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EXPONENTIAL DICHOTOMY

CONCEPTS FOR EVOLUTION

OPERATORS IN THE HALF-LINE∗

Mihai-Gabriel Babuţia† Mihail Megan‡

Abstract

The paper considers three concepts of nonuniform exponential di-
chotomy and their correspondents for the case of uniform exponential
dichotomy on the half-line in the general framework of evolution oper-
ators in Banach spaces. Two of these concepts can be considered for
evolution operators that are not invertible on the unstable manifold
yielding more general behaviors. Using two particular classes of evo-
lution operators defined on the Banach space of bounded real-valued
sequences, we give some illustrative examples which clarify the rela-
tions between these concepts.

MSC: primary 34D09; secondary 34D05

keywords: Evolution operator; exponential dichotomy, strong exponen-
tial dichotomy, weak exponential dichotomy.

1 Introduction

The notion of exponential dichotomy introduced by Perron in [24] plays
a central role in the qualitative theory of dynamical systems, which has
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210 M.-G. Babuţia, M. Megan

an impressive development. The exponential dichotomy property for linear
dynamical systems has gained prominence since the appearance of two fun-
damental monographs of J. L. Massera and J. J. Schäffer [15], J. L. Daleckii
and M. G. Krein [12]. These were followed by the important books of C.
Chicone and Y. Latushkin [11] and L. Barreira and C. Valls [5].

The most important dichotomy concept used in the qualitative theory
of ordinary differential equations is the uniform exponential dichotomy (see
[13], [14], [9], [16], [18], [27], [29], [32], [31], [33]). In the nonautonomous set-
ting, the concept of uniform exponential dichotomy is too restrictive and it
is important to look for more general behaviors, for example the nonuniform
case, where a consistent contribution is due to L. Barreira and C. Valls ([6],
[7], [8]). Their study is motivated by ergodic theory and nonuniform hyper-
bolic theory (we refer the reader to the monograph of L. Barreira and Ya.
Pesin [4] for details and further information). Furthermore, an important
property of this asymptotic behavior (both in the uniform and nonuniform
case) is the roughness of the dichotomy which can be seen from the papers
[27], [34] and [35]. Another direction for the study of nonuniform behaviors
is due to the members of the Research Center in Differential Equations from
West University of Timişoara, Romania, who study a more general type of
nonuniform exponential dichotomy which does not impose an upper bound
on the dichotomy projections (see [16], [20], [19], [17],[25], [26], [3], [22], [21],
[28], [30]).

We prove that in the particular case when the nonuniformity is of expo-
nential type and the dichotomy projections are exponentially bounded, the
three dichotomy concepts presented in this paper are equivalent (Theorem
3).

In this paper we consider three concepts of nonuniform exponential di-
chotomy (exponential dichotomy, strong exponential dichotomy, weak expo-
nential dichotomy) and their correspondents for the case of uniform expo-
nential dichotomy for evolution operators on the half-line. Thus we obtain
a systematic classification of exponential dichotomy concepts with the con-
nections between them. Using two general classes of evolution operators, we
clarify the relations between these concepts. In contrast with the concept of
exponential dichotomy, two concepts of strong exponential dichotomy and
weak exponential dichotomy (see Proposition 1 and Open Problem 2) can
be defined for evolution operators which are not invertible on the unstable
manifolds, but, in contrast with the invertible case, more general behaviors
are obtained.

We remark that in this paper we assume the existence of a family of
projections P which is compatible with a given evolution operator U . At a
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fist view the existence of such a family P is a strong hypothesis. The im-
pediment can be eliminated using the notion of admissibility, by associating
to an evolution operator U : ∆→ B(X) the integral equation

f(t) = U(t, s)f(s) +

t∫

s

U(t, τ)v(τ) dτ, (t, s) ∈ ∆

where f and v belong to some Banach function spaces. Under the hypothesis
of admissibility, the existence of the family of projections and the dichotomy
property is deduced (for details, see for example [8], [19], [30], [32], [23] [31],
[18]).

2 Dichotomic pairs

Let X be a real or complex Banach space and B(X) the Banach algebra
of all bounded linear operators on X. The norms on X and B(X) will be
denoted by ‖ · ‖. Denote by I the identity operator on X.
We will also use the following notations:

∆ = {(t, s) ∈ R2
+ : t ≥ s} and T = ∆×X.

Definition 1. A map P : R+ → B(X) is called a family of projections
on X if

P (t)2 = P (t), for every t ≥ 0.

In particular

• if there are M ≥ 1 and γ ≥ 0 such that

‖P (t)‖ ≤Meγt, for all t ≥ 0

then we say that P : R+ → B(X) is exponentially bounded;

• if there is M ≥ 1 such that

‖P (t)‖ ≤M, for all t ≥ 0

then we say that P is bounded.

Remark 1. If P : R+ → B(X) is a family of projections on X then

Q : R+ → B(X) defined by Q(t) = I − P (t)

is also a family of projections on X, which is called the complementary
family of projections of P .
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Definition 2. A map U : ∆ → B(X) is called an evolution operator on
X if

(e1) U(t, t) = I for every t ≥ 0;

(e2) U(t, s)U(s, t0) = U(t, t0) for all (t, s), (s, t0) ∈ ∆.

Definition 3. A family of projections P : R+ → B(X) is said to be invari-
ant for the evolution operator U : ∆→ B(X) if

U(t, s)P (s) = P (t)U(t, s)

for all (t, s) ∈ ∆.

Definition 4. A family of projections P : R+ → B(X) is said to be com-
patible with the evolution operator U : ∆→ B(X) if

(c1) P is invariant for U ;

(c2) for every (t, s) ∈ ∆ the restriction of U(t, s) on Ker P (s) is an iso-
morphism from Ker P (s) to Ker P (t)

If P is compatible with U then the pair (U,P ) is called a dichotomic pair.

Remark 2. If (U,P ) is a dichotomic pair then for all (t, s) ∈ ∆ one has
that

U(t, s)Q(s) = Q(t)U(t, s).

Remark 3. If (U,P ) is a dichotomic pair and for all (t, s) ∈ ∆ the linear
operator U(t, s) is invertible (for example, if the evolution operator arises
from linear ODEs) then (U,Q) is also a dichotomic pair, where Q is the
complementary family of P .

Remark 4. If (U,P ) is a dichotomic pair then there exists V : ∆→ B(X)
such that V (t, s) is an isomorphism from Ker P (t) to Ker P (s) and

(v1) U(t, s)V (t, s)Q(t) = Q(t);

(v2) V (t, s)U(t, s)Q(s) = Q(s);

(v3) V (t, s)Q(t) = Q(s)V (t, s)Q(t)

for all (t, s) ∈ ∆. The map V is called the skew-evolution operator
associated to the pair (U,P ).
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3 Exponential dichotomy

In this section we present the exponential dichotomy concepts considered
(both in the uniform and the nonuniform case), for example, in [1], [15], [18],
[19], [23], [28], [29], [30].

In what follows, let (U,P ) be a dichotomic pair and let V be the skew-
evolution operator associated to the pair (U,P ).

Definition 5. We say that the pair (U,P ) is exponentially dichotomic
(e.d) if there are N ≥ 1, α > 0 and β ≥ 0 such that

(ed1) eα(t−s)‖U(t, s)P (s)x‖ ≤ Neβs‖P (s)x‖
(ed2) eα(t−s)‖Q(s)x‖ ≤ Neβt‖U(t, s)Q(s)x‖

for all (t, s, x) ∈ T , where Q is the complementary family of P .
In the particular case when β = 0 we say that (U,P ) is uniformly expo-
nentially dichotomic (u.e.d).

Remark 5. As particular cases of the above defined concept, we obtain the
following concepts:

(i) if P (t) = I for all t ≥ 0, then we obtain the exponential stability
property;

(ii) if P (t) = I for all t ≥ 0 and β = 0, then we obtain the uniform
exponential stability property.

Remark 6. If (U,P ) is u.e.d then it is e.d. The converse is not generally
true, as shown in Example 1, (vii).

The above concept allows us to define the exponential dichotomy prop-
erty for evolution operators in the general case in which the invertibility on
the kernels of the projections is not assumed i.e. P is only invariant for
U . Next, we present another result concerning the nonuniform exponential
dichotomy which, as it can be seen from the two conditions of the theorem,
can also be asserted in the general (noninvertible) case.

Theorem 1. The dichotomic pair (U,P ) is exponentially dichotomic with
β ∈ [0, α) (where α and β are given by Definition 5) if and only if there
exists N ≥ 1 such that

(ed′1) eα(t−s)‖U(t, s)P (s)x‖ ≤ Neβs‖P (s)x‖
(ed′2) eα(t−s)‖Q(s)x‖ ≤ Neβs‖U(t, s)Q(s)x‖

for all (t, s, x) ∈ T .
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Proof. It is sufficient to show that (ed2)⇔ (ed′2).
For (ed2)⇒ (ed′2) we have that

e(α−β)(t−s)‖Q(s)x‖ ≤ Neβte−β(t−s)‖U(t, s)Q(s)x‖ = Neβs‖U(t, s)Q(s)x‖
and for (ed′2)⇒ (ed2) we observe that

eα(t−s)‖Q(s)x‖ ≤ Neβs‖U(t, s)Q(s)x‖ = Neβt‖U(t, s)Q(s)x‖
for all (t, s, x) ∈ T .

As an immediate consequence we obtain

Corollary 1. If the dichotomic pair (U,P ) is exponentially dichotomic with
β ∈ [0, α) then

lim
t→∞

U(t, s)P (s)x = 0 for every (s, x) ∈ R+ ×X and

lim
t→∞
‖U(t, s)Q(s)x‖ =∞ for every (s, x) ∈ R+ ×X with Q(s)x 6= 0.

Remark 7. The condition β ∈ [0, α) is essential for the validity of the
previous corollary, phenomenon illustrated in Example 1, (x).

A characterization of the concept of exponential dichotomy is given by

Theorem 2. Let (U,P ) be a dichotomic pair. Then (U,P ) is exponentially
dichotomic if and only if there exist N ≥ 1, α > 0 and β ≥ 0 such that

(ed′′1) eα(t−s)‖U(t, s)P (s)x‖ ≤ Neβs‖P (s)x‖
(ed′′2) eα(t−s)‖V (t, s)Q(t)x‖ ≤ Neβt‖Q(t)x‖

for all (t, s, x) ∈ T .

Proof. We only have to prove the equivalence between the instability prop-
erties (i.e. (ed2)⇔ (ed′′2)). To prove that (ed′′2)⇒ (ed2), we observe that

eα(t−s)‖Q(s)x‖ (v2)
= eα(t−s)‖V (t, s)U(t, s)Q(s)x‖ =

= eα(t−s)‖V (t, s)Q(t)U(t, s)Q(s)x‖ ≤ Neβt‖U(t, s)Q(s)x‖
for all (t, s, x) ∈ T .
Similarly, by (v3), (ed2) and (v1) it results that

eα(t−s)‖V (t, s)Q(t)x‖ (v3)
= eα(t−s)‖Q(s)V (t, s)Q(t)x‖ ≤
≤ Neβt‖U(t, s)Q(s)V (t, s)Q(t)x‖ =

= Neβt‖Q(t)U(t, s)V (t, s)Q(t)x‖ (v1)
= Neβt‖Q(t)x‖

for all (t, s, x) ∈ T .



Exponential dichotomy concepts 215

As a particular case we obtain

Corollary 2. Let (U,P ) be a dichotomic pair. Then (U,P ) is uniformly
exponentially dichotomic if and only if there are N ≥ 1 and α > 0 such that

(ued′1) eα(t−s)‖U(t, s)P (s)x‖ ≤ N‖P (s)x‖

(ued′2) eα(t−s)‖V (t, s)Q(t)x‖ ≤ N‖Q(t)x‖
for all (t, s, x) ∈ T .

4 Weak exponential dichotomy

Let (U,P ) be a dichotomic pair, Q the complementary family of P and
V the skew-evolution operator associated to the pair (U,P ). We introduce
the following dichotomy concept:

Definition 6. We say that the pair (U,P ) is weakly exponentially di-
chotomic (w.e.d) if there are N ≥ 1, α > 0 and β ≥ 0 such that

(wed1) eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs‖P (s)‖

(wed2) eα(t−s)‖V (t, s)Q(t)‖ ≤ Neβt‖Q(t)‖
for all (t, s) ∈ ∆.
In the particular case when β = 0 we say that (U,P ) is uniformly weakly
exponentially dichotomic (u.w.e.d).

Remark 8. It is obvious that u.w.e.d⇒ w.e.d. The converse implication is
not generally valid (for details, see Example 1 (vii)).

Remark 9. The following implications hold:

e.d⇒ w.e.d and u.e.d⇒ u.w.e.d

Open Problems.

1) We ask wether the reciprocal implications from Remark 9 hold.

2) For example, in [1], a ”weak exponential dichotomy” concept was intro-
duced in the uniform case, in the general framework of evolution op-
erators, in which the assumption of invertibility of the given evolution
operator on the kernels of the projections was dropped. Having in mind
such ”weak” behavior in our nonuniform case, we propose for solving or
disproving the following implication:
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(U,P ) is w.e.d ⇒





∃ N ≥ 1, α > 0, β ≥ 0 such that ∀(t, s) ∈ ∆

(wed′1) eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs‖P (s)‖;
(wed′2) eα(t−s)‖Q(s)‖ ≤ Neβt‖U(t, s)Q(s)‖.

In what concerns Open Problem 2, we posses a partial result, given by
the following assertion.

Remark 10. The converse of the implication from Open Problem 2 is not
generally valid (see Example 2).

5 Strong exponential dichotomy

In this section we consider another exponential dichotomy concept used
in the papers of L. Barreira and C. Valls ([6], [7], [8]). Connections with the
previous dichotomy concepts are given. It is shown that in the particular
case when the family of projections is exponentially bounded then the ex-
ponential dichotomy concepts presented in this paper are equivalent.
Let (U,P ) be a dichotomic pair and let Q be the complementary family of
P . Let V be the skew-evolution operator associated to the pair (U,P ).

Definition 7. We say that the pair (U,P ) is strongly exponentially
dichotomic (s.e.d) if there are N ≥ 1, α > 0 and β ≥ 0 such that

(sed1) eα(t−s)‖U(t, s)P (s)x‖ ≤ Neβs‖x‖

(sed2) eα(t−s)‖V (t, s)Q(t)x‖ ≤ Neβt‖x‖
for all (t, s, x) ∈ T .

If the conditions (sed1) and (sed2) hold for β = 0 then we say that (U,P )
is uniformly strongly exponentially dichotomic (u.s.e.d).

Remark 11. It is obvious that u.s.e.d ⇒ s.e.d. The converse implication
is not generally true (see Example 1 (ix)).

Remark 12. If (U,P ) is s.e.d then from (sed1), for t = s, we obtain that

‖P (s)‖ ≤ Neβs for all s ≥ 0

i.e. P is exponentially bounded. In particular, if (U,P ) is u.s.e.d then P is
bounded.
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Remark 13. If (U,P ) is s.e.d then by substituting x by P (s)x in (sed1)
respectively by Q(s)x in (sed2) we obtain the implication s.e.d ⇒ e.d. In
particular, u.s.e.d ⇒ u.e.d. The converse implications are not generally
valid (see Example 1 (viii)).

