi))qi(s)ds =∞.

Indeed, if ∫ ∞
T+αi

m∑
i=1

G(RT (s− αi))qi(s)ds = b <∞,
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then for t > T + 2αi,∫ t

t−αi

m∑
i=1

G(RT (s−αi))qi(s)ds =

(∫ t

T+αi

−
∫ t−αi

T+αi

) m∑
i=1

G(RT (s−αi))qi(s)ds,

implies that

lim inf
t→∞

∫ t

t−αi

m∑
i=1

G(RT (s− αi))qi(s)ds ≤ b− b = 0,

which contradicts (H9).

Proof of Theorem 2.3. Suppose that y(t) is a nonoscillatory solution

of (1.1). Let y(t) > 0 for t ≥ t0 > 0. The case y(t) < 0 for t ≥ t0 is

similar. Using (2.1) we obtain (2.2) and (2.3) for t ≥ max
i=1,2,...,m

{t0 + αi}.

Then any one of the cases (a) and (b) of Lemma 1.1 holds. In each case,

z(t) is nondecreasing. Hence

(1− p(t))z(t) < z(t)− p(t)z(t− τ)

= y(t)− p(t)p(t− τ)y(t− 2τ) < y(t),

t ≥ max
i=1,2,...,m

{t0 + 2αi}, that is,

y(t) > (1− p)z(t).

From (2.3), we obtain

0 = (r(t)z′′(t))′′ +
m∑
i=1

qi(t)G(y(t− αi))

≥ (r(t)z′′(t))′′ +
m∑
i=1

qi(t)G(1− p)G(z(t− αi)) (2.4)

≥ (r(t)z′′(t))′′+G(1−p)
m∑
i=1

qi(t)G(RT (t−αi))G((r(t−αi)z′′(t−αi))′)
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due to Lemma 1.2 for

t ≥ max
i=1,2,...,m

{T + αi} ≥ max
i=1,2,...,m

{t0 + 3αi}. Let lim
t→∞

(r(t)z′′(t))′ = c,

c ∈ [0,∞). If 0 < c <∞, then there exists c1 > 0 such that (r(t)z′′(t))′ > c1

for t ≥ t1 > max
i=1,2,...,m

{T + αi}. For t ≥ t2 > max
i=1,2,...,m

{t1 + αi}

G(1− p)
m∑
i=1

qi(t)G(RT (t− αi))G(c1) ≤ −(r(t)z′′(t))′′.

Integrating the above inequality from t2 to ∞, we get∫ ∞
t2

m∑
i=1

qi(t)G(RT (t− αi))dt <∞,

a contradiction to (H10). Hence c = 0. Consequently, (H8) implies that

G((r(t)z′′(t))′) ≥ γ(r(t)z′′(t))′ for t ≥ t3 > t2. Hence (2.4) yields

(r(t)z′′(t))′′ + γG(1− p)
m∑
i=1

qi(t)G(RT (t− αi))(r(t− αi)z′′(t− αi))′ ≤ 0,

for t ≥ max
i=1,2,...,m

{t3 + αi}. As τ ≤ αi for i = 1, ...,m, from Lemma 1.4 it

follows that

u′(t) + γG(1− p)
m∑
i=1

qi(t)G(RT (t− αi))u(t− αi) ≤ 0

admits a positive solution (r(t)z′′(t))′, which is a contradiction due to (H9).

Hence proof of theorem is complete.

Theorem 2.5. Let 0 ≤ p(t) ≤ p < ∞, τ ≤ αi, i = 1, 2, ...,m, and (H1) −
(H3) hold. Assume that

(H11)
G(x1)

xσ1
≥ G(x2)

xσ2
for x1 ≥ x2 > 0 and σ ≥ 1;

and

(H12)

∫ ∞
T+ρ

m∑
i=1

Qi(t)R
α
T (t− αi)ds =∞

hold. Then every solution of (1.1)oscillates.
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Proof. Proceeding as in the proof of Theorem 2.1, we obtain

(r(t)z′′(t))′′ +G(p)(r(t− τ)z′′(t− τ))′′ + λ

m∑
i=1

Qi(t)G(z(t− αi)) ≤ 0 (2.5)

for t ≥ t1 > t0 + 2ρ. Using the fact that z(t) is nondecreasing, there exists

k > 0 and t2 > 0 such that z(t) > k for t ≥ t2 > t1. Using (H11) and Lemma

1.2 we obtain, for t > T + ρ ≥ t2 + ρ,

G(z(t− αi)) = (G(z(t− αi))/zσ(t− αi))zσ(t− αi)

≥ (G(k)/kσ)(zσ(t− αi))

> (G(k)/kσ)RσT (t− αi)((r(t− αi)z′′(t− αi))′)σ.

Thus (2.5) yields

λ(G(k)/kσ)

m∑
i=1

Qi(t)R
σ
T (t− αi)((r(t− αi)z′′(t− αi))′)σ ≤ −(r(t)z′′(t))′′

−G(p)(r(t− τ)z′′(t− τ))′′,

As τ ≤ αi and (r(t)z′′(t))′ is nonincreasing, therefore,

λ(G(k)/kσ)

m∑
i=1

Qi(t)R
σ
T (t− αi) < −((r(t)z′′(t))′)−σ(r(t)z′′(t))′′

−G(p)((r(t− τ)z′′(t− τ))′)−σ(r(t− τ)z′′(t− τ))′′.

Since lim
t→∞

(r(t)z′′(t))′ exists, then integrating the preceding inequality from

T + ρ to ∞, we obtain∫ ∞
T+ρ

m∑
i=1

Qi(t)R
σ
T (t− αi)dt <∞,

a contradiction due to (H12). Hence y(t) < 0 for t ≥ t0. Proceeding as in

Theorem 2.1 we will arrive at contradiction. Thus the theorem is proved.

Theorem 2.6. Let −1 < p ≤ p(t) ≤ 0. If (H1), (H3), (H4) hold and if

(H13)

∫ ∞
0

m∑
i=1

qi(t)dt =∞,

then every solution of (1.1) either oscillates or tends to zero as t→∞.
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Proof. Let y(t) be a nonoscillatory solution of (1.1). In view of (H3),

without loss of generality we may consider that y(t) > 0 for t ≥ t0 > 0.

Setting z(t) as in (2.1), we obtain (2.3) for t ≥ t0 + ρ. Hence z(t) > 0 or < 0

for t ≥ t0 > 0. If z(t) > 0 for t ≥ t1, then any one of the cases (a) and (b) of

Lemma 1.1 holds. Consequently, z(t) > RT (t)(r(t)z′′(t))′ for t ≥ T > t1 due

to Lemma 1.2. Moreover, z(t) ≤ y(t) implies that y(t) > RT (t)(r(t)z′′(t))′

for t ≥ t2 > T +ρ and (r(t)z′′(t))′ is monotonic decreasing, then (2.3) yields,

for t ≥ t2 > T + ρ,

(r(t)z′′(t))′′ ≤ −
m∑
i=1

qi(t)G(RT (t− αi))G((r(t)z′′(t))′). (2.6)

Since RT is nondecreasing, then∫ ∞
t2

m∑
i=1

qi(t)dt <∞,

a contradiction to (H13). Hence z(t) < 0 for t ≥ t1. Therefore y(t) <

−p(t)y(t−τ) < y(t−τ) implies y(t) is bounded, implies that, z(t) is bounded

and this implies any one of the cases (b) - (e) of Lemma 1.1 holds. Suppose

case (b) holds. If lim
t→∞

z(t) = α(say), then −∞ < α ≤ 0.