Remark 14. Having in mind the wide usage of the e.d concept and the
s.e.d concept, it is reasonable to consider a dichotomy concept which has the
estimations in the operator norm (see Remark 15) as in the s.e.d concept,
but in the meantime, as in the case of the e.d concept, not to assume any
restriction on the family of projections (see Remark 12).

Remark 15. From Definition 7 it results that (U,P ) is s.e.d if and only if
there exist N ≥ 1, α > 0 and β ≥ 0 such that

(sed′1) eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs

(sed′2) eα(t−s)‖V (t, s)Q(t)‖ ≤ Neβt

for all (t, s) ∈ ∆.
In particular, for β = 0 we have that (U,P ) is u.s.e.d if and only if there
are N ≥ 1 and α > 0 with the following properties:

(used′1) eα(t−s)‖U(t, s)P (s)‖ ≤ N
(used′2) eα(t−s)‖V (t, s)Q(t)‖ ≤ N

for all (t, s) ∈ ∆.

A difference between the result of Theorem 1 and its correspondent for
the s.e.d property is given by

Proposition 1. If the pair (U,P ) is s.e.d then there exists N ≥ 1, α > 0
and β ≥ 0 such that

(sed′′1) eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs

(sed′′2) eα(t−s) ≤ Neβt‖U(t, s)Q(s)‖
for all (t, s) ∈ ∆.

Proof. It is sufficient to prove that (sed′2) ⇒ (sed′′2). Indeed, from (sed′2) ,
(v2) and (c1) we obtain that

eα(t−s) ≤ eα(t−s)‖Q(s)‖ = eα(t−s)‖V (t, s)Q(t)U(t, s)Q(s)‖
≤ Neβt‖U(t, s)Q(s)‖

for all (t, s) ∈ ∆.
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Remark 16. The converse of the above proposition is not generally valid
(see Example 2).

Remark 17. Having in mind the above proposition and remark, we can
observe that if we consider the s.e.d property in the general case of invariant
families of projections (without the invertibility on the unstable direction of
the evolution operator), we obtain a more general behavior. Such behaviors
were also pointed out in [1] (in the uniform case) and [2] (in the discrete
case).

The main result of this section is

Theorem 3. Let (U,P ) be a dichotomic pair with the property that P is
exponentially bounded. Then the following properties are equivalent:

(i) (U,P ) is strongly exponentially dichotomic;

(ii) (U,P ) is exponentially dichotomic;

(iii) (U,P ) is weakly exponentially dichotomic.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) follow from Remarks 13 and 9.
For (iii) ⇒ (i) assume that (U,P ) is w.e.d. Then there exist M ≥ 1 and
γ ≥ 0 such that for all t ≥ 0,

‖P (t)‖ ≤Meγt.

Then, for all (t, s) ∈ ∆, from (wed1) and (wed2) it follows that

eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs‖P (s)‖ ≤ 2MNe(β+γ)s

and
eα(t−s)‖V (t, s)Q(t)‖ ≤ Neβt‖Q(t)‖ ≤ 2MNe(β+γ)t

which, by Remark 15, shows that (U,P ) is s.e.d.

As a particular case, we have

Corollary 3. Let (U,P ) be a dichotomic pair with the property that P is a
bounded family of projections. Then the following assertions are equivalent:

(i) (U,P ) is u.s.e.d;

(ii) (U,P ) is u.e.d;

(iii) (U,P ) is u.w.e.d.
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Remark 18. By Remarks 6, 8, 9, 13 and 16, we obtain the connections
between the dichotomy concepts studied in this paper. These are illustrated
in the following diagram:

u.s.e.d
6⇐

=⇒ u.e.d =⇒ u.w.e.d
6⇒⇐ u.s.e.d

⇓6⇑ ⇓6⇑ ⇓6⇑ ⇓6⇑
s.e.d

6⇐
=⇒ e.d =⇒ w.e.d

6⇒⇐ s.e.d

6 Examples and counterexamples

The aim of this section is to give some illustrative examples and coun-
terexamples which show that the converse of the implications presented in
the previous sections are not valid. We begin with some notations used in
what follows.

Let P be the set of all families of projections P : R+ → B(X) satisfying
the equality

P (t)P (s) = P (s) for all t, s ≥ 0.

We observe that if P ∈ P then its complementary Q verifies the relations

Q(t)Q(s) = Q(t) and Q(t)P (s) = 0 for all t, s ≥ 0.

We shall denote by U1 the set of all u : R+ → (0,∞) with the property
that there exist N ≥ 1, α > 0 and β ≥ 0 such that

eα(t−s)u(s) ≤ Neβsu(t) for all (t, s) ∈ ∆.

As a remarkable subset of U1 we point out the set denoted by U0, defined
as the set of all functions u : R+ → (0,∞) with the property that there are
N ≥ 1 and α > 0 such that

eα(t−s)u(s) ≤ Nu(t) for all (t, s) ∈ ∆.

As examples, we give u1, u2, u3 : R+ → (0,∞) defined by

u1(t) = e
3t

2+cos(3πt) , u2(t) = e
2t

1+{2t} , u3(t) = e2t

where {t} denotes the fractional part of t.
It is easy to see that u1 ∈ U1 r U0 (with N = α = 1, β = 2), u2 ∈ U1 r U0
(with N = α = β = 1 and u3 ∈ U0 (with N = α = 1).

An example of a dichotomic pair (U,P ) with P ∈ P is presented by the
following example.
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Example 1. Let X = l∞ the Banach space of all bounded real-valued se-
quences, endowed with the norm

‖x‖ = sup
n≥0
|xn|, where x = (x0, x1, . . . , xn, . . .) ∈ X.

For every nondecreasing function p : R+ → R+ we define P : R+ → B(X) by

P (t)x = (x0 + p(t)x1, 0, x2 + p(t)x3, 0, . . .)

for all t ≥ 0 and x = (x0, x1, . . .) ∈ X.
Then P is a family of projections which belongs to P and its complementary
is given by

Q(t)x = (−p(t)x1, x1,−p(t)x3, x3, . . .) .
Moreover, for all (t, s, x) ∈ T we have

‖P (t)‖ = 1 + p(t) and ‖Q(s)x‖ = max{1, p(s)} sup
n≥0
|x2n+1| ≤ ‖Q(t)x‖.

In particular:

• for p(t) = et − 1 we have that P is exponentially bounded;

• for p(t) = et
2 − 1 it results that P is not exponentially bounded.

For every u : R+ → (0,∞) we define U : ∆→ B(X) by

U(t, s) =
u(s)

u(t)
P (s) +

u(t)

u(s)
Q(t)

for all (t, s) ∈ ∆ where Q is the complementary family of P .
It is easy to verify that (U,P ) is a dichotomic pair and the skew-evolution
operator associated to (U,P ) is given by

V (t, s)Q(t) =
u(s)

u(t)
Q(s) for (t, s) ∈ ∆.

Moreover

U(t, s)P (s) =
u(s)

u(t)
P (s) and U(t, s)Q(s) =

u(t)

u(s)
Q(t) for all (t, s) ∈ ∆.

By Definitions 5, 6, 7, in the particular case of the above defined dichotomic
pair (U,P ), we obtain the following conclusions:

(i) (U,P ) is e.d if and only if u ∈ U1;
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(ii) (U,P ) is u.e.d if and only if u ∈ U0;

(iii) (U,P ) is s.e.d if and only if u ∈ U1 and P is exponentially bounded;

(iv) (U,P ) is u.s.e.d if and only if u ∈ U0 and P is bounded;

(v) (U,P ) is w.e.d if and only if u ∈ U1;

(vi) (U,P ) is u.w.e.d if and only if u ∈ U0;

From these characterizations we obtain, with the aid of functions u and
p from the definition of (U,P ), that

(vii) if u ∈ U1 r U0 then (U,P ) is e.d (hence also w.e.d) although (U,P ) is
not u.w.e.d (hence not u.e.d). Thus we obtain that e.d 6⇒ u.e.d and
w.e.d 6⇒ u.w.e.d;

(viii) if u ∈ U0 and P is not exponentially bounded (for example, if p(t) =
et

2 − 1) then (U,P ) is u.e.d (hence e.d) but (U,P ) is not s.e.d (hence
not u.s.e.d). Thus we have that e.d 6⇒ s.e.d and u.e.d 6⇒ u.s.e.d;

(ix) if u ∈ U1 r U0 and P is exponentially bounded and not bounded then
(U,P ) is s.e.d and it is not u.s.e.d. Hence s.e.d 6⇒ u.s.e.d;

(x) for u = u1 ∈ U1, with β = 2 /∈ [0, α) = [0, 1), we have that (U,P ) is
e.d with

lim
t→∞
‖U(t, s)P (s)x‖ = 0 and lim

t→∞
‖U(t, s)Q(s)x‖ =∞

for every x ∈ X with Q(s)x 6= 0. Thus, it results that the condition
β ∈ [0, α) is not necessary for the validity of Corollary 1.

Example 2. Let u, v : R+ → (0,∞) be two nondecreasing functions such
that there exist N ≥ 1, α > 0 and γ > 0 with the following properties:

Nu(t) ≥ eα(t−s)u(s) and v(t) ≥ eγt2

for all (t, s) ∈ ∆.
On X = l∞, the Banach space of bounded real-valued sequences endowed with
the sup-norm, we consider the family of projections P : R+ → B(X) defined
by P (s)x = y, where x = (x0, x1, . . . , xn, . . .) and y = (y0, y1, . . . , yn, . . .)
with

yn =

{
xn, n = 3k

0, otherwise
.
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The complementary family of P is given by Q(s)x = z = (z0, z1, . . . , zn, . . .)
with

zn =

{
0, n = 3k

xn, otherwise
.

Consider U : ∆ → B(X) defined by U(t, s)x = w = (w0, w1, . . . , wn, . . .),
where

wn =





u(s)
u(t)xn, n = 3k
u(t)
u(s)xn, n = 3k + 1
v(s)
v(t)xn, n = 3k + 2

It is easy to check that P is compatible with U . Moreover, for all (t, s, x) ∈ T
we have that

‖U(t, s)P (s)x‖ =
u(s)

u(t)
‖P (s)x‖ ≤ Ne−α(t−s)‖P (s)x‖ (1)

and

‖U(t, s)Q(s)x‖ = sup
n∈N

{
u(t)

u(s)
|x3n+1|,

v(s)

v(t)
|x3n+2|

}
≤

≤ max
n∈N

{
u(t)

u(s)
,
v(s)

v(t)

}
‖Q(s)x‖ =

u(t)

u(s)
‖Q(s)x‖. (2)

By choosing x′ = (x′0, x
′
1, . . . , x

′
n, . . .) with

x′n =

{
0, n = 3k

1, otherwise

we have that

‖U(t, s)Q(s)x′‖ =
u(t)

u(s)
‖Q(s)x′‖

hence

‖U(t, s)Q(s)‖ =
u(t)

u(s)
‖Q(s)‖ ≥ 1

N
eα(t−s)‖Q(s)‖. (3)

From relations (1) and (3) we have that the pair (U,P ) satisfies the
conditions (wed′1) and (wed′2) from Open Problem 2. Taking into account
that P is bounded, from (1) and (3) we get that for all (t, s) ∈ ∆,

‖U(t, s)P (s)‖ ≤ Ne−α(t−s) and ‖U(t, s)Q(s)‖ ≥ 1

N
eα(t−s) (4)
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hence the pair (U,P ) satisfies the conditions (sed′′1) and (sed′′2) from Propo-
sition 1.

On the other hand, for (t, s, x) ∈ T we have that

‖V (t, s)Q(t)x‖ = sup
n∈N

{
u(s)

u(t)
|x3n+1|,

v(t)

v(s)
|x3n+2|

}
. (5)

Assume by a contradiction that the pair (U,P ) is w.e.d. Then there exist
α > 0, β ≥ 0 and N ≥ 1 such that

‖V (t, s)Q(t)‖ ≤ Neβte−α(t−s)‖Q(t)‖ = Neβte−α(t−s). (6)

By choosing x0 = (0, 0, 1, 0, 0, 1, . . .) ∈ X with ‖Q(t)x0‖ = 1 we get from (5)
that for all (t, s) ∈ ∆,

‖V (t, s)Q(t)‖ ≥ v(t)

v(s)
. (7)

From (6) and (7), by taking s = 0, we obtain the contradiction

eγt
2 ≤ v(t) ≤ v(0)Ne(β−α)t, for all t ≥ 0.

Hence the pair (U,P ) is not w.e.d and by Theorem 3 it is not s.e.d.
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[25] I.-L. Popa, M. Megan, T. Ceauşu, Exponential dichotomies for lin-
ear difference systems in Banach spaces, Appl. Anal. Discrete Math.
6 (2012), 140− 155.
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1 Introduction

As it is commonly known by meteorologists (see eg [12]), the water
droplets in the atmosphere fall with different velocities, (mainly determined
by the mass of each droplet) and contemporarily undergo the coagulation
and fragmentation process. There are several works in the mathematical
description of these process we cite here a few. The coagulation process was
given by Smoluchowski [14] and Müller [11], the equation of the coagulation-
fragmentation process has been studied by Melzak [9]. When the equation
of droplets which move and undergo the coagulation process, in [7], Galkin
proved the existence and the uniqueness of the solution (see also [4], [8]).
Also, in 2001 Dubovskii [3], demonstrated the existence and the uniqueness
of the global solution of the displacement and coagulation-fragmentation
equation of the droplets. To construct the solution, Dubovskii similarly to
Galkin used an essential way ”the maximum principale” to control the norm
L∞ of the solution.

In this work, we consider the equation of droplets which fall in the air
and undergo the coagulation-fragmentation process as in Dubovskii’s work
[3]. But to construct the solution, instead of following the time t ≥ 0, we
follow the trajectories of droplets and their position z ≤ 0, which permit us
to remove a condition posed in [3] (it’s about the condition (33) in [3]) on

the velocity of droplets u(m) which can lead to the relation du(m)
dm ≥ cmα,

α > 0 (see in [3] the formula (38) and it’s comments). Indeed, it seems
that this condition can be difficult to achieve in the case of droplets in the
atmosphere. More precisely, denoting by σ(m, t, z) the density of liquid
water contained in the droplets of mass m at time t and in position z, we
consider the equation with the entry condition σ(m, t, 0) = σ0(m, t) and
prove the existence and the uniqueness of the local solution (i.e in a domain
−L < z ≤ 0). To do this, using the Melzak’s method [9], we construct
approximate solutions, consisting of analytic functions in s = −z in each
interval [ νN ,

ν+1
N ], ν = 0, 1, 2, · · · ; N ∈ N\{0}, and prove their convergence

to the solution of the equation.

The density σ(m, t, z) of water liquid is a density with respect to the unit
volume of the air containing possible droplets. The equation can be written
with respect to the number (in the purely statistical sense) ñ(m, t, z) of
droplets that Dubovskii and Galkin use in their works. We see clearly that
the density σ(m, t, z) and the number ñ(m, t, z) are connected by the relation

ñ(m, t, z) = σ(m,t,z)
m .

We will use the density σ(m, t, z) to be conform with the symbolism of
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[2], [10] and the known literature of general modeling of weather phenomena
([1], [5], [6], [13]).

2 Position of the problem

We suppose that the drops undergo the coagulation and the fragmenta-
tion process and in the same time move in the air by the gravitational force
while undergoing also the friction effect with surrounding air. In this situ-
ation, we can formulate the coagulation-fragmentation process as Melzak’s
equation ([9]) and the displacement of drops by a velocity given by the fric-
tion coefficient between the drops and the air, as the meteorologists com-
monly use it (see for example [12]). These considerations lead us to the
equation (see[1], [2], [10] , [13])

∂tσ(m, t, z) + ∂z(σ(m, t, z)u(m)) = (1)

=
m

2

∫ m

0
β(m−m′,m′)σ(m′, t, z)σ(m−m′, t, z)dm′+

−m
∫ ∞

0
β(m,m′)σ(m, t, z)σ(m′, t, z)dm′−m

2
σ(m, t, z)

∫ m

0
ϑ(m−m′,m′)dm′+

+m

∫ ∞

0
ϑ(m,m′)σ(m+m′, t, z)dm′,

where β(m1,m2) represents the probability of meeting between two drops of
mass m1,m2 respectively whereas ϑ(m1,m2) is the probability of fragmen-
tation of a droplet of mass m = m1 +m2 into one of mass m1 and another
one of mass m2. In addition, u(m) indicate the velocity of drops with mass
m. The equation (1) will be considered for (m, t, z) ∈ R+×R× [−L, 0] with
L > 0 or possibly in R+ × R× ]−∞, 0] and with the entry condition

σ(m, t, 0) = σ0(m, t). (2)

The functions β(m1,m2) and ϑ(m1,m2), according to their physical na-
ture, are supposed

β(·, ·) ∈ C(R+ × R+), β(m1,m2) ≥ 0 ∀(m1,m2) ∈ R+ × R+, (3)

ϑ(·, ·) ∈ C(R+ × R+), ϑ(m1,m2) ≥ 0 ∀(m1,m2) ∈ R+ × R+, (4)

β(m1,m2) = β(m2,m1), ϑ(m1,m2) = ϑ(m2,m1)
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and we admit that u(m) is given by

u(m) = − g

α(m)
, (5)

where g is a positive constant representing the gravitational acceleration
and α(m) is the friction coefficient between drops and air. The relation (5)
corresponds, in a good approximation, to the real velocity of drops in the
atmosphere (see for example [1], [13]).

For the convenience of presentation, we will use the notation

w(m) := −u(m), (6)

so that w(m) > 0 for all m > 0. For w(m) we suppose that:

w(·) ∈ C(R+), 0 < w(m1) ≤ w(m2) si 0 < m1 ≤ m2; (7)

the growth of the function w(m) corresponds to the phenomena observed in
nature (see for example [12]).

Moreover, we suppose that there exists a positive constant C0 <∞ such
that:

sup
m∈R+,m′∈[0,m]

m

w(m)
β(m−m′,m′) ≤ C0, (8)

sup
m,m′∈R+

m

w(m)
β(m,m′) ≤ C0, (9)

sup
m∈R+

m

w(m)

∫ m

0
ϑ(m−m′,m′)dm′ ≤ C0, (10)

sup
m∈R+

∫ m

0

m′

w(m′)
ϑ(m−m′,m′)dm′ ≤ C0, (11)

sup
m,m′∈R+

m

w(m)
ϑ(m,m′) ≤ C0. (12)

It is clear that, if m
w(m) is an increasing function of m, then the conditions

(8) and (10) imply (9) and (11). The conditions on the function σ0(m, t)
will be specified in the following paragraphs (see (23), (71)-(72)).
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3 Preliminaries - characteristics and description
on them

To solve the equation (1) with conditions (2), firstly we define the family
of characteristics χm,t̃ by the equations system

{
dz(s)
ds = −1,
dt(s)
ds = 1

w(m) ,
(13)

with the initial conditions

z(0) = 0, t(0) = t̃. (14)

The characteristics χm,t̃ as defined have, in the space R× ] − ∞, 0], the
expression:

χm,t̃ = {(t, z) ∈ R× ]−∞, 0] | t = t̃+
s

w(m)
, z = −s, s ∈ [0,∞[ }.

In the following, we will use the coordinates (m, t̃, s) ∈ R+ × R × R+ and
σ(m, t̃, s) instead of σ(m, t, z) ∈ R+ × R× ] − ∞, 0] and σ(m, t, z) when
t = t̃+ s

w(m) and z = −s.
Now we introduce, for each fixed s ≥ 0, the curves family given by:

γqs = {(m, t̃) ∈ R+ × R | t̃ = q − s

w(m)
}, q ∈ R. (15)

The curve γqs is none other than the set of points (m, t̃) (on the half-plane
{z = −s}) such as the characteristics χm,t̃ passes by the point t = q, z = −s
on the plan (t, z).

In a similar way to [10] and [2] we define a measure µγ = µγqs on the
curves γqs by PR+ the projection of γqs on R+(3 m), i.e. by the relations:

i) A′ ⊂ γqs is measurable if and only if PR+A
′ is measurable according to

Lebesgue on R+,

ii) µγ(A′) = µL,R+(PR+A
′), where µL,R+(·) is the Lebesgue’s measure on

R+.

The measure µγqs(·) enjoys a suitable properties for the calculus of inte-
grals on the curves γqs (for more details, see [10]).

In particular, we recall that, if ϕ and ψ are two functions belonging to
L1(γqs, µγqs), then we have ϕ ∗ ψ ∈ L1(γqs, µγqs) and

‖ϕ ∗ ψ‖L1(γqs,µγqs )
≤ ‖ϕ‖L1(γqs,µγqs )

‖ψ‖L1(γqs,µγqs )
, (16)
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where

(ϕ ∗ ψ)(m) =

∫

γqs

ϕ(m−m′)ψ(m′)µγqs(dm
′).

Let ϕ(·, ·) be a measurable function defined on R+ × R. We put

{ϕ}qs(m) = ϕ(m, q − s

w(m)
), (17)

which represents the values of ϕ(m, t̃) on the curve γqs expressed according
to m. Moreover, γqs(m,t̃) designate the curve γqs with q = t̃ + s

w(m) . It is

clear that, the curve γqs(m,t̃) passes by the point (m, t̃, s) and that

γqs(m,t̃) = {(m′, t̃′) ∈ R+ × R | t̃′ = t̃+
s

w(m)
− s

w(m′)
}. (18)

Let γ
[0,m]

qs(m,t̃)
be defined as:

γ
[0,m]

qs(m,t̃)
= γqs(m,t̃) ∩ ([0,m]× R).

Now, we define the operators Kγqs [ϕ,ψ] and Lγqs [ϕ] as follows:

Kγqs [ϕ,ψ](m, t̃) =
1

2

∫

γ
[0,m]

qs(m,t̃)

β(m−m′,m′){ϕ}qs(m−m′){ψ}qs(m′)µγ(dm′)+

(19)

−1

2
ϕ(m, t̃)

∫

γqs(m,t̃)

β(m,m′){ψ}qs(m′)µγ(dm′)+

−1

2
ψ(m, t̃)

∫

γqs(m,t̃)

β(m,m′){ϕ}qs(m′)µγ(dm′),

Lγqs [ϕ](m, t̃) = −1

2
ϕ(m, t̃)

∫

γ
[0,m]

qs(m,t̃)

ϑ(m−m′,m′)µγ(dm′)+ (20)

+

∫

γqs(m,t̃)

ϑ(m,m′){ϕ}qs(m+m′)µγ(dm′),

provided that all the integrals in the right sides are well defined. From
these relations, it results that Kγqs [ϕ,ψ] is a symmetric, bilinear operator
and Lγqs [ϕ] is a linear operator. If ϕ(m, t̃) and ψ(m, t̃) are continuous,
Kγqs [ϕ,ψ](m, t̃) and Lγqs [ϕ](m, t̃) are too .



The coagulation-fragmentation equation 233

The operators Kγqs [·, ·] and Lγqs [·] being defined, we can transform the
equation (1) to

∂

∂s
σ(m, t̃, s) =

m

w(m)

(
Kγqs [σ(·, ·, s), σ(·, ·, s)](m, t̃) + Lγqs [σ(·, ·, s)](m, t̃)

)
,

(21)
in the coordinates (m, t̃, s) defined above. The equation (21) will be consid-
ered with the condition

σ(m, t̃, 0) = σ0(m, t̃), (22)

which is the transcription of the condition (2) in the coordinates (m, t̃, s).
We suppose that σ0(m, t̃) is continuous in (m, t̃) ∈ R+ × R and that

0 ≤ σ0(m, t̃), sup
(m,t̃)∈R+×R

σ0(m, t̃) <∞, sup
t̃∈R

∫ ∞

0
σ0(m, t̃)dm <∞.

(23)
In the case where σ0(m, t̃) depends on t̃, we need to construct a sequence

of approximate solutions. Indeed, for each N ∈ N\{0}, we introduce the par-
tition of R+ into [ νN ,

ν+1
N [, ν = 0, 1, 2, · · · , and we consider the approximate

equation

∂

∂s
σ(m, t̃, s) =

m

w(m)

(
Kγq sν [σ(·, ·, s), σ(·, ·, s)](m, t̃) + Lγq sν [σ(·, ·, s)](m, t̃)

)

(24)
for

sν =
ν

N
≤ s < ν + 1

N
, ν = 0, 1, 2, · · · .

Remark 1. In [ νN ,
ν+1
N [ the curves family {γq sν}q∈R is fixed and does not

depend on s. By solving (24) for 0 ≤ s < 1
N with the condition (22) and

using, if possible, σ(m, t̃, 1
N ) as entry condition of the equation (24) for 1

N ≤
s < 2

N , we will be solving it in [ 1
N ,

2
N [ ; by repeating this procedure for ν =

0, 1, 2, · · · , we construct the approximate solution σ(m, t̃, s) = σ[N ](m, t̃, s).

Before examining the equation (21) or (24), we recall the inequalities
concerning the operators Kγqs [·, ·] and Lγqs [·].
Lemma 1. For all s ≥ 0, we have

sup
(m,t̃)∈R+×R

m

w(m)
|Kγqs [ϕ,ψ](m, t̃)| ≤ (25)

≤ 3C0

4

[
sup

(m,t̃)∈R+×R
|ϕ(m, t̃)|

∫

γqs(m,t̃)

|{ψ}qs(m)|µγ(dm)+
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+ sup
(m,t̃)∈R+×R

|ψ(m, t̃)|
∫

γqs(m,t̃)

|{ϕ}qs(m)|µγ(dm)
]
,

sup
q∈R

∫

γqs

m

w(m)
|{Kγqs [ϕ,ψ]}qs(m)|µγ(dm) ≤ (26)

≤ 3C0

2
sup
q∈R

∫

γqs

|{ϕ}qs(m)|µγ(dm)

∫

γqs

|{ψ}qs(m)|µγ(dm),

sup
(m,t̃)∈R+×R

m

w(m)
|Lγqs [ϕ](m, t̃)| ≤ (27)

≤ C0

[1

2
sup

(m,t̃)∈R+×R
|ϕ(m, t̃)|+ sup

q∈R

∫

γqs

|{ϕ}qs(m)|µγ(dm)
]
,

sup
q∈R

∫

γqs

m

w(m)
|{Lγqs [ϕ]}qs(m)|µγ(dm) ≤ (28)

≤ 3C0

2
sup
q∈R

∫

γqs

|{ϕ}qs(m)|µγ(dm).

Proof. The inequalities (25) and (27) result immediately from the
definition (19) and (20) of operators Kγqs [·, ·] and Lγqs [·] and the conditions
(8)-(10), (12). On the other hand, the inequality (26) results from relations
(19), (8), (9) and the property of the convolution (16).

Last, let’s use the change of variables m′′ = m+m′. Hence, for any fixed
arbitrary curve γqs, we have:

∫

γqs

m

w(m)

∫

γqs

ϑ(m,m′){ϕ}qs(m+m′)µγ(dm′)µγ(dm) = (29)

=

∫

γqs

∫

γ
[0,m′′]
qs

m′′ −m′
w(m′′ −m′)ϑ(m′′ −m′,m′)µγ(dm′){ϕ}qs(m′′)µγ(dm′′).

Thus, taking into account the conditions (11), (12), we deduce from the
definition (20) of the operator Lγqs [·] the inequality (28). �

4 Local solution of the approximate equation

In this paragraph and in the following one, we consider the equation (24)

∂

∂s
σ(m, t̃, s) =

m

w(m)

(
Kγq sν [σ(·, ·, s), σ(·, ·, s)](m, t̃) + Lγq sν [σ(·, ·, s)](m, t̃)

)
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for s ≥ sν = ν
N with the condition

σ(m, t̃,
ν

N
) = σν(m, t̃),

by considering σν(m, t̃) as a given function.
As the curves γq sν depend only on q, we use the simplified notation for

this problem

γq = γq sν , γq(m,t̃) = γq sν(m,t̃), {ϕ}q = {ϕ}q sν . (30)

It would be enough to consider the equation in the interval [ νN ,
ν+1
N [ ,

but it will be more convenient to consider it in the interval [ νN ,∞[ . Still to
simplify the writing, we use the change of variables s′ = s− ν

N , to get [0,∞[
and we write s instead of s′. by these writing conventions, we can write the
problem in the form

∂

∂s
σ(m, t̃, s) =

m

w(m)

(
Kγq [σ(·, ·, s), σ(·, ·, s)](m, t̃) + Lγq [σ(·, ·, s)](m, t̃)

)
,

(31)
σ(m, t̃, 0) = σν(m, t̃). (32)

Consider the integrate form of the latter equation:

σ(m, t̃, s) = σν(m, t̃) +

∫ s

0

m

w(m)

(
Kγq [σ(·, ·, s′), σ(·, ·, s′)](m, t̃)

+ Lγq [σ(·, ·, s′)](m, t̃)
)
ds′.

We suppose that for each (m, t̃) ∈ R+×R the function σ(m, t̃, s) is analytic
in s, i.e. there exist the functions ak(m, t̃), k ∈ N, such as

σ(m, t̃, s) =
∞∑

k=0

ak(m, t̃)s
k. (33)

Thus,

∂

∂s
σ(m, t̃, s) =

∞∑

k=0

(k + 1)ak+1(m, t̃)s
k.