If −∞ < α < 0, then there exists β < 0 such that z(t) < β for t ≥ t3 > t2.

Further, z(t) > py(t − τ). So, β > py(t − τ) implies y(t − αi) > p−1β > 0

for t ≥ t3 + ρ.

Therefore, (2.3) yields

m∑
i=1

qi(t)G(p−1β) ≤ −(r(t)z′′(t))′′.

Since lim
t→∞

(r(t)z′′(t))′ exists, then integrating the inequality above from t3+ρ

to ∞, we obtain ∫ ∞
t3+ρ

m∑
i=1

qi(t)dt <∞,
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which is a contradiction. Therefore α = 0. Consequently,

0 = lim
t→∞

z(t) ≥ lim sup
t→∞

(y(t) + py(t− τ))

≥ lim sup
t→∞

y(t) + lim inf
t→∞

(p(y(t− τ))

= lim sup
t→∞

y(t) + p lim sup
t→∞

y(t− τ)

= (1 + p) lim sup
t→∞

y(t).

Since 1 + p > 0, then lim sup
t→∞

y(t) = 0. Hence lim
t→∞

y(t) = 0.

In each of the cases (c) and (d), we have lim
t→∞

z(t) = −∞, which contradicts

the fact that z(t) is bounded. Let case (e) hold, we have (r(t)z′′(t))′ > 0 for

t ≥ t1. Integrating from t1 to t, we get z′′(t) > (r(t1)z
′′(t1))/r(t).Multiplying

the inequality through by t and then integrating it we obtain z′(t) > 0 for

large t due to (H1). This contradicts the fact that z′(t) < 0 in case (e). This

completes the proof of the theorem.

Theorem 2.7. Let −∞ < p1 ≤ p(t) ≤ p2 ≤ −1. Assume that (H1), (H13)

hold. Then every bounded solution of (1.1) either oscillates or tends to zero

as t→∞.

Proof. Let y(t) be a bounded non-oscillatory solution of (1.1). Then

y(t) > 0 or < 0 for t ≥ t0. Let y(t) > 0 for t ≥ t0. Setting z(t) as in (2.1) we

obtain (2.3) for t ≥ t0 + ρ. Hence z(t) > 0 or z(t) < 0 for t ≥ t1 > t0 + ρ.

Let z(t) > 0 for t ≥ t1.Then by Lemma 1.1 one of the cases (a) and (b) hold

and y(t) > −p(t)y(t − τ) > y(t − τ), implies that lim inf
t→∞

y(t) > 0. From

(2.3) it follows that ∫ ∞
t2

m∑
i=1

qi(t)dt <∞,

for t ≥ t2 > t1, a contradiction. Hence z(t) < 0 for t ≥ t1. Since y(t) is

bounded, z(t) is bounded. Hence as before we can show none of the cases

(c), (d) and (e) of Lemma 1.1 occur.

Suppose that the case (b) of Lemma 1.1 holds. Let z(t) < 0 and z′(t) > 0
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implies −∞ < lim
t→∞

z(t) ≤ 0. If −∞ < lim
t→∞

z(t) < 0, then proceeding as

in the proof of Theorem 2.6 before we arrive at a contradiction. Hence

lim
t→∞

z(t) = 0. Consequently,

0 = lim
t→∞

z(t) ≤ lim inf
t→∞

(y(t) + p2y(t− τ))

≤ lim sup
t→∞

y(t) + lim inf
t→∞

(p2(y(t− τ))

= lim sup
t→∞

y(t) + p2 lim sup
t→∞

y(t− τ)

= (1 + p2) lim sup
t→∞

y(t).

Since (1 + p2) < 0, then lim sup
t→∞

y(t) = 0, implies lim
t→∞

y(t) = 0. Thus the

proof of the theorem is complete.

3 Non-homogeneous Oscillation

This section is devoted to study the oscillatory and asymptotic behavior of

solutions of forced equations (1.2) with suitable forcing function. We have

the following hypotheses regarding f(t):

(H14) There exists F ∈ C2([0,∞),R) such that F (t) changes sign, with

rF ′′ ∈ C2([0,∞),R) and (rF ′′)′′ = f ;

(H15) There exists F ∈ C2([0,∞),R) such that F (t) changes sign, with

−∞ < lim inf
t→∞

F (t) < 0 < lim sup
t→∞

F (t) < ∞, rF ′′ ∈ C2([0,∞),R) and

(rF ′′)′′ = f ;

(H16) There exists F ∈ C2([0,∞),R) such that F (t) does not change sign,

with lim
t→∞

F (t) = 0, rF ′′ ∈ C2([0,∞),R) and (rF ′′)′′ = f ;

(H ′16) There exists F ∈ C2([0,∞),R) such that lim
t→∞

F (t) = 0, rF ′′ ∈
C2([0,∞),R) and (rF ′′)′′ = f.

Theorem 3.1. Let 0 ≤ p(t) ≤ p < ∞. Assume that (H1), (H2), (H
′
3),

(H6) and (H14) hold. If

(H17)

∫ ∞
ρ

m∑
i=1

Qi(t)G(F+(t− αi))dt =∞ =

∫ ∞
ρ

m∑
i=1

Qi(t)G(F−(t− αi))dt,
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where F+(t) = max{0, F (t)} and F−(t) = max{−F (t), 0}, then all solutions

of (1.2) are oscillatory.

Proof Let y(t) be a non oscillatory solution of (1.2). Hence y(t) > 0 or

y(t) < 0 for t ≥ t0 > 0. Suppose that y(t) > 0 for t ≥ t0 > 0. Setting z(t) as

in (2.1), we obtain (2.2) for t ≥ t0 + ρ. Let

w(t) = z(t)− F (t). (3.1)

Hence for t ≥ t0 + ρ, (1.2) becomes

(r(t)w′′(t))′′ = −
m∑
i=1

qi(t)G(y(t− αi)) ≤ 0, 6≡ 0. (3.2)

Thus w(t) is monotonic and of constant sign on [t1,∞], t1 > t0 + ρ. Since

F (t) changes sign, then w(t) > 0 for t ≥ t1. Hence one of the cases (a) and

(b) of Lemma 1.1 holds for large t, as w(t) > 0 implies z(t) > F+(t). For

t ≥ t2 > t1, we have

0 = (r(t)w′′(t))′′ +
m∑
i=1

qi(t)G(y(t− αi)) +G(p)(r(t− τ)w′′(t− τ))′′

+G(p)

m∑
i=1

qi(t− τ)G(y(t− αi − τ))

≥ (r(t)w′′(t))′′ +G(p)(r(t− τ)w′′(t− τ))′′ + λ

m∑
i=1

Qi(t)G(z(t− αi))

≥ (r(t)w′′(t))′′ +G(p)(r(t− τ)w′′(t− τ))′′ + λ

m∑
i=1

Qi(t)G(F+(t− αi)).

Integrating from t2 + ρ to ∞, we get∫ ∞
t2+ρ

m∑
i=1

Qi(t)G(F+(t− αi))dt <∞,

which is a contradiction to (H17).

If y(t) < 0 for t ≥ t0, we set x(t) = −y(t) to obtain x(t) > 0 for t ≥ t0
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and

(r(t)(x(t) + p(t)x(t− τ))′′)′′ +
m∑
i=1

qi(t)G(x(t− αi)) = f̃(t),

where f̃(t) = −f(t). If F̃ (t) = −F (t), then F̃ (t) changes sign, F̃+(t) =

F−(t) and (r(t)F̃ ′′(t))′′ = f(t). Proceeding as above we obtain a contradic-

tion. This completes the proof of the theorem.

Theorem 3.2. Let −1 < p ≤ p(t) ≤ 0. Suppose that (H1), (H15) hold. If

(H18)

∫ ∞
ρ

m∑
i=1

qi(t)G(F+(t− αi))dt =∞ =

∫ ∞
ρ

m∑
i=1

qi(t)G(F−(t− αi + τ))dt,

and

(H19)

∫ ∞
ρ

m∑
i=1

qi(t)G(F−(t− αi))dt =∞ =

∫ ∞
ρ

m∑
i=1

qi(t)G(F+(t− αi + τ))dt,

then every solution of (1.2) oscillates.

Proof. Proceeding as in the proof of the Theorem 3.1, we obtain w(t) > 0

or < 0 for t ≥ t1 > t0 + ρ when y(t) > 0 for t ≥ t0. If w(t) > 0 for t ≥ t1,

then any one of the cases (a) and (b) of Lemma 1.1 holds for t ≥ t1. Further,

w(t) > 0 implies that

y(t) > z(t) > F (t),

hence y(t) > F+(t). Consequently, we have from (3.2)

m∑
i=1

qi(t)G(F+(t− αi)) ≤ −(r(t)w′′(t))′′, t ≥ t1 + ρ.

Since lim
t→∞

(r(t)w′′(t))′ exists, therefore we obtain

∫ ∞
t1+ρ

m∑
i=1

qi(t)G(F+(t− αi))dt <∞,
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a contradiction to (H18). Hence w(t) < 0 for t ≥ t1. Then one of the cases

(b)-(e) of Lemma 1.1 holds. Let (b) holds. Since w(t) < 0 it follows that

p(t)y(t− τ) < F (t), hence y(t) > F−(t+ τ) for t ≥ t1. From (3.2), we obtain

(r(t)w′′(t))′′ = −
m∑
i=1

qi(t)G(y(t− αi))

≤ −
m∑
i=1

qi(t)G(F−(t− αi + τ)).

Integrating from t1 + ρ to ∞, we obtain∫ ∞
t1+ρ

m∑
i=1

qi(t)G(F−(t− αi + τ))dt <∞,

which is a contradiction to (H18).

Suppose y(t) is unbounded. Then there exists an increasing sequence

{σn}∞n=1 such that σn →∞, y(σn)→∞ as n→∞ and

y(σn) = max{y(t) : t1 ≤ t ≤ σn}.

We may choose n large enough such that σn − τ > t1. Therefore,

w(σn) > y(σn) + py(σn − τ)− F (σn).

Since, F (t) is bounded and (1 + p) > 0, then w(σn) > 0 for large n, which is

a contradiction.

Hence, y(t) is bounded and so also w(t) is bounded. Hence, none of the cases

(c), (d) and (e) of Lemma 1.1 are possible.

Using the same type of reasoning as in Theorem 3.1, for the case y(t) < 0

for t ≥ t0, we obtain the desired contradiction. Hence the theorem is proved.

Theorem 3.3. Let −∞ < p ≤ p(t) ≤ 0. If (H1), (H3), (H15), (H18) and

(H19) hold, then every solution of (1.2) either oscillates or tends to ±∞ as

t→∞.
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Proof Proceeding same as the proof of Theorem 3.2 we obtain a contra-

diction for w(t) > 0 for t ≥ t1 > t0 +ρ. Hence w(t) < 0 for t ≥ t1. Therefore

one of the cases (b)-(e) of Lemma 1.1 holds. Suppose case (b) holds. Since

w(t) < 0, then py(t − τ) < F (t) implies y(t) > (−p−1)F−(t + τ) for t ≥ t1.

From (3.2) we have

(r(t)w′′(t))′′ = −
m∑
i=1

qi(t)G(y(t− αi))

≤ −
m∑
i=1

qi(t)G(−p−1)G(F−(t− αi + τ)).

Integrating from t1 + ρ to ∞∫ ∞
t1+ρ

m∑
i=1

qi(t)G(F−(t− αi + τ))dt <∞,

a contradiction. In cases (c) and (d), lim
t→∞

w(t) = −∞. In case (e), if we

take −∞ < lim
t→∞

w(t) < 0, then we get a contradiction due to (H1). Thus

lim
t→∞

w(t) = −∞ in each of the cases (c)-(e), and py(t − τ) < w(t) + F (t),

implies that,

lim sup
t→∞

(py(t− τ)) ≤ lim
t→∞

w(t) + lim sup
t→∞

F (t),

that is, p lim inf
t→∞

y(t) = −∞ due to (H15). Hence lim
t→∞

y(t) = ∞. The proof

for the case y(t) < 0 for t ≥ t0 is similar. Hence the proof of the theorem is

complete.

Corollary 3.4. Let −∞ < p ≤ p(t) ≤ 0. If (H1), (H3), (H15), (H18) and

(H19) hold, then every bounded solution of (1.2) oscillates.

Theorem 3.5. Let 0 < p(t) ≤ p <∞. If (H1), (H2), (H
′
3), (H6) and (H16)

hold, If

(H20)

∫ ∞
ρ

m∑
i=1

Qi(t)G(|F (t− αi)|)dt =∞,

then every bounded solution of (1.2) oscillates or tends to zero as t→∞.
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Proof. Proceeding as in the proof of Theorem 3.1 we obtain w(t) > 0 or

< 0 for t ≥ t1 > t0 + ρ. Let w(t) > 0 for t ≥ t1 implies z(t) > F (t). Suppose

F (t) > 0 for t ≥ t2 > t1. Therefore

0 = (r(t)w′′(t))′′ +

m∑
i=1

qi(t)G(y(t− αi)) +G(p)(r(t− τ)w′′(t− τ))′′

+G(p)

m∑
i=1

qi(t− τ)G(y(t− αi − τ))

≥ (r(t)w′′(t))′′ +G(p)(r(t− τ)w′′(t− τ))′′ + λ

m∑
i=1

Qi(t)G(z(t− αi))

≥ (r(t)w′′(t))′′ +G(p)(r(t− τ)w′′(t− τ))′′ + λ

m∑
i=1

Qi(t)G(F (t− αi))

for t ≥ t2 + ρ. Integrating the last inequality from t2 + ρ to ∞ we obtain∫ ∞
t2+ρ

m∑
i=1

Qi(t)G(F (t− αi))dt <∞,

a contradiction. Hence F (t) < 0 for t ≥ t2. Now (3.2) implies that∫ ∞
ρ

m∑
i=1

qi(t)G(y(t− αi))dt <∞,

due to Lemma 1.1. Hence lim inf
t→∞

y(t) = 0 because of (H20) implies that∫ ∞
ρ

m∑
i=1

qi(t)dt =∞.