We recall the definitions (19), (20), and by equalizing the terms having the
same power of s, we deduce from the equality (31) that

ak+1(m, t̃) =
m

w(m)

1

k + 1

( ∑

i+j=k

Kγq [ai, aj ](m, t̃) + Lγq [ak](m, t̃)
)

(34)

for k = 0, 1, 2, · · · .
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Lemma 2. We suppose that β(·, ·), ϑ(·, ·) and w(·) satisfy the conditions
mentioned in paragraph 2, and that σν(m, t̃) is continuous in (m, t̃) ∈ R+×R
and satisfy the conditions

sup
q∈R

∫

γq

{σν}q(m)µγ(dm) ≡ A0 <∞, (35)

sup
(m,t̃)∈R+×R

σν(m, t̃) ≡ B0 <∞. (36)

Then, there exists a positive constant C0 < ∞ such as the power-series of
the second member of (33) converges in the interval [0, 1

M [ , where

M = C0

(3

2
(A0 + 1) +

A0

B0

)
. (37)

Proof. We put

Ak = sup
q∈R

∫

γq

|{ak}q(m)|µγ(dm), Bk = sup
(m,t̃)∈R+×R

|ak(m, t̃)|. (38)

We recall that, according to (32), the values of A0 and B0 given by (35) and
(36) coincide with those given by (38).

By (26), (28) and (34) we have
∫

γq

|{ak+1}q(m)|µγ(dm) ≤

≤ 1

k + 1

∫

γq

m

w(m)

( ∑

i+j=k

|{Kγq [ai, aj ]}q(m)|+ |{Lγq [ak]}q(m)|
)
µγ(dm) ≤

≤ 1

k + 1

3C0

2

( ∑

i+j=k

∫

γq

|{ai}q(m)|µγ(dm)

∫

γq

|{aj}q(m)|µγ(dm)+

+

∫

γq

|{ak}q(m)|µγ(dm)
)
.

We deduce that

Ak+1 ≤
1

k + 1

3C0

2

( ∑

i+j=k

AiAj +Ak

)
. (39)

On the other hand, according to (25), (27), (34), we obtain

Bk+1 ≤
C0

k + 1

(3

2

∑

i+j=k

AiBj +
1

2
Bk +Ak

)
. (40)
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Now, we will prove by induction that the inequalities

Ak ≤ A0M
k, Bk ≤ B0M

k ∀ k ∈ N, (41)

hold, where M is defined in (37).

For k = 0 the inequalities (41) hold. Moreover, we suppose that they
are verified for every k ≤ n, and substitue the estimates of Ak and Bk in
(39) and (40) respectively, we get:

Ak+1 ≤
1

k + 1

3C0

2
A0M

k((k + 1)A0 + 1),

Bk+1 ≤
C0

k + 1
B0M

k
(3

2
(k + 1)A0 +

1

2
+
A0

B0

)
,

which means that

An+1 ≤ A0M
n+1, Bn+1 ≤ B0M

n+1.

We conclude that the relation (41) is satisfied for every k.

The proved inequalities (41) imply that

∞∑

k=0

|ak(m, t̃)|sk ≤
∞∑

k=0

B0M
ksk ∀ (m, t̃) ∈ R+ × R,

which means that, if Ms < 1, then the formal power-series of the second
member of (33) converges absolutely. �

Lemma 3. Let σ(m, t̃, s) be the solution of the problem (31)-(32) constructed
in lemma 2. Then for 0 ≤ s < 1

M we have:

|σ(m, t̃, s)| ≤ B0

1−Ms
, sup

q∈R

∫

γq

|{σ(·, ·, s)}q(m)|µγ(dm) ≤ A0

1−Ms
,

∣∣∣∂σ(m, t̃, s)

∂s

∣∣∣ ≤ B0M

(1−Ms)2
, sup

q∈R

∫

γq

∣∣∣
{∂σ(·, ·, s)

∂s

}
q
(m)

∣∣∣µγ(dm)≤ A0M

(1−Ms)2
,

∣∣∣∂
2σ(m, t̃, s)

∂s2

∣∣∣ ≤ 2B0M
2

(1−Ms)3
, sup
q∈R

∫

γq

∣∣∣
{∂2σ(·, ·, s)

∂s2
}
q
(m)

∣∣∣µγ(dm)≤ 2A0M
2

(1−Ms)3
.

Proof. These inequalities result from (33), (38), (41) and elementary
calculus. �
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Lemma 4. Let σ(m, t̃, s) be the solution of the problem (31)-(32) constructed
in lemma 2. If

σν(m, t̃) ≥ 0 ∀(m, t̃) ∈ R+ × R, (42)

then we have

σ(m, t̃, s) ≥ 0 for 0 ≤ s < 1

M
.

Proof. The lemma is proved in a similar way to Lemma 2 of [9]. Indeed,
we choose a number τ ∈ ]0, 1

M [; in the following (see (52)) we will impose
a further restriction on τ . We will construct an approximation Gn(m, t̃, s)
(n ∈ N) of σ(m, t̃, s) in the interval 0 ≤ s < τ , putting

Gn(m, t̃, s) = gk n(m, t̃) for
kτ

n
≤ s < (k + 1)τ

n
, k = 0, 1, · · · , n− 1,

(43)
g0n(m, t̃) = σ(m, t̃, 0) = σν(m, t̃), (44)

gk+1n(m, t̃) = gk n(m, t̃) +
τ

n

m

w(m)

(
Kγq [gk n, gk n](m, t̃) + Lγq [gk n](m, t̃)

)
.

(45)
We put

Tk n = sup
q∈R

∫

γq

|{gk n}q(m)|µγ(dm), Lk n = sup
(m,t̃)∈R+×R

|gk n(m, t̃)|, (46)

from (35)-(36) we have

T0n = A0, L0n = B0.

On the other hand, according to (45) and the inequalities (25)-(28) we have

Tk+1n ≤
(
1 +

τ

n

3C0

2

)
Tk n +

τ

n

3C0

2
T 2
k n,

Lk+1n ≤
(
1 +

τ

n

C0

2

)
Lk n +

τ

n

3C0

2
Lk nTk n +

τ

n
C0Tk n.

In particular, if we put

Λk n = max(Tk n, Lk n), (47)

we get
Λ0n = max(A0, B0), (48)

Λk+1n ≤
(
1 +

τ

n

3C0

2

)
Λk n +

τ

n

3C0

2
Λ2
k n. (49)
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Let

a = 1 +
τ

n

3C0

2
, λk n =

1

a

τ

n

3C0

2
Λk n, (50)

so, we have
λk+1n ≤ aλk n(1 + λk n),

or, if we define the function h(x) = ax(1 + x),

λk+1n ≤ h(λk n),

and, in the following,

λk n ≤ h(k)(λ0n) ≤ h(n)(λ0n).

Now, it is not difficult to see, by induction on k = 1, 2, . . . that

0 < h(k)(x) ≤ akx

1− ak−1
a−1 x

, k = 1, 2, . . .

provided that ak−1
a−1 x < 1. So we have

λk n ≤
anλ0n

1− an−1
a−1 λ0n

, k = 0, 1, · · · , n,

provided that an−1
a−1 λ0n < 1. As

an =
(
1 +

τ

n

3C0

2

)n ≤ e
3τC0

2 ,

returning to the expression of Λk n (see (50)) and taking into account (47)-
(48) and from the expression of a (see (50)), we have

max(Tk n, Lk n) ≤ e
3τC0

2 max(A0, B0)

1− (e
3τC0

2 − 1) max(A0, B0)
, (51)

provided that

τ <
2

3C0
log
(
1 +

1

max(A0, B0)

)
, (52)

we also note that (52) ensures the condition an−1
a−1 λ0n < 1.

The inequality (51) (see also (46)) implies that the functions gk n(m, t̃) are
bounded and integrable on all the curves γq. Furthermore, if we recall the
formulas (44)-(45) which defined the functions gk n(m, t̃), we can see that
they are continuous in (m, t̃) ∈ R+ × R.
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On the other hand, recalling the explicit expressions of the operators
Kγq [·, ·] and Lγq [·] (see (19)-(20)), the definition of functions gk n(m, t̃) (see
(44)-(45)) and the conditions (3)-(4), imply that, if gk n(m, t̃) ≥ 0, ∀(m, t̃) ∈
R+ × R, then

gk+1n(m, t̃) ≥ gk n(m, t̃)
(

1− τ

n

m

w(m)

[ ∫

γq(m,t̃)

β(m,m′){gk n}q(m′)µγ(dm′)+

+
1

2

∫

γ
[0,m]

q(m,t̃)

ϑ(m−m′,m′)µγ(dm′)
])
.

Taking into account the relations (9), (10), (46) and (51), we see that, if n
is sufficiently large, then gk+1n(m, t̃) ≥ 0, which means that gk n(m, t̃) ≥ 0,
∀(m, t̃) ∈ R+ × R, ∀k = 0, 1, · · · , n, in other terms if n is sufficiently large
then

Gn(m, t̃, s) ≥ 0 ∀(m, t̃, s) ∈ R+ × R× [0, τ ]. (53)

Now we examine the difference

σ(m, t̃, s)−Gn(m, t̃, s)

in the interval [0, τ ]. For this, we pose

αk = sup
q∈R, kτ

n
≤s≤ (k+1)τ

n

∫

γq

|{σ(·, ·, s)−Gn(·, ·, s)}q(m)|µγ(dm) = (54)

= sup
q∈R, kτ

n
≤s≤ (k+1)τ

n

∫

γq

|{σ(·, ·, s)− gk n}q(m)|µγ(dm),

βk = sup
(m,t̃)∈R+×R, kτn ≤s≤

(k+1)τ
n

|σ(m, t̃, s)−Gn(m, t̃, s)| = (55)

= sup
(m,t̃)∈R+×R, kτn ≤s≤

(k+1)τ
n

|σ(m, t̃, s)− gk n(m, t̃)|.

Substituting (45) in the difference σ(m, t̃, s)− gk n(m, t̃), and by adding
0 = −σ(m, t̃, s− τ

n) + σ(m, t̃, s− τ
n), we have

σ(m, t̃, s)−gk n(m, t̃) = σ(m, t̃, s)−σ(m, t̃, s− τ
n

)+σ(m, t̃, s− τ
n

)−gk−1n(m, t̃)+

(56)

− τ
n

m

w(m)

(
Kγq [gk−1n, gk−1n](m, t̃) + Lγq [gk−1n](m, t̃)

)
.
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As

σ(m, t̃, s)− σ(m, t̃, s− τ

n
) =

τ

n

∂σ(m, t̃, s− τ
n)

∂s
+

1

2

τ2

n2
∂2σ(m, t̃, s− δ1)

∂s2

with 0 ≤ δ1 ≤ τ
n .

By substituting the expression (31) and using the symmetric propriety
of Kγq [ϕ,ψ] (see (19)) and the linearity of the operator Lγq [ϕ] (see (20)), by
(56) we deduce that

|σ(m, t̃, s)− gk n(m, t̃)| ≤ |σ(m, t̃, s− τ

n
)− gk−1n(m, t̃)|+ (57)

+
τ

n

m

w(m)
|Kγq [σ(·, ·, s− τ

n
) + gk−1n, σ(·, ·, s− τ

n
)− gk−1n](m, t̃)|+

+
τ

n

m

w(m)
|Lγq [σ(·, ·, s− τ

n
)− gk−1n](m, t̃)|+ 1

2

τ2

n2
∣∣∂

2σ(m, t̃, s− δ1)
∂s2

∣∣.

As 0 ≤ s ≤ τ , according to Lemma 3 and from (51) (see also (46)) the
terms

∫

γq

|{σ(·, ·, s− τ
n

)+gk−1n}q(m)|µγ(dm),
1

2

∫

γq

∣∣
{∂2σ(·, ·, s− δ1)

∂s2

}
q
(m)

∣∣µγ(dm)

are uniformly bounded by some constant, that we denote by C1, and ac-
cording to (26), (28) (see also (54)), we deduce from (57) that

αk ≤
(
1 +

τ

n

3C0

2
(1 + C1)

)
αk−1 +

τ2

n2
C1. (58)

In a similar way, majoring the terms

|σ(m, t̃, s− τ

n
) + gk−1n(m, t̃)|, 1

2

∣∣∂
2σ(m, t̃, s− δ1)

∂s2
∣∣

through a constant, that we denote by C2, and taking into account (25),
(27) (see also (55)), we have

βk ≤
(
1 +

τ

n
C0

(3C1

4
+

1

2

))
βk−1 +

τ

n
C0(

3C2

4
+ 1)αk−1 +

τ2

n2
C2. (59)

If we put

ζk = max(αk, βk), C3 = max(C1, C2), (60)
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then from (58)-(59) we deduce that

ζk ≤
(
1 +

τ

n

3C0

2
(1 + C3)

)
ζk−1 +

τ2

n2
C3. (61)

By repeating the application of the inequality (61), we obtain

max
k=1,··· ,n−1

ζk ≤
(
1+

τ

n

3C0

2
(1+C3)

)n−1
ζ0 +

τ2

n2
C3

n−2∑

k=0

(
1+

τ

n

3C0

2
(1+C3)

)k ≤

(62)

≤ eτ
3C0
2

(1+C3) max(α0, β0) +
τ

n
C3
eτ

3C0
2

(1+C3) − 1
3C0
2 (1 + C3)

.

As for α0 and β0, from (44), (54), (55) we deduce that

α0 ≤
τ

n
sup

q∈R,0≤s≤ τ
n

∫

γq

∣∣{∂σ(·, ·, s)
∂s

}
q
(m)

∣∣µγ(dm),

β0 ≤
τ

n
sup

(m,t̃)∈R+×R,0≤s≤ τn

∣∣∂σ(m, t̃, s)

∂s

∣∣.

Therefore, according to lemma 3 there is a constant C4 such as

max(α0, β0) ≤ C4
τ

n
,

that enables us to deduce from (62),

max
k=0,1,··· ,n−1

[
max(αk, βk)

]
≤ τ

n

[
eτ

3C0
2

(1+C3)C4 + C3
eτ

3C0
2

(1+C3) − 1
3C0
2 (1 + C3)

]
. (63)

Recalling (55), we see that (63) implies that, for 0 ≤ s ≤ τ , Gn(m, t̃, s)
converges uniformly to σ(m, t̃, s) . Therefore, according to (53), we have
σ(m, t̃, s) ≥ 0 ∀(m, t̃, s) ∈ R+ × R× [0, τ ].

The non-negativity of σ(m, t̃, s) in [0, τ ] being proved, we construct
[τ1, τ2] (we take τ1 = 0, τ2 = τ) and, by repeating the procedure, to get
the successive intervals [τn, τn+1], n = 1, 2, · · · . In a similar way to (52),
which gives the restriction of the choice of τ , we can take τn+1 such that

τn+1 − τn <
2

3C0
log
(
1 +

1

max(A
[n]
0 , B

[n]
0 )

)
,
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where

A
[n]
0 = sup

q∈R

∫

γq

|{σ(·, ·, τn)}q(m)|µγ(dm), B
[n]
0 = sup

(m,t̃)∈R+×R
|σ(m, t̃, τn)|.

The previous Lemma 3 implies that we can construct a sequence of intervals
[τn, τn+1], n = 0, 1, · · · , such that

[0,
1

M
[ ⊂

⋃

n∈N
[τn, τn+1],

which completes the proof of Lemma.
To summarize things up, we proved the existence of a solution in the

interval [0, 1
M [, solution which is analytic in s, non-negative, continuous,

bounded and integrable on each γq = γq sν , q ∈ R.

5 Global solution of the approximate equation

Being established the existence of a local solution, now we will prove
that we can extend it on the interval [0,∞[ .

Proposition 1. Under the conditions of the lemma 2 and 4 the problem
(31)-(32) admits, in the interval [0,∞[ , a solution σ(m, t̃, s), which is ana-
lytic in s, continuous, non-negative and integrable on each curve γq = γq sν .

Proof. the proposition 1 is proved in a similar way to lemma 3 of
[9]. More precisely, the first interval is considered [0, D1] with D1 = 1

2M ,

M = C0

(
3
2(A0+1)+A0

B0

)
(see (37)), then successively the intervals [Dn, Dn+1]

with

Dn+1 −Dn =
1

C0(3(A(Dn) + 1) + 2A(Dn)B(Dn)
)
, (64)

where

A(s) = sup
q∈R

∫

γq

|{σ(·, ·, s)}q(m)|µγ(dm), B(s) = sup
(m,t̃)∈R+×R

|σ(m, t̃, s)|.

The lemmas 2, 3 and 4, reformulated with the initial data σ(m, t̃,Dn), give
the solution in the interval [Dn, Dn+1].

We return to equation (31) and integrate it on γq. To examine the term∫
γq

m
w(m){(Kγq [σ(·, ·, s), σ(·, ·, s)]}q(m)µγ(dm) (recall the expression (19)), we

note that
∫

γq

1

2

m

w(m)

∫

γ
[0,m]
q

β(m−m′,m′){σ(·, ·, s)}q(m−m′){σ(·, ·, s)}q(m′)
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µγ(dm′)µγ(dm) =

=

∫

γq

∫

γq

1

2

m+m′

w(m+m′)
β(m,m′){σ(·, ·, s)}q(m){σ(·, ·, s)}q(m′)µγ(dm)µγ(dm′).

Therefore, according to the symmetry of the function β(m,m′), the condi-
tion (7), and the non-negativity of σ(m, t̃, s) , we have
∫

γq

m

w(m)

{
Kγq [σ(·, ·, s), σ(·, ·, s)]

}
q
(m)µγ(dm)=

∫

γq

∫

γq

( m

w(m+m′)
− m

w(m)

)
×

×β(m,m′){σ(·, ·, s)}q(m){σ(·, ·, s)}q(m′)µγ(dm′)µγ(dm) ≤ 0.

On one hand, similarly to the proof of (28) (see in particular (29)), and
taking account the sign of each term, we deduce from the expression of (20)
that∫

γq

m

w(m)

{
Lγq [σ(·, ·, s)]

}
q
(m)µγ(dm) ≤ C0

∫

γq

{σ(·, ·, s)}q(m)µγ(dm).

Using these inequalities, from the integral form of (31), we obtain

A(s) = sup
q∈R

∫

γq

{σ(·, ·, s)}q(m)µγ(dm) ≤

≤ sup
q∈R

∫

γq

{σ(·, ·, 0)}q(m)µγ(dm) + C0

∫ s

0
sup
q∈R

∫

γq

{σ(·, ·, s′)}q(m)µγ(dm)ds′,

from where it results that

A(s) ≤ A(0)eC0s. (65)

On the other hand, according to (19), (20) and from the non-negativity
of σ(m, t̃, s), we deduce from (31) that

∂

∂s
σ(m, t̃, s) ≥ −σ(m, t̃, s)

[ ∫

γq

m

w(m)
β(m,m′){σ(·, ·, s)}q(m′)µγ(dm′)+

+
1

2

∫

γ
[0,m]
q

m

w(m)
ϑ(m−m′,m′)µγ(dm′)

]
,

from where, according to conditions (9), (10), we obtain

B(s) ≥ B(0)− C0

∫ s

0
B(s′)(A(s′) +

1

2
)ds′,

therefore
B(s) ≥ B(0)e−C0

∫ s
0 (A(s

′)+ 1
2
)ds′ . (66)

The relations (64)-(66) implies that the sequence {Dn}∞n=0 can’t converge
to a finite value, i.e. it is necessary that limn→∞Dn =∞. �
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Proposition 2. Under the same hypothesis of the proposition 1, the solution
of the problem (31)-(32) is unique in the class Φ which satisfy the conditions:

i) ϕ(m, t̃, s) is continuous in R+ × R× R+,

ii) ϕ(m, t̃, s) is integrable on each curve γq (q ∈ R),

iii) for all s1 ∈ [0,∞[, we have supq∈R,s∈[0,s1]
∫
γq
|{ϕ(·, ·, s}q(m)|µγ(dm) <

∞.
Proof. Let ϕ1 and ϕ2 two solutions of the problem (31)-(32) belonging

to the class Φ. As ϕ1(m, t̃, 0) − ϕ2(m, t̃, 0) = 0, using the symmetry of the
operator Kγq [ϕ,ψ] and the linearity of Lγq [ϕ], we have

ϕ1(m, t̃, s)− ϕ2(m, t̃, s) =

=

∫ s

0

m

w(m)
(Kγq [ϕ1(·, ·, s′) + ϕ2(·, ·, s′), ϕ1(·, ·, s′)− ϕ2(·, ·, s′)]+

+Lγq [ϕ1(·, ·, s)− ϕ2(·, ·, s)])ds′.
Therefore, from (26) and (28) we have

∫

γq

|ϕ1(m, t̃, s)− ϕ2(m, t̃, s)| ≤ (67)

≤ 3C0

2

∫ s

0
sup
q∈R

∫

γq

|{ϕ1(·, ·, s′) + ϕ2(·, ·, s′)}q(m)|µγ(dm)×

× sup
q∈R

∫

γq

|{ϕ1(·, ·, s′)− ϕ2(·, ·, s′)}q(m)|µγ(dm)ds′+

+
3C0

2

∫ s

0
sup
q∈R

∫

γq

|{ϕ1(·, ·, s′)− ϕ2(·, ·, s′)}q(m)|µγ(dm)ds′.

We choose s1 such that s1 < ∞. Hence, according to the condition iii) we
have

sup
q∈R,s∈[0,s1]

∫

γq

|{ϕ1(·, ·, s′) + ϕ2(·, ·, s′)}q(m)|µγ(dm) ≡M1 <∞. (68)

Therefore, if we put

g(s) = sup
q∈R

∫

γq

|{ϕ1(·, ·, s)− ϕ2(·, ·, s)}q(m)|µγ(dm),

then it results from (67) that

g(s) ≤ 3C0

2
(M1 + 1)

∫ s

0
g(s′)ds′,
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which implies that
g(s) = 0 ∀s ∈ [0, s1].

Or, from iii), to have the relation (68), we can choose any s1 <∞ (even if
M1 can be different, but always M1 < ∞), so that, by repeating the same
reasoning, we can prove g(s) = 0 for all s ∈ R+, which completes the proof.
�

6 Estimates of the approximate solutions

We note that, if σν(m, t̃) is continuous in (m, t̃) and satisfies the con-
ditions (35), (36) and (42), then from the propositions 1 and 2, there ex-
ists a unique solution σ(m, t̃, s) of the problem (31)-(32) for ν

N ≤ s < ∞
(here we return to the initial formulation of the variable s). Let’s put
σν+1(m, t̃) = σ(m, t̃, ν+1

N ), it satisfies the conditions (35), (36) and (42),
and it is continuous in (m, t̃) so that we can repeat the resolution of the
equation for ν+1

N ≤ s, with the entry condition σν+1(m, t̃) = σ(m, t̃, ν+1
N ).

Thus, by iterating this procedure on the intervals [ νN ,
ν+1
N ] for ν = 0, 1, 2, · · · ,

we construct on R+×R×R+ the solution of the equation (24) with the entry
condition (22); we indicate this solution by σ[N ](m, t̃, s). It is useful to recall
that this last solution is bounded, continuous in (m, t̃, s) and non-negative.

To solve the problem (21)-(22) in the field R+×R× [0, s] with s > 0, we
suppose that w(m) satisfies the additional condition

0 <
1

w(m)
≤ sup

m∈R+

1

w(m)
≡ Cw <∞ (69)

and that σ0(m, t̃) satisfies the condition (23), and the following ones
∫ ∞

0
sup
t̃∈R

σ0(m, t̃)dm ≡ ω0 <∞, (70)

sup
m∈R+,t̃1,t̃2∈R,t̃1 6=t̃2

|σ0(m, t̃1)− σ0(m, t̃2)|
|t̃1 − t̃2|

≡ λ0 <∞, (71)

∫ ∞

0
sup

t̃1,t̃2∈R,t̃1 6=t̃2

|σ0(m, t̃1)− σ0(m, t̃2)|
|t̃1 − t̃2|

dm ≡ J0 <∞. (72)

In this paragraph, we are interested by some estimates for the values of
ω[N ](s), ψ[N ](s), J [N ](s) and λ[N ](s) defined by:

ω[N ](s) =

∫ ∞

0
u[N ](m, s)dm, u[N ](m, s) = sup

t̃∈R
σ[N ](m, t̃, s), (73)
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ψ[N ](s) = sup
(m,t̃)∈R+×R

σ[N ](m, t̃, s) = sup
m∈R+

u[N ](m, s), (74)

J [N ](s) =

∫ ∞

0
j[N ](m, s)dm, (75)

j[N ](m, s) = sup
t̃1,t̃2∈R,t̃1 6=t̃2

|σ[N ](m, t̃1, s)− σ[N ](m, t̃2, s)|
|t̃1 − t̃2|

,

λ[N ](s) = sup
m∈R+,t̃1,t̃2∈R,t̃1 6=t̃2

|σ[N ](m, t̃1, s)− σ[N ](m, t̃2, s)|
|t̃1 − t̃2|

= sup
m∈R+

j[N ](m, s).

(76)

Lemma 5. For all N ∈ N\{0}, we have

ω[N ](s) ≤ ω(s), ∀s ∈ [0, S1[, (77)

where

ω(s) =
1

( 1
ω0

+ 1
2)e−C0s − 1

2

, S1 =
1

C0
log
( 2

ω0
+ 1
)
. (78)

Proof. As σ[N ](m, t̃, s) ≥ 0, using (19), (20), we deduce from (24) that
for ν

N ≡ sν < s < ν+1
N we have

∂

∂s
σ[N ](m, t̃, s) ≤

≤ 1

2

m

w(m)

∫

γ
[0,m]
q sν

β(m−m′,m′){σ[N ](·, ·, s)}q sν (m−m′){σ[N ](·, ·, s)}q sν (m′)

µγ(dm′) +
m

w(m)

∫

γq sν

ϑ(m,m′){σ[N ](·, ·, s)}q sν (m+m′)µγ(dm′).

We deduce from it that

∂

∂s
σ[N ](m, t̃, s) ≤ 1

2

m

w(m)

∫ m

0
β(m−m′,m′)u[N ](m−m′, s)u[N ](m′, s)dm′+

+
m

w(m)

∫ ∞

0
ϑ(m,m′)u[N ](m+m′, s)dm′, ∀s ≥ 0, s 6= sν , ν ∈ N,

which, joined with the continuity of σ[N ](m, t̃, s), leads to

ω[N ](s) ≤ ω0+

+
1

2

∫ s

0

∫ ∞

0

m

w(m)

∫ m

0
β(m−m′,m′)u[N ](m−m′, s′)u[N ](m′, s′)dm′dmds′+
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+

∫ s

0

∫ ∞

0

m

w(m)

∫ ∞

0
ϑ(m,m′)u[N ](m+m′, s′)dm′dmds′.

Finally, with conditions (8), (11), (29) and from the convolution property,
we deduce that

ω[N ](s) ≤ ω0 +
C0

2

∫ s

0
(ω[N ](s′))2ds′ + C0

∫ s

0
ω[N ](s′)ds′. (79)

On the other hand, we see immediately that the function

ω(s) =
1

( 1
ω0

+ 1
2)e−C0s − 1

2

is the solution of the Cauchy problem

d

ds
ω(s) =

C0

2
(ω(s))2 + C0ω(s), ω(0) = ω0 (80)

and that its maximum interval of existence is [0, S1[ with S1 given in (78).
We get (77) by comparing (79) and (80). �

Lemma 6. For all N ∈ N\{0}, we have

ψ[N ](s) ≤ ψ(s) for 0 ≤ s < S1, (81)

where ψ(s) is the solution of the Cauchy problem

d

ds
ψ(s) =

C0

2

[
(3ω(s) + 1)ψ(s) + 2ω(s)

]
, ψ(0) = sup

(m,t̃)∈R+×R
σ0(m, t̃).

(82)

Proof. Applying (25) and (27) to the right side of (24) and by recalling
the definitions (73), (74) and (78), we have

ψ[N ](s) ≤ ψ[N ](
ν

N
) +

C0

2

∫ s

ν
N

[(3ω(s′) + 1)ψ(s′) + 2ω(s′)]ds′

for ν
N ≤ s ≤ ν+1

N , ν = 0, 1, 2, · · · . This leads, according (23) and by the
usual reasoning we obtain (81). �

Lemma 7. For all N ∈ N\{0}, we have

J [N ](s) ≤ J(s) for 0 ≤ s < S1, (83)

where J(s) is the solution of the Cauchy problem

d

ds
J(s) =

3C0

2
(2ω(s) + 1)J(s), J(0) = J0. (84)
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Proof. we consider t̃1, t̃2 ∈ R, t̃1 6= t̃2, m ∈ R+, s ∈ [ νN ,
ν+1
N ]. Then,

putting

sν =
ν

N
, q1 = t̃1 +

sν
w(m)

, q2 = t̃2 +
sν

w(m)
,

we have

|σ[N ](m, t̃1, s)− σ[N ](m, t̃2, s)| ≤ |σ[N ](m, t̃1,
ν

N
)− σ[N ](m, t̃2,

ν

N
)|+ (85)

+

∫ s

ν
N

m

w(m)
|D[N ]

K (m, t̃1, t̃2, s
′)|ds′ +

∫ s

ν
N

m

w(m)
|D[N ]

L (m, t̃1, t̃2, s
′)|ds′,

where

D
[N ]
K (m, t̃1, t̃2, s) =

= Kγq1sν
[σ[N ](·, ·, s), σ[N ](·, ·, s)](m, t̃1)−Kγq2sν

[σ[N ](·, ·, s′), σ[N ](·, ·, s)](m, t̃2),

D
[N ]
L (m, t̃1, t̃2, s) = Lγq1sν [σ[N ](·, ·, s)](m, t̃1)− Lγq2sν [σ[N ](·, ·, s)](m, t̃2).
Even if Kγq1sν

[·, ·] and Kγq2sν
[·, ·] are defined on two different curves γq1sν

and γq2sν , if we pay attention to the expression of the right hand side of (19),
we note that, once definite {σ[N ](·, ·, s)}q1sν (m) and {σ[N ](·, ·, s)}q2sν (m) (see

(17)), D
[N ]
K (m, t̃1, t̃2, s) can be written in the form

D
[N ]
K (m, t̃1, t̃2, s) = (86)

=
1

2

∫ m

0
β(m−m′,m′)({σ[N ]}q1(m−m′)− {σ[N ]}q2(m−m′))×

×({σ[N ]}q1(m′) + {σ[N ]}q2(m′))dm′+

−1

2
({σ[N ]}q1(m)−{σ[N ]}q2(m))

∫ ∞

0
β(m,m′)({σ[N ]}q1(m′)+{σ[N ]}q2(m′))dm′+

−1

2
({σ[N ]}q1(m)+{σ[N ]}q2(m))

∫ ∞

0
β(m,m′)({σ[N ]}q1(m′)−{σ[N ]}q2(m′))dm′,

where

{σ[N ]}q1(m) = {σ[N ](·, ·, s)}q1sν (m), {σ[N ]}q2(m) = {σ[N ](·, ·, s)}q2sν (m).