Further, w(t) is bounded and monotonic, then lim
t→∞

w(t) exists and hence

lim
t→∞

z(t) exists implies lim
t→∞

z(t) = 0 (see [3, Lemma 1.5.2]). As z(t) ≥ y(t),

then lim
t→∞

y(t) = 0. Suppose w(t) < 0 for t ≥ t1. Hence y(t) < F (t). Hence

lim
t→∞

y(t) = 0. Hence the theorem is proved.

Theorem 3.6. Let −1 < p ≤ p(t) ≤ 0. Suppose that (H1), (H13), (H16)

hold. Then every solution of (1.2) either oscillates or tends to zero as

t→∞.
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Proof. Proceeding as in the proof of the Theorem 3.1, we obtain w(t) > 0

or < 0 for t ≥ t1 > t0 + ρ. When w(t) > 0 for t ≥ t1, then any one of the

cases (a) and (b) of Lemma 1.1 holds for t ≥ t1. From (3.2) it follows that

∫ ∞
t2+ρ

m∑
i=1

qi(t)G(y(t− αi))dt <∞, (3.3)

for t2 > t1. Hence lim inf
t→∞

y(t) = 0 and lim
t→∞

z(t) = 0. On the other hand

lim
t→∞

w(t) = ∞ in case (a) of Lemma 1.1. Hence lim
t→∞

z(t) = ∞. There-

fore, y(t) ≥ z(t) implies that lim
t→∞

y(t) = ∞, a contradiction. In case (b),

lim
t→∞

w(t) = α, where 0 < α ≤ ∞. If α = ∞ then we get a contradiction as

above. If 0 < α <∞, then lim
t→∞

z(t) = α. From [ 3; Lemma 1.5.2] it follows

that α = 0, which is a contradiction. Hence w(t) < 0 for t ≥ t1.

We claim that y(t) is bounded. Suppose y(t) is unbounded, then there

exists an increasing sequence {σn}∞n=1 such that σn → ∞, y(σn) → ∞ as

n→∞ and

y(σn) = max{y(t) : t1 ≤ t ≤ σn}.

We may choose n large enough such that σn − τ > t1. Therefore,

w(σn) > y(σn) + py(σn − τ)− F (σn) ≥ (1 + p)y(σn)− F (σn).

Since, F (t) is bounded and (1 + p) > 0, then w(σn) > 0 for large n, which is

a contradiction. Thus w(t) is bounded.

In each of the cases (c) and (d) of Lemma 1.1, lim
t→∞

w(t) = −∞, a con-

tradiction.

In each of the cases (b) and (e) of Lemma 1.1, (3.3) holds. Hence lim inf
t→∞

y(t) =

0 and lim
t→∞

w(t) exists. Consequently, lim
t→∞

z(t) =∞ exists. From [ 3 ; Lemma
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1.5.2] it follows that lim
t→∞

z(t) = 0.

0 = lim
t→∞

z(t) = lim sup
t→∞

(y(t) + p(t)y(t− τ))

≥ lim sup
t→∞

y(t) + lim inf
t→∞

(p(y(t− τ))

= lim sup
t→∞

y(t) + p lim sup
t→∞

y(t− τ)

= (1 + p) lim sup
t→∞

y(t).

Since (1 + p) > 0, then lim
t→∞

y(t) = 0. Hence the theorem is proved.

In the following sufficient conditions are obtained for the existence of

bounded positive solutions of (1.2).

Theorem 3.7. Let 0 ≤ p(t) ≤ p < 1 and (H15) holds with

−3

8
(1− p) < lim inf

t→∞
F (t) < 0 < lim sup

t→∞
F (t) <

1

4
(1− p).

and G is Lipschitzian on the intervals of the form [a, b], 0 < a < b <∞. If∫ ∞
0

s

r(s)

∫ ∞
s

t

m∑
i=1

qi(t)dtds <∞,

then (1.2) admits a positive bounded solution on [a, b].

Proof It is possible to choose t0 > 0 large enough such that for t ≥ t0 >
0, ∫ ∞

t0

t

r(t)

∫ ∞
t

s

m∑
i=1

qi(s)dsdt <
1− p
4L

,

where L = max{L1, G(1)} and L1 is Lipschitz constant of G on [
1

8
(1− p), 1].

Let X = BC([t0,∞),R). Then X is a Banach Space with respect to supre-

mum norm defined by

||x|| = sup
t≥t0
{|x(t)|}.
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Let

S = {x ∈ X :
1

8
(1− p) ≤ x(t) ≤ 1, t ≥ t0}.

Hence S is a complete metric space. For y ∈ S, we define

Ty(t) =



Ty(t0 + ρ), t ∈ [t0, t0 + ρ],

−p(t)y(t− τ) +
3 + p

4
+ F (t)

−
∫ ∞
t

(
s− t
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)G(y(u− αi))du)ds, t ≥ t0 + ρ.

Hence

Ty(t) <
3 + p

4
+

1− p
4

= 1,

and

Ty(t) > −p+
3 + p

4
− 3

8
(1− p)− 1

4
(1− p) =

1

8
(1− p) for t ≥ t0 + ρ.

Hence Ty ∈ S, that is, T : S → S.

Next, we show that T is continuous. Let yk(t) ∈ S such that lim
k→∞

||yk(t)−
y(t)|| = 0 for all t ≥ t0. Because S is closed, y(t) ∈ S. Indeed,

|(Tyk)− (Ty)| ≤ p(t)|yk(t− τ)− y(t− τ)|

+

∣∣∣∣ ∫ ∞
t

s− t
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)[G(yk(u− αi))

−G(y(u− αi))]duds
∣∣∣∣

≤ p|yk(t− τ)− y(t− τ)|

+

∫ ∞
t

s

r(s)

∫ ∞
s

u
m∑
i=1

qi(u)|G(yk(u− αi))

−G(y(u− αi))|duds

≤ p||yk − y||+ ||yk − y||
1− p

4

implies that

||(Tyk)− (Ty)|| ≤ ||yk − y||[p+
1− p

4
]→ 0
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as k →∞. Hence T is continuous.

In order to apply Schauder’s fixed point Theorem (see [2] ) we need to

show that Ty is precompact. Let y ∈ S. For t2 ≥ t1,

(Ty)(t2)− (Ty)(t1) = p(t2)y(t2 − τ)− p(t1)y(t1 − τ)

+

∫ ∞
t1

s− t1
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)G(y(u− αi))duds

−
∫ ∞
t2

s− t2
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)G(y(u− αi))duds,

that is,

|(Ty)(t2)− (Ty)(t1)| ≤ |p(t2)y(t2 − τ)− p(t1)y(t1 − τ)|

+|
∫ ∞
t2

s− t2
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)G(y(u− αi))duds

−
∫ ∞
t1

s− t1
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)G(y(u− αi))duds|

≤ |p(t2)y(t2 − τ)− p(t1)y(t1 − τ)|

+|
∫ ∞
t2

s− t1
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)G(y(u− αi))duds

−
∫ ∞
t1

s− t1
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)G(y(u− αi))duds|

= |p(t2)y(t2 − τ)− p(t1)y(t1 − τ)|

+|
∫ t2

t1

s− t1
r(s)

∫ ∞
s

(u− s)
m∑
i=1

qi(u)G(y(u− αi))duds|

→ 0 as t2 → t1.

Thus Ty is precompact. By Schauder’s fixed point theorem T has a fixed

point, that is, Ty = y. Consequently, y(t) is a solution of (1.2) on [
1

8
(1 −

p), 1]. This completes the proof of the theorem.

Remark 3.8. Theorems similar to Theorem 3.6 can be proved in other ranges

of p(t).
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4 Examples and Discussion

Example 4.1. Consider

(y(t) + y(t− π))(iv) + y(t− 3π) + y(t− 2π) = 0, (4.1)

where r(t) = 1, p(t) = 1, q1(t) = q2(t) = 1, τ = π, m = 2, α1 = 3π, α2 = 2π,

G(u) = u. Clearly, (H1), (H2), (H
′
3), (H6) and

(H7)

∫ ∞
π

[Q1(t) +Q2(t)]dt =∞,

hold, where Q1(t) = Q2(t) = 1. Hence Theorem 2.2 can be applied to

(4.1), that is, every solution of (4.1) oscillates. Indeed, y(t) = sin t is such a

solution of (4.1).

Example 4.2. Consider

(y(t) + y(t− π))(iv) + y
1
3 (t− 3π) + y

1
3 (t− 2π) = 0, (4.2)

where r(t) = 1, p(t) = 1, q1(t) = q2(t) = 1, τ = π, m = 2, α1 = 3π, α2 = 2π,

G(u) = u1/3. Clearly, (H1), (H2), (H
′
3), (H6) and

(H7)

∫ ∞
π

[Q1(t) +Q2(t)]dt =∞,

hold, where Q1(t) = Q2(t) = 1. Hence Theorem 2.2 can be applied to

(4.2), that is, every solution of (4.2) oscillates. Indeed, y(t) = sin t is such a

solution of (4.2).

Example 4.3. Consider

(y(t)− y(t− π))(iv) + 4y(t) + 4e−πy(t− 2π) = 0, (4.3)

where r(t) = 1, p(t) = −1, q1(t) = 4, q2(t) = 4e−π, τ = π, m = 2, α1 = 0,

α2 = 2π, G(u) = u. Clearly, (H1) and

(H13)

∫ ∞
0

[q1(t) + q2(t)]dt =∞
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hold. Hence by Theorem 2.7 every bounded solution of (4.3) either oscillates

or converges to zero as t→∞. In particular, y(t) = e−t sin t is such a solution

of (4.3).

Example 4.4. Consider

(e−t(y(t) + 2y(t− π))′′)′′ + ety(t− 3π) + ety(t− 2π) = 2e−t cos t, (4.4)

where r(t) = e−t, p(t) = 2, q1(t) = q2(t) = et, τ = π, α1 = 3π, α2 = 2π,

G(u) = u and f(t) = 2e−t cos t. Indeed, if we choose F (t) = sin t, then

(r(t)F ′′(t))′′ = f(t). Since

F (t− α1) = − sin t and F (t− α2) = sin t.

F+(t− α1) =

{
0, t ∈ [2nπ, (2n+ 1)π]
− sin t, t ∈ [(2n+ 1)π, (2n+ 2)π],

F+(t− α2) =

{
sin t, t ∈ [2nπ, (2n+ 1)π]
0, t ∈ [(2n+ 1)π, (2n+ 2)π],

F−(t− α1) =

{
sin t, t ∈ [2nπ, (2n+ 1)π]
0, t ∈ [(2n+ 1)π, (2n+ 2)π],

and

F−(t− α2) =

{
0, t ∈ [2nπ, (2n+ 1)π]
− sin t, t ∈ [(2n+ 1)π, (2n+ 2)π],

for n = 0, 1, 2, ...., then (H1), (H2), (H
′
3) and (H6) are satisfied. Now∫ ∞

3π
[Q1(t)F

+(t− 3π) +Q2(t)F
+(t− 2π)]dt = I1 + I2,

where

I1 =

∫ ∞
3π

et−πF+(t− 3π)dt = −e−π
∞∑
n=1

∫ (2n+2)π

(2n+1)π
et sin tdt

=
e−π

2
(eπ + 1)

∞∑
n=1

e(2n+1)π =∞,
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and

I2 =

∫ ∞
3π

et−πF+(t− 2π)dt = e−π
∞∑
n=2

∫ (2n+1)π

2nπ
et sin tdt

=
e−π

2
(eπ + 1)

∞∑
n=2

e2nπ =∞

Hence∫ ∞
3π

[Q1(t)F
−(t− 3π) +Q2(t)F

−(t− 2π)]dt =
e−π

2
(eπ + 1)

∞∑
n=2

e2nπ

+
e−π

2
(eπ + 1)

∞∑
n=1

e(2n+1)π =∞.

Hence Theorem 3.1 can be applied to (4.4), that is, every solution of (4.4)

oscillates. Indeed, y(t) = − sin t is such a solution of (4.4).

Example 4.5. Consider

(y(t)− 1

2
y(t−π))′′′′+4y(t)+2e−πy(t− 2π)+4y(t−π)=−4e−(t−π) sin t, (4.5)

where r(t) = 1, p(t) = −1

2
, q1(t) = 4, q2(t) = 2e−π, q3(t) = 4, τ = π, α1 = 0,

α2 = 2π, α3 = π, G(u) = u and f(t) = −4e−(t−π) sin t. Indeed, if we choose

F (t) = e−(t−π) sin t, then (r(t)F ′′(t))′′ = f(t) and lim
t→∞

F (t) = 0.

Clearly, (H1) is satisfied. Now∫ ∞
0

[q1(t) + q2(t) + q3(t)]dt =∞.