Using (8), (9) and definitions (73), (75), we deduce from (86) that

m

w(m)
sup

t̃1,t̃2∈R,t̃1 6=t̃2

|D[N ]
K (m, t̃1, t̃2, s)|
|t̃1 − t̃2|

≤ (87)
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≤ C0

∫ m

0
j[N ](m−m′, s)u[N ](m′, s)dm′ + C0ω

[N ](s)j[N ](m, s)+

C0u
[N ](m, s)J [N ](s).

On the other hand, for D
[N ]
L (m, t̃1, t̃2, s), from definition (20) we obtain

without difficulty

m

w(m)
sup

t̃1,t̃2∈R,t̃1 6=t̃2

|D[N ]
L (m, t̃1, t̃2, s)|
|t̃1 − t̃2|

≤ (88)

≤ C0

2
j[N ](m, s) +

m

w(m)

∫ ∞

0
ϑ(m,m′)j[N ](m+m′, s)dm′.

Using the relation
∫ ∞

0

m

w(m)

∫ ∞

0
ϑ(m,m′)j[N ](m+m′, s)dm′dm =

=

∫ ∞

0

∫ m′′

0

m′′ −m′
w(m′′ −m′)ϑ(m′′ −m′,m′)j[N ](m′′, s)dm′dm′′

joined with (11), we deduce from the last three estimates and from property
of the convolution that

J [N ](s) ≤ J [N ](
ν

N
) + 3C0

∫ s

ν
N

J [N ](s′)ω[N ](s′)ds′ +
3C0

2

∫ s

ν
N

J [N ](s′)ds′.

As this inequality has the same form in all intervals [ νN ,
ν+1
N ], ν = 0, 1, · · · ,

we obtain

J [N ](s) ≤ J [N ](0) + 3C0

∫ s

0
J [N ](s′)ω[N ](s′)ds′ +

3C0

2

∫ s

0
J [N ](s′)ds′,

or, taking into account (77) and from the relation J [N ](0) = J0,

J [N ](s) ≤ J0 + 3C0

∫ s

0
J [N ](s′)ω(s′)ds′ +

3C0

2

∫ s

0
J [N ](s′)ds′,

that implies (83) with (84). �
Lemma 8. For all N ∈ N\{0}, we have

λ[N ](s) ≤ λ(s) for 0 ≤ s < S1, (89)

where λ(s) is the solution of the Cauchy problem

d

ds
λ(s) = C0(2ω(s) +

1

2
)λ(s) + C0(ψ(s) + 1)J(s), λ(0) = λ0. (90)
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Proof. Using the relations

sup
m∈R+

u[N ](m, s) = ψ[N ](s) ≤ ψ(s), sup
m∈R+

j[N ](m, s) = λ[N ](s),

ω[N ](s) ≤ ω(s), J [N ](s) ≤ J(s),

we deduce from (85), (87), (88) and from the property of the convolution
that

λ[N ](s) ≤ λ[N ](
ν

N
) + 2C0

∫ s

ν
N

ω(s′)λ[N ](s′)ds′+

+C0

∫ s

ν
N

ψ(s′)J(s′)ds′ +
C0

2

∫ s

ν
N

λ[N ](s′)ds′ + C0

∫ s

ν
N

J(s′)ds′.

In a similar way to the proof of the previous lemma, from this inequality we
deduce (89) with (90). �

7 Convergence of the approximate solutions

To solve the problem (21)-(22), it is essential to prove the convergence of
the approximate solutions σ[N ](m, t̃, s). Thus, we will prove the convergence
of a subsequence of the approximate solutions in the interval [0, S1[ , which
will give us the solution of the problem in this interval.

Theorem 1. We suppose that β(·, ·), ϑ(·, ·) and w(·), satisfy the conditions
mentioned in paragraph 2 and the condition (69) and that σ0(m, t̃) is con-
tinuous in (m, t̃) ∈ R+ × R and satisfies the conditions (23), (70)-(72). Let
S1 the number given in (78). Then the problem (21)-(22) admits a solution
in the interval [0, S1[ . Moreover the solution is unique in the class of the
functions σ(m, t̃, s) which satisfy the conditions

i) σ(m, t̃, s) is continuous in R+ × R× [0, S1[ ,

ii) for all s ∈ [0, S1[ , u(m, s) = supt̃∈R |σ(m, t̃, s)| is integrable in m ∈ R+,

iii) for all s1 ∈ [0, S1[ , we have sups∈[0,s1]
∫∞
0 u(m, s)dm <∞.

Proof. We construct the sequence of approximate solutions σ[2
n],

n = 1, 2, · · · , which are the solutions of the problem (24), (22) with N = 2n.
For simplicity, we write σn instead of σ[2

n]. In the interval [ ν2n ,
2ν+1
2n+1 [ the

approximate solutions σn and σn+1 are defined by integral operators on the
same curves γq s1 , s1 = ν

2n , while in [2ν+1
2n+1 ,

ν+1
2n [ the approximate solutions

σn and σn+1 are defined on the different curves γq s1 , γq s2 , s2 = 2ν+1
2n+1 respec-

tively.
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We put
ηn(m, s) = sup

t̃∈R
|σn(m, t̃, s)− σn+1(m, t̃, s)|, (91)

αn(s) =

∫ ∞

0
ηn(m, s)dm, (92)

βn(s) = sup
(m,t̃)∈R+×R

|σn(m, t̃, s)− σn+1(m, t̃, s)| = sup
m∈R+

ηn(m, s). (93)

We will also write un(m, s), jn(m, s), ωn(s), ψn(s), Jn(s), λn(s) instead of
u[2

n](m, s), j[2
n](m, s), ω[2n](s), ψ[2n](s), J [2n](s), λ[2

n](s) (see (73)-(76)).
We recall that, for all q ∈ R and s ≥ 0, the definition of the operator

Kγq s [·, ·] gives us

Kγq s [σn(·, ·, s′), σn(·, ·, s′)](m, t̃)−Kγq s [σn+1(·, ·, s′), σn+1(·, ·, s′)](m, t̃) =

= Kγq s [σn(·, ·, s′) + σn+1(·, ·, s′), σn(·, ·, s′)− σn+1(·, ·, s′)](m, t̃).
Therefore, with the linearity of the operator Lγq s [ϕ], we get

σn(m, t̃, s)− σn+1(m, t̃, s) = σn(m, t̃,
ν

2n
)− σn+1(m, t̃,

ν

2n
)+ (94)

+
m

w(m)

∫ s

ν
2n

[
Kγq s1

[σn(·, ·, s′)+σn+1(·, ·, s′), σn(·, ·, s′)−σn+1(·, ·, s′)](m, t̃)+

+Lγq s1 [σn(·, ·, s′)− σn+1(·, ·, s′)](m, t̃)
]
ds′

for

s1 =
ν

2n
≤ s ≤ 2ν + 1

2n+1

and

σn(m, t̃, s)− σn+1(m, t̃, s) = σn(m, t̃,
2ν + 1

2n+1
)− σn+1(m, t̃,

2ν + 1

2n+1
)+ (95)

+
m

w(m)

∫ s

2ν+1

2n+1

[
Kγq s2

[σn(·, ·, s′)+σn+1(·, ·, s′), σn(·, ·, s′)−σn+1(·, ·, s′)](m, t̃)+

+Lγq s2 [σn(·, ·, s′)− σn+1(·, ·, s′)](m, t̃)
]
ds′ + ∆s1 s2(m, t̃)

for
2ν + 1

2n+1
≤ s ≤ ν + 1

2n
, s1 =

ν

2n
, s2 =

2ν + 1

2n+1
,

where
∆s1 s2(m, t̃) =
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=
m

w(m)

∫ s

2ν+1

2n+1

[
Kγq s1

[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)−Kγq s2
[σn(·, ·, s′),

σn(·, ·, s′)](m, t̃) + Lγq s1 [σn(·, ·, s′)](m, t̃)− Lγq s2 [σn(·, ·, s′)](m, t̃)
]
ds′.

According to the conditions (8), (9), (10), it results from (19), (20) (see
also (77)) that, for all q ∈ R and s, s ∈ [0, S1[ , we have

sup
t̃∈R

m

w(m)
|Kγq s [σn(·, ·, s) + σn+1(·, ·, s), σn(·, ·, s)− σn+1(·, ·, s)](m, t̃)| ≤

(96)

≤ C0

2

∫ m

0
(un(m−m′, s) + un+1(m−m′, s))ηn(m′, s)dm′+

+C0ηn(m, s)ω(s) +
C0

2
(un(m, s) + un+1(m, s))αn(s),

sup
t̃∈R

m

w(m)
|Lγq s [σn(·, ·, s)− σn+1(·, ·, s)](m, t̃)| ≤ (97)

≤ C0

2
ηn(m, s) +

m

w(m)

∫ ∞

0
ϑ(m,m′)ηn(m+m′, s)dm′.

On the other hand, from the definitions (17) and (18) the values of
σn(m′, t̃′, s) on the curves γqs1(m,t̃) and γqs2(m,t̃) are given by:

{σn(·, ·, s)}qs1(m,t̃)(m
′) = σn(m′, t̃+

s1
w(m)

− s1
w(m′)

, s),

{σn(·, ·, s)}qs2(m,t̃)(m
′) = σn(m′, t̃+

s2
w(m)

− s2
w(m′)

, s).

Therefore, taking into account the relation s2 − s1 = 2ν+1
2n+1 − ν

2n = 1
2n+1 and

the hypothesis (69), we have

|{σn(·, ·, s)}qs1(m,t̃)(m
′)− {σn(·, ·, s)}qs2(m,t̃)(m

′)| ≤ (98)

≤ jn(m′, s)
∣∣ s1
w(m)

− s1
w(m′)

−
( s2
w(m)

− s2
w(m′)

)∣∣ ≤ jn(m′, s)
Cw
2n

.

With the information of (8), (9), and (10), we deduce from (19), (20) and
(98), in a similar manner to (86)) that

m

w(m)

∣∣Kγq s1
[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)−Kγq s2

[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)
∣∣ ≤

(99)
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≤ Cw
2n

C0

[ ∫ m

0
un(m−m′, s)jn(m′, s)dm′ + jn(m, s)ωn(s) + un(m, s)Jn(s)

]
,

m

w(m)

∣∣Lγq s1 [σn(·, ·, s′)](m, t̃)− Lγq s2 [σn(·, ·, s′)](m, t̃)
∣∣ ≤ (100)

≤ Cw
2n

[C0

2
jn(m, s) +

m

w(m)

∫ ∞

0
ϑ(m,m′)jn(m+m′, s)dm′

]
.

As
∫ ∞

0

∫ m

0
(un(m−m′, s) + un+1(m−m′, s))ηn(m′, s)dm′dm ≤ 2ω(s)αn(s),

∫ ∞

0

m

w(m)

∫ ∞

0
ϑ(m,m′)ηn(m+m′, s)dm′dm ≤ C0αn(s),

and αn(0) = βn(0) = 0, and by using (96), (97), (99), (100) (see also (77),
(81), (83), (89)), we deduce from (94)-(95) that

αn(s) ≤ 3C0

2

∫ s

0
(2ω(s′) + 1)αn(s′)ds′ +

1

2n
3C0Cw

2

∫ s

0
(2ω(s′) + 1)J(s′)ds′,

(101)

βn(s) ≤ C0

∫ s

0
((2ψ(s′) + 1)αn(s′) + (ω(s′) +

1

2
)βn(s′))ds′+ (102)

+
1

2n
CwC0

∫ s

0

(
(2ψ(s′) + 1)J(s′) + (ω(s′) +

1

2
)λ(s′)

)
ds′.

It follows that

αn(s) ≤ y(s), βn(s) ≤ z(s),

where y(s) is the solution of the following Cauchy problem

d

ds
y(s) =

3C0

2
(2ω(s) + 1)y(s) +

1

2n
3CwC0

2
(2ω(s) + 1)J(s), y(0) = 0,

while z(s) is the solution of the following Cauchy problem

d

ds
z(s) = C0(ω(s) +

1

2
)z(s) + C0(2ψ(s) + 1)y(s)+

+
1

2n
CwC0

(
(2ψ(s) + 1)J(s) + (ω(s) +

1

2
)λ(s)

)
, z(0) = 0.
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To summarize, if we put

A(s) =
3C0Cw

2

∫ s

0
(2ω(s′) + 1)J(s′)e

3C0
2

∫ s
s′ (2ω(s

′′)+1)ds′′ds′, (103)

and

B(s) = C0

∫ s

0

[
(2ψ(s′)+1)A(s′)+Cw

(
(2ψ(s′)+1)J(s′)+(ω(s′)+

1

2
)λ(s′)

)]
×

(104)

×e
C0
2

∫ s
s′ (2ω(s

′′)+1)ds′′ds′,

we find that

αn(s) ≤ 1

2n
A(s), βn(s) ≤ 1

2n
B(s). (105)

As B(s) defined in (103)-(104) does not depend on n and it’s an increas-
ing function well defined on [0, S1[ , i.e.:

0 ≤ B(s1) ≤ B(s2) <∞ ∀s1, s2 ∈ [0, S1[ , s1 ≤ s2,

from (93) and (105) we deduce that

∀ε>0,∀s∈ [0, S1[,∃n ∈ N : n > ξ ⇒ sup
(m,t̃,s)∈R+×R×[0,s]

|σn1(m, t̃, s)−σn2(m, t̃, s)|<ε,

∀n1, n2 ≥ n, where n > 1
log 2(logB(s) + log 1

ε ) + 1.

This proves the uniform convergence of σn(m, t̃, s) in R+ × R× [0, s] as
n → ∞. Moreover, this result about the convergence remains valid for all
s ∈ [0, S1[ .

Let us provisionally designate by σ∞(m, t̃, s) limit of the sequence
{σn(m, t̃, s)}∞n=0, i.e.

σ∞(m, t̃, s) = lim
n→∞

σn(m, t̃, s).

As σn(m, t̃, s) converges uniformly to σ∞(m, t̃, s) in R+×R×[0, s] for any s ∈
]0, S1[ , it clear that σ∞(m, t̃, s) is also continuous and non-negative; more-
over, from the first inequality of (105) we deduce that supt̃∈R σ∞(m, t̃, s) is
integrable on R+(3 m) for all s ∈ [0, S1[ .