Hence (H13) is also satisfied. Hence Theorem 3.6 can be applied to (4.5),

that is, every solution of (4.5) oscillates or tends to zero as t→∞. Indeed,

y(t) = e−t sin t is such a solution of (4.5).
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Abstract

We consider a mathematical model which describes the quasistatic
contact between a viscoplastic body and a foundation. The contact
is frictionless and is modelled with a new and nonstandard condition
which involves both normal compliance, unilateral constraint and mem-
ory effects. We derive a variational formulation of the problem then
we prove its unique weak solvability. The proof is based on arguments
on history-dependent variational inequalities.
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1 The model

We consider a viscoplastic body which occupies the domain Ω ⊂ Rd (d =
1, 2, 3) with a Lipschitz continuous boundary Γ, divided into three measurable
parts Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. We use the notation x = (xi)
for a typical point in Ω∪Γ and we denote by ν = (νi) the outward unit normal
at Γ. Here and below the indices i, j, k, l run between 1 and d and an index
that follows a comma represents the partial derivative with respect to the
corresponding component of the spatial variable, e.g. vi,j = ∂vi/∂xj . The
body is subject to the action of body forces of density f0, is fixed on Γ1, and
surface tractions of density f2 act on Γ2. On Γ3, the body is in frictionless
contact with a deformable obstacle, the so-called foundation. We assume that
the problem is quasistatic and the time interval of interest is R+ = [0,∞).
Everywhere in this paper the dot above a variable represents derivative with
respect to the time variable, Sd denotes the space of second order symmetric
tensors on Rd and r+ is the positive part of r, i.e. r+ = max {0, r}. The
classical formulation of the problem is the following.
Problem P. Find a displacement field u : Ω × R+ → Rd and a stress field
σ : Ω× R+ → Sd such that, for all t ∈ R+,

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))) in Ω, (1)

Divσ(t) + f0(t) = 0 in Ω, (2)

u(t) = 0 on Γ1, (3)

σ(t)ν = f2(t) on Γ2, (4)

uν(t) ≤ g, σν(t) + p(uν(t)) + ξ(t) ≤ 0,

(uν(t)− g)
(
σν(t) + p(uν(t)) + ξ(t)

)
= 0,

0 ≤ ξ(t) ≤
∫ t

0
b(t− s)u+

ν (s) ds,

ξ(t) = 0 if uν(t) < 0,

ξ(t) =

∫ t

0
b(t− s)u+

ν (s) ds if uν(t) > 0


on Γ3, (5)

στ (t) = 0 on Γ3, (6)

u(0) = u0, σ(0) = σ0 in Ω. (7)
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Equation (1) represents the viscoplastic constitutive law of the material in
which ε(u) denotes the linearized stress tensor, E is the elasticity tensor and
G is a given constitutive function. Equation (2) is the equilibrium equation
in which Div denotes the divergence operator for tensor valued functions.
Conditions (3) and (4) are the displacement and traction boundary condi-
tions, respectively, and condition (5) represents the contact condition with
normal compliance, unilateral constraint and memory term, in which σν de-
notes the normal stress, uν is the normal displacement, g ≥ 0 and p, b are
given functions. In the case when b vanishes, this condition was used in [1, 3],
for instance. Condition (6) shows that the tangential stress on the contact
surface, denoted στ , vanishes. We use it here since we assume that the con-
tact process is frictionless. Finally, (7) represents the initial conditions in
which u0 and σ0 denote the initial displacement and the initial stress field,
respectively.

Quasistatic frictionless and frictional contact problems for viscoplastic
materials with a constitutive law of the form (1) have been studied in vari-
ous papers, see [2] for a survey. There, various models of contact were stated
and their variational analysis, including existence and uniqueness results,
was provided. The novelty of the current paper arises on the contact condi-
tion (5); it describes a deformable foundation which becomes rigid when the
penetration reaches the critical bound g and which develops memory effects.
Considering such condition leads to a new and nonstandard mathematical
model which, in a variational formulation, is governed by a history-dependent
variational inequality for the displacement field.

The rest of the paper is structured as follows. In Section 2 we list the
assumptions on the data and introduce the variational formulation of the
problem. Then, in Section 3 we state our main result, Theorem 1, and
provide a sketch of the proof.

2 Variational formulation

In the study of problem P we use the standard notation for Sobolev and
Lebesgue spaces associated to Ω and Γ. Also, we denote by “ · ” and ‖ · ‖ the
inner product and norm on Rd and Sd, respectively. For each Banach spaceX
we use the notation C(R+;X) for the space of continuously functions defined
on R+ with values on X and, for a subset K ⊂ X, we still use the symbol
C(R+;K) for the set of continuous functions defined on R+ with values on
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K. We also consider the spaces

V = {v ∈ H1(Ω)d : v = 0 on Γ1 }, Q = { τ = (τij) ∈ L2(Ω)d : τij = τji }.

These are Hilbert spaces together with the inner products (·, ·)V , (·, ·)Q,

(u,v)V =

∫
Ω
ε(u) · ε(v) dx, (σ, τ )Q =

∫
Ω
σ · τ dx,

and the associated norms ‖·‖V , ‖·‖Q, respectively. For an element v ∈ V we
still write v for the trace of V and we denote by vν the normal component
of v on Γ given by vν = v · ν.

We assume that the elasticity tensor E , the nonlinear constitutive function
G and the normal compliance function p satisfy the following conditions.

(a) E = (Eijkl) : Ω× Sd → Sd.
(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) There exists mE > 0 such that
Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ Sd, a.e. in Ω.

(8)



(a) G : Ω× Sd × Sd → Sd.
(b) There exists LG > 0 such that
‖G(x,σ1, ε1)− G(x,σ2, ε2)‖ ≤ LG (‖σ1 − σ2‖+ ‖ε1 − ε2‖)
∀σ1,σ2, ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ G(x,σ, ε) is measurable on Ω,
for any σ, ε ∈ Sd.

(d) The mapping x 7→ G(x,0,0) belongs to Q.

(9)



(a) p : Γ3 × R→ R+.
(b) There existsLp > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.
(d) The mapping x 7→ p(x, r) is measurable on Γ3,

for any r ∈ R.
(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(10)

Moreover, the densities of body forces and surface tractions, the memory
function and the initial data are such that

f0 ∈ C(R+;L2(Ω)d), f2 ∈ C(R+;L2(Γ2)d), (11)
b ∈ C(R+;L∞(Γ3)), b(t,x) ≥ 0 a.e. x ∈ Γ3, (12)
u0 ∈ V, σ0 ∈ Q. (13)
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Consider now the subset U ⊂ V , the operators P : V → V , B :
C(R+;V )→ C(R+;L2(Γ3)) and the function f : R+ → V defined by

U = {v ∈ V : vν ≤ g on Γ3 }, (14)

(Pu,v)V =

∫
Γ3

p(uν)vν da ∀u, v ∈ V, (15)

(Bu(t), ξ)L2(Γ3) =
(∫ t

0
b(t− s)u+

ν (s) ds, ξ
)
L2(Γ3)

(16)

∀u ∈ C(R+;V ), ξ ∈ L2(Γ3), t ∈ R+,

(f(t),v)V =

∫
Ω
f0(t) · v dx+

∫
Γ2

f2(t) · v da ∀v ∈ V, t ∈ R+. (17)

Then, the variational formulation of Problem P is the following.

Problem PV . Find a displacement field u : R+ → U and a stress field
σ : R+ → Q such that, for all t ∈ R+,

σ(t) = Eε(u(t)) +

∫ t

0
G(σ(s), ε(u(s))) ds+ σ0 − Eε(u0), (18)

(σ(t), ε(v)− ε(u(t)))Q + (Pu(t),v − u(t))V (19)
+(Bu(t), v+

ν − u+
ν (t))L2(Γ3) ≥ (f(t),v − u(t))V ∀v ∈ U.

Note that (18) is a consequence of (1) and (7), while (19) can be easily
obtained by using integrations by parts, (2)–(6) and notation (14)–(17).