Let s ∈ ]0, S1[ . We put

∆∞ = sup
(m,t̃,s)∈R+×R×[0,s]

∣∣σ∞(m, t̃, s)− σ0(m, t̃)− I(m, t̃, s)
∣∣, (106)
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where

I(m, t̃, s) =

∫ s

0

m

w(m)

(
Kγqs [σ∞(·, ·, s′), σ∞(·, ·, s′)](m, t̃)

+ Lγqs [σ∞(·, ·, s′)](m, t̃)
)
ds′.

As

σn(m, t̃, s) = σ0(m, t̃) +

∫ s

0

m

w(m)

(
Kγqs̃ν (n,s)

[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)+

Lγqs̃ν (n,s) [σn(·, ·, s′)](m, t̃)
)
ds′

with

s̃ν(n, s) =
ν

2n
for

ν

2n
≤ s < ν + 1

2n
,

we have
σ∞(m, t̃, s)− σ0(m, t̃)− I(m, t̃, s) = (107)

= σ∞(m, t̃, s)− σn(m, t̃, s)− I [1]n (m, t̃, s)− I [2]n (m, t̃, s),

I [1]n (m, t̃, s) =

∫ s

0

m

w(m)

(
Kγqs [σ∞(·, ·, s′), σ∞(·, ·, s′)](m, t̃)+

+Lγqs [σ∞(·, ·, s′)](m, t̃)−Kγqs [σn(·, ·, s′), σn(·, ·, s′)](m, t̃)+

−Lγqs [σn(·, ·, s′)](m, t̃)
)
ds′,

I [2]n (m, t̃, s) =

∫ s

0

m

w(m)

(
Kγqs [σn(·, ·, s′), σn(·, ·, s′)](m, t̃)+

+Lγqs [σn(·, ·, s′)](m, t̃)−Kγqs̃ν (n,s)
[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)+

−Lγqs̃ν (n,s) [σn(·, ·, s′)](m, t̃)
)
ds′.

On one hand, the uniform convergence of σn(m, t̃, s) to σ∞(m, t̃, s) implies
that

lim
n→∞

(|σ∞(m, t̃, s)− σn(m, t̃, s)|+ |I [1]n (m, t̃, s)|) = 0.

On the other hand, recalling the reasoning used to obtain (99)-(100), there
is no difficulty to find that

∀ε > 0,∃nε ∈ N : n ≥ nε ⇒ sup
(m,t̃,s)∈R+×R×[0,s]

|I [2]n (m, t̃, s)| < ε.

We deduce that
∆∞ = 0
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or
σ∞(m, t̃, s) = σ0(m, t̃)+ (108)

+

∫ s

0

m

w(m)

(
Kγqs [σ∞(·, ·, s′), σ∞(·, ·, s′)](m, t̃) + Lγqs [σ∞(·, ·, s′)](m, t̃)

)
ds′.

According to the continuity of σ∞(m, t̃, s), the derivative with respect
to s of the right hand side of (108) is well defined, which allows us to pass
from (108) to the differential version (21), i.e. σ∞(m, t̃, s) is a solution of
the problem (21)-(22).

To demonstrate the uniqueness, we consider two solutions σ and ϕ of the
problem (21)-(22) belonging to the class of functions defined in the statement
of the theorem. As σ(m, t̃, 0)− ϕ(m, t̃, 0) = 0 and

Kγqs [σ(·, ·, s), σ(·, ·, s)](m, t̃)−Kγqs [ϕ(·, ·, s), ϕ(·, ·, s)](m, t̃) =

= Kγqs [σ(·, ·, s) + ϕ(·, ·, s), σ(·, ·, s)− ϕ(·, ·, s)](m, t̃),
integrating (21) with respect to s with s ∈ ]0, S1[ , we have

σ(m, t̃, s)− ϕ(m, t̃, s) =

=

∫ s

0

m

w(m)

(
Kγqs′ [σ(·, ·, s′) + ϕ(·, ·, s′), σ(·, ·, s′)− ϕ(·, ·, s′)](m, t̃)+

+Lγqs′ [σ(·, ·, s′)− ϕ(·, ·, s′)](m, t̃)
)
ds′.

Therefore, putting

η(m, s) = sup
t̃∈R
|σ(m, t̃, s)−ϕ(m, t̃, s)|, u∗2(m, s) = sup

t̃∈R
|σ(m, t̃, s)+ϕ(m, t̃, s)|,

and in a similar way to (96)-(97), we obtain

η(m, s) ≤
∫ s

0

[C0

2

∫ m

0
u∗2(m−m′, s′)η(m′, s′)dm′+

C0

2
η(m, s′)

∫ ∞

0
u∗2(m

′, s′)dm′+
C0

2
u∗2(m, s

′)
∫ ∞

0
η(m′, s′)dm′+

C0

2
η(m, s′)+

+
m

w(m)

∫ ∞

0
ϑ(m,m′)η(m+m′, s′)dm′

]
ds′.

Consequently, if we put

g(s) =

∫ ∞

0
η(m, s)dm,
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in a similar way to (101), we have

g(s) ≤ 3C0

2

∫ s

0

(
1 +

∫ ∞

0
u∗2(m, s

′)dm
)
g(s′)ds′.

We deduce from the condition iii) that

g(s) = 0 ∀s ∈ [0, S1],

that proves the uniqueness of the solution. �

Remark 2. If the entry condition does not depend on time t̃ (i.e σ0(m, t̃) =
σ0(m)), we can directly construct the solution, which will be an analytic
function in s = −z; or rather, the equation with the homogeneous entry
rewritten on the trajectories will be a formal variant of equation studied by
Melzak in [9]. In addition, the result can be deduced almost immediately
from the proposition 1 and 2.
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symmetric algebras∗

Gaetana Restuccia† Paola L. Staglianò‡

Abstract

We consider ideals generated by linear forms in the variables X1 . . . , Xn

in the polynomial ring R[X1, . . . , Xn], being R a commutative, Noethe-
rian ring with identity. We investigate when a sequence a1, a2, . . . , am
of linear forms is an s−sequence, in order to compute algebraic invari-
ants of the symmetric algebra of the ideal I = (a1, a2, . . . , am).
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1 Introduction

Let M be a finitely generated module on a commutative ring R with
identity. Let A = (aij) be a n × m matrix, with entries in R, Ik(A) the
ideal generated by the k × k minors of A, 1 ≤ k ≤ min(m,n), and let
ϕ : Rm −→ Rn be a module homomorphism. We denote by Ik(ϕ) the
ideal Ik(A), where A = (aij) is the n × m matrix associated to ϕ, for an
appropriate choice of the bases.
Let

Rm
ϕ−→ Rn →M → 0 (1)
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be a free presentation of the module M . If we consider the symmetric
algebras of the modules in (1), the presentation ideal J of SymR(M) is
generated by the linear forms in the variables Yj , 1 ≤ j ≤ n:

ai =
n∑

j=1

ajiYj , 1 ≤ i ≤ m

The theory of s−sequences has been recently introduced by Herzog, Restuc-
cia, Tang ([4]) and it permits to compute the invariants of SymR(M) start-
ing from the main algebraic invariants of quotients of R, via the initial ideal
in<(J), with respect to a suitable term order, introduced in R[Y1, . . . , Yn],
where n is the number of elements in a minimal system of generators of M .
In this paper we are interested to the case the ideal J is generated by an
s−sequence. The problem is part of a wider context, precisely:
Given an ideal I = (a1, . . . , am) ⊂ R[X1, . . . , Xn] generated by linear forms
in the variables X1, . . . , Xn, we want to study when I is generated by an
s−sequence and to compute the standard invariants of SymR(I) in terms of
the corresponding invariants of special quotients of the ring R.
Standard invariants of SymR(I) are Krull dimension, multiplicity, depth and
regularity, denoted respectively by dim(SymR(I)), e(SymR(I)), depth(SymR

(I)) with respect to the maximal graded ideal, reg(SymR(I)). The first three
invariants are classical. For the last invariant, we recall that reg(SymR(I))
is the Castelnuovo-Mumford regularity of the graded module I. Its impor-
tance is briefly explained in Einsenbud-Goto theorem which is an interesting
description of regularity in terms of graded Betti numbers of M ([3]). In
general the problem is hard, but if I is generated by an s−sequence, our
approach gives some interesting results. In Section 1, we recall some results
obtained about ideals generated by linear forms as relation ideals of spe-
cial symmetric algebras. At the end of the section, we consider some basic
properties about s−sequences and, additionally, we recall how to compute
the invariants ([7], [8]). In Section 2, for the classes of ideals studied in the
previous section, we find sufficient and necessary conditions so that they are
generated by s−sequences. In this direction a main result is:

Theorem Let J = (a1, . . . , am) ⊂ S = R[Y1, . . . , Yn], be an ideal gener-
ated by m linear forms, ai =

∑n
j=1 aijYj, aij ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n. If

depth(Ik(ϕ)) ≥ m− k + 1, 1 ≤ k ≤ m, then

(i) J is generated by an s−sequence of m elements;

(ii) SymS(J) ∼= S[Z1, . . . , Zm]/K, where K is an ideal generated by linear
forms in the variables Zj, 1 ≤ j ≤ m and in<K = (J1Z1, J2Z2, . . . ,
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JmZm), where J1, . . . , Jm are the annihilator ideals of the sequence
a1, . . . , am;

(iii) Ji−1 : (ai) = Ji−1 with Ji−1 = (a1, . . . , ai−1).

2 Notations and basic results

This section deals with ideals generated by linear forms of a polynomial
ring R[Y1, . . . , Yn] over a commutative, noetherian ring R with identity. We
are interested in ideals that are kernels of epimorphisms of symmetric al-
gebras, in particular they are ideals of relations of symmetric algebras of
finitely generated modules on R. We give a list of results that will be useful
in the following.

Definition 2.1. Let a = {a1, . . . , an} be a sequence of elements of R. The
sequence a is called a d−sequence if a is a minimal generating system for
the ideal (a1, . . . , an) and (a1, . . . , ai) : ai+1ak = (a1, . . . , ai) : ak for all
i = 0, . . . , n− 1, k ≥ i+ 1.

Definition 2.2. Let I be an ideal of the ring R. I is an almost complete
intersection if the number of its generators is depth(I) + 1.

Let A = (aij) be a m× n matrix, Ik(A) the ideal generated by all k × k
minors of the matrix A, 1 ≤ k ≤ min(m,n). By definition, we have

I0(A) = R and Ik(A) = 0 for k > min(m,n)

Let Rm
ϕ=(aij)−→ Rn an homomorphism between free modules. We denote by

Ik(ϕ) the ideal Ik(A), where A is the matrix associated to ϕ, for a convenient
choice of the bases. Let

Rm
ϕ=(aij)−→ Rn −→M −→ 0

be a free presentation of the module M .
The following results are known. The kernel of the canonical epimorphism

S = SymR(Rn)→ SymR(M)→ 0

is a complete intersection if and only if

depth(Ik(ϕ)) ≥ m− k + 1, 1 ≤ k ≤ m
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Proof. See [1], Proposition 3.

The kernel of the canonical epimorphism

S = SymR(Rn)→ SymR(M)→ 0

is an almost complete intersection with depth(a1, . . . , am−1) = m− 1 if and
only if

depth(Ik(ϕ
′)) ≥ (m− 1)− k + 1, 1 ≤ k ≤ m− 1

where

ϕ = ϕ′ + ϕ
′′
, ϕ′ : Rm−1 → Rm

such that

ϕ′(f1) = a1, . . . , ϕ
′(fm−1) = am−1,

where f1, . . . , fm−1 form a standard basis for Rm−1. Moreover, the kernel
can be generated by a d−sequence if and only if

Z1 ∩ IK = B1

where Z1 and B1 are respectively the 1-cycle and the 1-boundary of the
Koszul complex K over a1, . . . , am and I is an ideal of R.

Proof. See [8], Theorem 6.

Let M be a finitely generated module on R, with generators f1, f2, . . . , fn.
We denote by (aij) i=1,...,m

j=1,...,n
the relation matrix, by Symi (M) the i-th sym-

metric power of M , and by SymR (M) =
⊕

i≥0 Symi (M) the symmetric
algebra of M . Note that

SymR (M) = R [Y1, . . . , Yn] /J,

where

J = (g1, . . . , gm), and gi =
n∑

j=1

aijYj .

We consider S = R [Y1, . . . , Yn] a graded ring by assigning to each variable
Yi the degree 1 and to the elements of R the degree 0. Then J is a graded
ideal and the natural epimorphism S → SymR (M) is a homomorphism of
graded R−algebras.
Let < be a monomial order on monomials in Y1, . . . , Yn with Y1 < Y2 <
. . . < Yn. We call admissible such an order. For any polynomial f ∈
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R [Y1, . . . , Yn] , f =
∑

α aαY
α, we put in< (f) = aαY

α where Y α is the
largest monomial in f with respect to < with aα 6= 0, and we set

in< (J) = (in< (f) : f ∈ J).

For i = 1, . . . , n we set Mi =
∑i

j=1Rfj , and let Ii be the colon ideal
Mi−1 : 〈fi〉. In other words, Ii is the annihilator of the cyclic module
Mi/Mi−1 and so Mi/Mi−1 ∼= R/Ii. For convenience we also set M0 = 0.

Definition 2.3. The colon ideals Ii, 1 ≤ i ≤ n, are called annihilator ideals
of the sequence f1, . . . , fn.

Notice that (I1Y1, I2Y2, . . . , InYn) ⊆ in< (J), and the ideals coincide in
degree 1.

Definition 2.4. The generators f1, . . . , fn of M are called an s−sequence
(with respect to an admissible order <), if

in< (J) = (I1Y1, I2Y2, . . . , InYn)

If in addition I1 ⊂ I2 ⊂ . . . ⊂ In, then f1, . . . , fn is called a strong s−sequence.

The invariants of the symmetric algebra of a module which is generated by
an s−sequence can be computed by the corresponding invariants of quotients
of R. We have

Proposition 2.1. Let M be generated by an s−sequence f1, . . . , fn, with
annihilator ideals I1, . . . , In. Then

1. d := dim(SymR(M)) = max
0≤r≤n,

1≤i1<...<ir≤n
{dim(R/(Ii1 + . . .+ Iir)) + r};

2. e(SymR(M)) =
∑

0≤r≤n,1≤i1<...<ir≤n
dim(R/(Ii1+...+Iir ))=d−r

e(R/(Ii1 + . . .+ Iir)).

and, if f1, . . . , fn is a strong s−sequence, then

1’. d = max
0≤r≤n

{dim(R/Ir) + r};

2’. e(SymR(M)) =
∑

r
dim(R/Ir)=d−r

e(R/Ir).

If R = K[X1, . . . , Xm] and we assume that M is generated by a strong
s-sequence of elements of the same degree, with annihilator ideals I1 ⊂
· · · ⊂ In, we have
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3. reg(SymR(M)) ≤ max{reg(Ii) : i = 1, . . . , n};
4. depth(SymR(M)) ≥ min{depth(R/Ii) + i : i = 0, 1, . . . , n}.

Proof. See [4], Proposition 2.4., 2.6.

3 Relation ideals generated by d-sequences

The aim of this section is to study ideals generated by linear forms that
are relation ideals of symmetric algebras and to describe their invariants via
the s−sequence theory. Let J be the ideal of relations of the symmetric
algebra SymR(M) of a module M .