3 Existence and uniqueness

The unique solvability of Problem PV is given by the following result.

Theorem 1 Assume that (8)–(13) hold. Then Problem PV has a unique
solution, which satisfies u ∈ C(R+;U) and σ ∈ C(R+;Q).

Proof. The proof is carried out in several steps which we describe below.
(i) We use the Banach fixed point argument to prove that for each func-

tion u ∈ C(R+;V ) there exists a unique function Su ∈ C(R+;Q) such that

Su(t) =

∫ t

0
G(Su(s) + Eε(u(s)), ε(u(s))) ds+ σ0 − Eε(u0) ∀ t ∈ R+.
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(ii) Next, we note that (u,σ) is a solution of Problem PV iff

σ(t) = Eε(u(t)) + Su(t) ∀ t ∈ R+, (20)

(Eε(u(t)), ε(v)− ε(u(t)))Q + (Su(t), ε(v)− ε(u(t)))Q (21)
+(Bu(t), v+

ν − u+
ν (t))L2(Γ3) + (Pu(t),v − u(t))V

≥ (f(t),v − u(t))V ∀v ∈ U, ∀ t ∈ R+.

(iii) Let A : V → V and ϕ : Q×L2(Γ3)×V → R be defined by equalities

(Au,v)V = (Eε(u), ε(v))Q + (Pu,v)V ,

ϕ(x,v) = (σ, ε(v))Q + (ξ, v+
ν )L2(Γ3)

for all u, v ∈ V , x = (σ, ξ) ∈ Q × L2(Γ3). We prove that A : V → V is a
strongly monotone and Lipschitz continuous operator and there exists β ≥ 0
such that

ϕ(x1,u2)− ϕ(x1,u1) + ϕ(x2,u1)− ϕ(x2,u2)

≤ β ‖x1 − x2‖Q×L2(Γ3) ‖u1 − u2‖V ∀x1, x2 ∈ Q× L2(Γ3), u1, u2 ∈ V.

Moreover, we prove that for every n ∈ N there exists sn > 0 such that

‖Su1(t)− Su2(t)‖Q + ‖Bu1(t)− Bu2(t)‖L2(Γ3)

≤ sn
∫ t

0
‖u1(s)− u2(s)‖V ds ∀u1, u2 ∈ C(R+;V ), ∀ t ∈ [0, n].

These properties allow to use Theorem 2 in [3]. In this way we prove the
existence of a unique function u ∈ C(R+;U) which satisfies the history-
dependent variational inequality (21), for all t ∈ R+.

(iv) Let σ be the function given by (20); then, the couple (u,σ) satisfies
(20)–(21) for all t ∈ R+ and, moreover, it has the regularity u ∈ C(R+;U),
σ ∈ C(R+;Q). This concludes the existence part in Theorem 1. The unique-
ness part follows from the uniqueness of the solution of the inequality (21),
guaranteed by Theorem 2 in [3]. �
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Abstract

We consider the general model of 6-parametric elastic plates, in
which the rotation tensor field is an independent kinematic field. In
this context we show the existence of global minimizers to the mini-
mization problem of the total potential energy.
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been established and presented in the books of Libai and Simmonds [1] and
Chróścielewski, Makowski and Pietraszkiewicz [2]. This approach to shell
theory is of great importance due to its generality and its efficiency for the
treatment of complex shell problems.

In this short note we present an existence results for the equations of
geometrically nonlinear elastic plates, in the framework of the 6-parametric
shell theory. Using the direct methods of the calculus of variations, we es-
tablish the existence of global minimizers for the corresponding minimization
problem of the total potential energy. First, we consider the case of isotropic
and homogeneous plates. Then, we extend the existence theorem to the more
general situation of composite elastic plates.

2 Geometrically nonlinear elastic plates

Consider an elastic plate which occupies in the reference (undeformed) con-
figuration the region Ω = {(x, y, z) | (x, y) ∈ ω, z ∈

[
− h

2 ,
h
2

]
} of the three-

dimensional Euclidean space. Here h > 0 is the thickness of the plate and
ω ⊂ IR2 is a bounded, open domain with Lipschitz boundary ∂ω. Relative
to an inertial frame (O, ei), with ei orthonormal vectors (i = 1, 2, 3), the
position vector r of any point of Ω can be written as

r(x, y, z) = x e1 + y e2 + z e3 , (x, y) ∈ ω, z ∈
[
− h

2
,
h

2

]
. (1)

In the deformed configuration, we denote by m : ω ⊂ IR2 → IR3 the
surface deformation mapping, so that m = m(x, y) represents the position
vector of the points of the base surface of the plate (shell). Let the vector
field u = u(x, y) designate the translations (displacements) and the proper
orthogonal tensor field R = R(x, y) denote the rotations of the shell cross-
sections. Then the deformed configuration of the plate is given by

m(x, y) = x e1 + y e2 + u(x, y), di = Rei , i = 1, 2, 3. (2)

The vectors di introduced in (2) are three orthonormal vectors (usually called
directors) attached to any point of the deformed base surface S = m(ω).
Thus, the rotation tensor field R(x, y) ∈ SO(3) can be written as

R = di ⊗ ei . (3)
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We employ the usual tensor notation and the Einstein’s convention of summa-
tion over repeated indices. The Latin indices i, j, ... take the values {1, 2, 3}
and the Greek indices α, β, ... range over the set {1, 2}. The partial derivative
with respect to x will be denoted by (·),x = ∂

∂x (·).
The local equilibrium equations for 6-parametric plates are [1, 2]:

DivsN + f = 0, DivsM + axl(NFT − FNT ) + c = 0. (4)

Here, f and c are the external surface resultant force and couple vector fields,
N and M are the internal surface stress resultant and stress couple resultant
tensors (of the first Piola–Kirchhoff stress tensor type), Divs is the surface
divergence operator, while F = Gradsm = m,x⊗e1 +m,y⊗e2 is the surface
gradient of deformation. The superscript ( ·)T denotes the transpose and
axl(·) is the axial vector of any skew-symmetric tensor.

To formulate the boundary conditions, we take a disjoint partition of the
boundary curve ∂ω = ∂ωd ∪ ∂ωf , ∂ωd ∩ ∂ωf = ∅, with length(∂ωd) > 0. We
consider the following boundary conditions [2, 3]

u− u∗ = 0, R−R∗ = 0 along ∂ωd , (5)

Nν − n∗ = 0, Mν −m∗ = 0 along ∂ωf , (6)

where n∗ andm∗ are the external boundary resultant force and couple vectors
applied along ∂ωf , and ν is the external unit normal vector to ∂ω.

In the general resultant theory of shells, the strain measures are the strain
tensor E and the bending tensor K, given by [2, 4]

E = RT
[

(m,x − d1)⊗ e1 + (m,y − d2)⊗ e2
]
, (7)

K = RT
[

axl(R,xR
T )⊗ e1 + axl(R,yR

T )⊗ e2
]
. (8)

One can prove that the following relation holds for any rotation tensor
Q ∈ SO(3) and any second order skew-symmetric tensor A ∈ so(3)

axl(QAQT ) = Q axl(A). (9)

If we write this relation for Q = R and A = RTR,x we obtain

RT axl(R,xR
T ) = axl(RTR,x) . (10)

By (8) and (10), the bending tensor K can be expressed in the simpler form

K = axl(RTR,x)⊗ e1 + axl(RTR,y)⊗ e2 . (11)
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In the case of plates, the strain tensor E and the bending tensor K can
be written in component form relative to the tensor basis {ei ⊗ ej} as

E = Eiαei ⊗ eα = (m,x · di − δi1)ei ⊗ e1 + (m,y · di − δi2)ei ⊗ e2 , (12)

K = Kiαei ⊗ eα = (d2,x ·d3)e1⊗ e1 + (d3,x ·d1)e2⊗ e1 + (d1,x ·d2)e3⊗ e1
+(d2,y ·d3)e1 ⊗ e2 + (d3,y ·d1)e2 ⊗ e2 + (d1,y ·d2)e3 ⊗ e2 ,

(13)
where δij is the Kronecker symbol.

Let W = W (E,K) be the strain energy density of the elastic plate.
According to the hyperelasticity assumption, the constitutive equations are

N = R
∂ W

∂E
, M = R

∂ W

∂K
. (14)

The strain energy density for physically linear isotropic plates is [5]

W (E,K) = Wmb(E) +Wbend(K),

2Wmb(E) = α1tr
2E‖ + α2trE

2
‖ + α3tr(E

T
‖E‖) + α4e3EETe3,

2Wbend(K) = β1tr
2K‖ + β2trK

2
‖ + β3tr(K

T
‖K‖) + β4e3KKTe3,

(15)

where the coefficients αk , βk are constant material parameters, and we use
the notations E‖ = E− (e3 ⊗ e3)E and K‖ = K− (e3 ⊗ e3)K.

3 Existence of minimizers

Let us define the admissible set A by

A =
{

(m,R) ∈ H1(ω, IR3)×H1(ω, SO(3))
∣∣ m∣∣∂ωd

= m∗, R∣∣∂ωd
= R∗

}
.

(16)
The boundary conditions in (16) are to be understood in the sense of traces.
We assume the existence of a function Λ(u,R) representing the potential of
the external surface loads f , c, and boundary loads n∗,m∗ [4].

Consider the two-field minimization problem associated to the deforma-
tion of elastic plates: find the pair (m̂, R̂) ∈ A which realizes the minimum
of the functional

I(m,R) =

∫
ω
W (E,K) dω − Λ(u,R) for (m,R) ∈ A. (17)



Elastic plates with rotational degrees of freedom 101

Here the strain tensor E and the bending tensor K are expressed in terms of
(m,R) by the relations (2)2, (7) and (8).

The external loading potential Λ(u,R) is decomposed additively

Λ(u,R) = Λω(u,R) + Λ∂ωf
(u,R), (18)

where Λω(u,R) is the potential of the external surface loads f , c, while
Λ∂ωf

(u,R) is the potential of the external boundary loads n∗,m∗

Λω(u,R) =

∫
ω
f · udω + Πω(R), Λ∂ωf

(u,R) =

∫
∂ωf

n∗ · uds+ Π∂ωf
(R).

(19)
The load potentials Πω : L2(ω, SO(3)) → IR and Π∂ωf

: L2(ω, SO(3)) → IR
are assumed to be continuous and bounded operators. Let us present next
the main existence result corresponding to isotropic elastic plates.

Theorem 1 Assume that the external loads and the boundary data satisfy
the regularity conditions

f ∈ L2(ω, IR3), n∗ ∈ L2(∂ωf , IR
3), m∗ ∈ H1(ω, IR3), R∗ ∈ H1(ω, SO(3)).

(20)
Consider the minimization problem (16), (17) for isotropic plates, i.e. when
the strain energy density W is given by the relations (15). If the constitutive
coefficients satisfy the conditions

2α1 + α2 + α3 > 0, α2 + α3 > 0, α3 − α2 > 0, α4 > 0,
2β1 + β2 + β3 > 0, β2 + β3 > 0, β3 − β2 > 0, β4 > 0,

(21)

then the problem (16), (17) admits at least one minimizing solution pair
(m̂, R̂) ∈ A.

For the proof, we apply the direct methods of the calculus of variations
and we follow the same steps as in the proof of Theorem 4.1 from [6].

4 Composite plates

The modeling of composite shells in the nonlinear 6-parametric general theory
of shells has been presented in [7]. In this case, the strain energy density can
be written using the matrix notation in the following way [7]

W (E,K) =
1

2
vTCv , (22)
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where C is a 12× 12 matrix containing the constitutive coefficients, and v
is a 12× 1 column vector of the forms

C12×12 =


A4×4 04×2 B4×4 04×2
02×4 S2×2 02×4 02×2
B4×4 04×2 D4×4 04×2
02×4 02×2 02×4 G2×2

 , v 12×1 =


e 4×1
ε 2×1
k 4×1
κ 2×1

 . (23)

Here we have denoted by e, ε, k and κ the following column vectors of
components of the strain and bending tensors for plates

e =


E11

E22

E21

E12

 =


m,x · d1 − 1
m,y · d2 − 1
m,x · d2

m,y · d1

 , k =


K21

−K12

−K11

K22

 =


d3,x · d1

d3,y · d2

d3,x · d2

d3,y · d1

 ,
ε =

[
E31

E32

]
=

[
m,x · d3

m,y · d3

]
, κ =

[
K31

K32

]
=

[
d1,x · d2

d1,y · d2

]
.

(24)
In view of the above notations, the expression of the strain energy density
(22) becomes

2W (E,K) = eTAe + eTBk + kTBe + kTDk + εTS ε+ κTGκ. (25)

In the above relation we can observe the multiplicative coupling of the strain
tensor E with the bending tensor K for composite plates. The matrices
A,B,D,S,G containing the constitutive coefficients for elastic (orthotropic)
composite multilayered shells and plates have been determined in [7] in terms
of the material/geometrical parameters of the layers.

We can prove the existence of minimizers also for composite plates under
the assumption of coercivity and convexity on the strain energy density. More
precisely, the following theorem holds.

Theorem 2 (Composite, anisotropic plates) Consider the minimiza-
tion problem (16), (17) associated to the deformation of composite plates,
and assume that the external loads and boundary data satisfy the conditions
(20). Assume that the strain energy density W (E,K) is a quadratic convex
function in (E,K), and moreover W is coercive, i.e.

W (E,K) ≥ c
(
‖E‖2 + ‖K‖2

)
, ∀E = Eiαei ⊗ eα, K = Kiαei ⊗ eα, (26)

for some constant c > 0. Then, the minimization problem (16), (17) admits
at least one minimizing solution pair (ŷ, Q̂) ∈ A.
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Finally, we mention that the model of 6-parametric plates has many sim-
ilarities with the Cosserat plate model proposed and investigated by the
second author in [6, 8]. Although this Cosserat model for plates has been
obtained independently by a derivation approach, the strain measures of the
two models essentially coincide. Moreover, the expressions of the elastic
strain energies become identical for isotropic plates, provided one makes a
suitable identification of constitutive coefficients in the two approaches.
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