Let J = (a1, . . . , am) ⊂ S = R[Y1, . . . , Yn] be an ideal generated by m
linear forms ai =

∑n
j=1 ajiYj on the variables Yj . If depth(Ik(ϕ)) ≥ m−k+1,

1 ≤ k ≤ m, then

(i) J is generated by an s−sequence of m elements;

(ii) SymS(J) ∼= S[Z1, . . . , Zm]/K, where K is an ideal generated by linear
forms on the variables Zj and in<(K) = (J1Z1, . . . , JmZm), where
J1, . . . , Jm are the annihilator ideals of the s−sequence generating the
ideal J ;

(iii) Ji−1 : (ai) = Ji−1, Ji = (a1, . . . , ai−1), i = 2, . . . ,m and J is generated
by a strong s-sequence.

Proof. (i) By Theorem 2, J is generated by a regular sequence, then it is
generated by an s−sequence with respect to the reverse lexicographic order
on the monomials in the variables Yj with Yn > . . . > Y1.
(ii) Since J is generated by a strong s−sequence, the ideal K has a Gröbner
basis that is linear in the variables Z1, . . . , Zm, then in<(K)=(J1Z1, J2Z2, . . . ,
JmZm).
(iii) Since a1, . . . , am is a regular sequence, by definition we have

J1 = 0 : (a1) = (0),

Ji = (a1, a2, . . . , ai−1) : (ai) = (a1, a2, . . . , ai−1) i = 2, . . . ,m

then the assertion holds. Now, it results Ji−1 ( Ji, i = 2, . . . ,m, and the
s−sequence is strong.

The assertion (ii) of the theorem 3 gives information about the initial
ideal of the relation ideal of the first syzygy module of the ideal J .

Let J = (a1, . . . , am) ⊂ R[Y1, . . . , Yn] = S be an ideal generated by linear
forms in the variables Yi that form a regular sequence. Then:
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(i) dim(SymS(J)) = dimR+n+ 1; If R = K[X1, . . . , Xt] and we suppose
that degai = a for all i, then

(ii) e(SymS(J)) =
∑m

i=1 a
i−1.

(iii) If R is the polynomial ring reg(SymS(J)) ≤ (m− 1)(a− 1) + 1;

(iv) depth(SymS(J)) = depth(S) + 1, if R is Cohen-Macaulay.

Proof. Since J is generated by a strong s−sequence, we can compute the
standard invariants, using Proposition 2.1, then

(i) dim(SymS(J)) = max0≤r≤m{dim(S/Jr) + r, r = 0, . . . ,m} =
dim(S/(a1, . . . , am−1)) +m = dim(S)−m+ 1 +m = dim(S) + 1.

(ii) e(SymR(J)) =
∑

0≤r≤m e(R/Jr),
being Jr generated by a regular sequence. It follows that e(SymS(J)) =∑m

i=1 a
i−1, where a is the degree of the generators of Ji.

(iii) depth(SymS(J)) ≥ min0≤r≤m{depth(S/Jr) + r, r = 0, . . . ,m} =
= min{depth(S)−m+ 1 +m} = depth(S) + 1.
If R is Cohen-Macaulay, dim(S) = depth(S), then

depth(S) + 1 ≤ depth(SymS(J)) ≤ dim(SymS(J)) = dim(S) + 1 =
depth(S) + 1.

(iv) reg(SymS(J)) ≤ (m−1)(a−1)+1, being a the degree of any generator
of J ([7], Proposition 1).

(i) follows from SymR(J) = R(J), since J is generated by a regular
sequence and dim(R(J)) = dim(R[Y1, . . . , Yn]) + 1 ([2], [9]).

Let J = (a1, . . . , am−1, am) ⊂ S = R[Y1, . . . , Yn] be an ideal generated
by m linear forms. Suppose that:

depth(a1, . . . , am−1) = m− 1, Z1 ∩ JK = B1, J = (a1, . . . , am−1)

Then we have

(i) J is generated by a d−sequence;

(ii) SymS(J) ∼= S[Z1, . . . , Zm]/K, where K is an ideal generated by linear
forms in the variables Zj , in<K = (J1Z1, . . . , JmZm), J1, . . . , Jm are
the annihilator ideals of the sequence a1, . . . , am;
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(iii) The annihilator ideals of J are such that

Ji−1 : (ai) = Ji−1, i = 1, . . . ,m− 1

and Jm−1 : (am) = Jm, the last annihilator ideal.

Proof. (i) By theorem 2, the elements a1, . . . , am form a d−sequence and
then a strong s−sequence with respect to the reverse lexicographic
order on the monomials in the variables Zi and with Zm > Zm−1 >
. . . > Z1.

(ii) SymS(J) = S[Z1, . . . , Zm]/K and in<(K) = (J2Y2, J3Y3, . . . ,
Jm−1Ym−1, JmYm) and Ji = (a1, . . . , ai−1) for i = 2, . . . ,m− 1.

Let J = (a1, . . . , am−1, am) ⊂ S = R[Y1, . . . , Ym] be an ideal generated
by linear forms that are an almost complete intersection d−sequence. Put
Jm = (a1, . . . , am−1) : (am). Then

(i) dim(SymS(J)) = max{dimS + 1, dim(S/Jm) +m};

(ii) depth(SymS(J)) ≥ min{depth(S/Jm),depth(R) + n + 1}, with the
equality if S is Cohen-Macaulay; If R = K[X1, . . . , Xt] and degai = a
for all i, then

(iii) e(SymS(J)) =
∑m−1

i=1 ai−1 + e(S/Jm);

(iv)
reg(SymS(J)) ≤ max{(m− 2)(a− 1) + 1, reg(S/Jm)}.

Proof. (i) The ideal J is generated by a strong s−sequence, because it is
generated by a d−sequence and

(0) = J1 ⊂ J2 ⊂ . . . ⊂ Jm−1 ⊂ Jm.

(ii) The assertion follows by [4].

(iii) dim(SymS(J))=dim(S[Z1, . . . , Zm]/J)=dim(S[Z1, . . . , Zm]/in<(J))=

= max{dim(S/Jr) + r, r = 0, . . . ,m}
= max{dim(S/Jm−1) +m− 1,dim(S/Jm +m)} =

= max{dim(S)−m+ 2 +m− 1,dim(S/Jm) +m}
= max{dim(S) + 1, dim(S/Jm) +m}.
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(iv) Since reg(SymS(J)) ≤ max{(m− 2)(a− 1) + 1, reg(S/Jm)}, the asser-
tion follows from [7], Proposition 1.

Let f =
∑n

i=1 aiYi be a linear form, f ∈ R[Y1, . . . , Yn]. Suppose that (0 :
f) = (0 : f2), then we have:

(i) I = (f) is generated by an s−sequence;

(ii) SymS(I) = S[Z]/J , and in<(J) = (I1Z), I1 = (0 : f) the annihilator
ideal of the sequence {f};

Proof. By the condition (0 : f) = (0 : f2), the sequence {f} is a d−sequence,
then {f} is an s−sequence ([4], Corollary 3.3.), using the reverse lexico-
graphic order on the monomials in the unique variable Y . In this case
I0 = (0), I1 = (0 : f) = (0 : f2) is the unique annihilator ideal of I.

Let f =
∑n

i=1 aiYi be a linear form, f ∈ R[Y1, . . . , Yn] = S, (0 : f) = (0 : f2)
and let I = (f). We have:

(i) dim(SymS(I)) = dim(R) + n+ 1;

(ii) e(SymS(I)) = e(S/(0 : f));

(iii) If R = K[X1, X2, . . . , Xm], then

depth(SymS(I)) ≥ depth (S/(0 : f)) + 1;

(iv) If R = K[X1, X2, . . . , Xm], then

reg(SymS(I)) ≤ reg(S/(0 : f)) + 1.

Proof. (i) dim(S/I0) = dim(S) and dim(S/(0 : f)) = dim(S), hence
dim(SymS(I)) = dim(S) + 1, by Proposition 2.1.

(ii) Using Proposition 2.1, the sum in (ii) has only one summand e(S/I1)

(iii) depth(S/I0) = depth(S), and depth(S/(0 : f)) ≤ depth(S), by Propo-
sition 2.1.

(iv) See [7], Theorem 2.
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Sequences of linear forms that are d-sequences are the simplest examples
besides the regular sequences, that generate relation ideals of symmetric
algebras and provide a fertile testing ground for general results. In particu-
lar, if R = K[X1, . . . , Xn] and I = (Xa

1 , . . . , X
a
n), then Sym(I) = R(I) =

K[X1, . . . ,
Xn]/J , where J is the ideal generated by all 2× 2 minors [i, j], i = 1, . . . , n,

j = 1, 2, . . ., of the matrix

(
Xa

1 . . . Xa
n

Y1 . . . Yn

)
, a integer, a ≥ 1, that are lin-

ear forms in the variables Y1, . . . , Yn. Therefore: Let J be as before and let
the minors be ordered lexicographically [1, 2] > [1, 3] > . . . > [n−1, n]. Then
J is generated by an s-sequence of linear forms in the variables Y1, . . . , Yn
with respect to the reverse lexicographic order.

Proof. Any d-sequence is an s-sequence, then the assertion follows.
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Abstract

Closed form permanent solutions are determined for two types of
oscillating motions of generalized Burgers fluids through an infinite
annulus. These solutions, presented in simple forms in terms of some
modified Bessel functions, are periodic in time and independent of
the initial conditions. They satisfy boundary conditions and gover-
ning equations and can easy be reduced to the solutions of Burgers,
Oldroyd-B, Maxwell, second grade and linearly viscous fluids perfor-
ming the same motions. Further, the solutions corresponding to mo-
tions through an infinite circular cylinder are obtained as limiting cases
of previous solutions and some graphical representations are included.
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to some motion problems of fluids, can be used as tests to verify numerical
schemes that are developed to study more complex unsteady flows. Al-
though the computer techniques can make a complete numerical integration
of the governing equations, the accuracy of results can be established by a
comparison with an exact solution.

The motion of a fluid can be induced by the application of a pressure
gradient or a body force and by a solid wall that is moving or applies a shear
stress to the fluid. If the fluid is initially at rest, its motion can become
steady or remain unsteady. Starting solutions for unsteady motions which
become steady or permanent in time are important for those who want to
eliminate the transients from their rheological experiments. They describe
the fluid motion some time after its initiation. After that time, when the
transients disappear, the fluid moves according to the permanent solutions.
However, as it results from the existing literature [1-5], the required time to
reach the time-dependent permanent state for unsteady motions induced by
oscillating boundaries is small enough.

Consequently, an important problem for such motions as well as for those
due to an oscillating pressure gradient or induced by a solid wall that applies
an oscillatory shear stress to the fluid is to determine the permanent compo-
nents of their solutions. The first exact permanent solutions for oscillatory
motions of non-Newtonian fluids seem to be those of Rajagopal [6, 7] and
Rajagopal and Bhatnagar [8]. Of course, a part of these solutions have been
extended to larger classes of fluids (see [9-13], for instance) but permanent
solutions for some axial flows in cylindrical domains are lack in the existing
literature.

The purpose of this work is to remove this drawback and to provide exact
time-dependent permanent solutions corresponding to oscillatory motions of
generalized Burgers fluids in cylindrical domains induced by an oscillating
pressure gradient or a circular cylinder that applies a longitudinal oscilla-
tory shear-stress to the fluid. These solutions, that are periodic in time
and independent of the initial conditions, satisfy the boundary conditions
and governing equations and can be immediately reduced to the similar so-
lutions for Burgers, Oldroyd-B, Maxwell, second grade and linearly viscous
fluids. Furthermore, they can be used to develop time-dependent permanent
solutions for some rotational oscillatory motions of the same fluids.
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2 Constitutive and governing equations

The Cauchy stress tensor T corresponding to an incompressible gener-
alized Burgers fluid (IGBF) is given by [11]

T = −pI + S, S + λ1
δS

δt
+ λ2

δ2S

δt2
= µ

(
A + λ3

δA

δt
+ λ4

δ2A

δt2

)
, (1)

where −pI is the indeterminate spherical stress, S is the extra-stress ten-
sor, A = L + LT is the first Rivlin-Ericksen tensor with L = gradv (the
velocity gradient), µ is the dynamic viscosity, λ1 and λ3 (< λ1) (see [14,
Sect. 7]) are relaxation and retardation times while λ2 and λ4 are mate-
rial constants whose dimension is the square of time. Further, the upper
convected derivative of a frame-indifferent tensor

δS

δt
= Ṡ − LS − SLT or

δA

δt
= Ȧ − LA − ALT , (2)

is also frame-indifferent. Here, the superposed dot denotes the material time
derivative and the superscript ’T ’ indicates the transpose operation.

This fluid model contains as special cases Burgers, Oldroyd-B, Maxwell
and linearly viscous fluids for λ4 = 0, λ2 = λ4 = 0, λ2 = λ3 = λ4 = 0,
respectively λ1 = λ2 = λ3 = λ4 = 0. In some special flows, like those to be
here considered, the governing equations corresponding to IGBF resemble
those for second grade fluids. Consequently, the solutions corresponding to
the above mentioned fluids performing the same motions have to be obtained
as limiting cases of present solutions.

As the fluid is incompressible, it can undergo only isochoric motions and
therefore trA = div v = 0. The balance of linear momentum in the absence
of body forces becomes

−grad p + div S = ρv̇, (3)

where v denotes the fluid velocity and ρ is its constant density. In the follow-
ing we shall consider oscillatory motions of an IGBF in circular cylindrical
domains. For such motions we assume a velocity field of the form

v = v(r, t) = v(r, t)k, (4)

where k is the unit vector along the z-direction of the cylindrical coordinate
system r, θ and z. For such motions, the constraint of incompressibility is
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automatically satisfied. We also assume that the extra-stress tensor S, as
well as the velocity v, is a function of r and t only.

If the fluid has been at rest up to the moment t = 0, Eqs. (1)2 and
(4) imply Srr = Srθ = Sθθ = Sθz = 0 while the non-trivial shear stress
τ(r, t) = Srz(r, t) satisfies the partial differential equation

(
1 + λ1

∂

∂t
+ λ2

∂2

∂t2

)
τ(r, t) = µ

(
1 + λ3

∂

∂t
+ λ4

∂2

∂t2

)
∂v(r, t)

∂r
· (5)

Proceeding with the analysis, the momentum equation (3) reduces to [8,
Eq. (22.3)]

ρ
∂v(r, t)

∂t
= −∂p

∂z
+

1

r

∂

∂r
[rτ(r, t)], (6)

where ∂p/∂z is at most a function of time.

By now eliminating τ(r, t) between Eqs. (5) and (6) we obtain the go-
verning equation for velocity, namely

(
1 + λ1

∂
∂t + λ2

∂2

∂t2

)
∂v(r,t)

∂t = −1
ρ

(
1 + λ1

∂
∂t + λ2

∂2

∂t2

)
∂p
∂z

+ν
(
1 + λ3

∂
∂t + λ4

∂2

∂t2

) (
∂2

∂r2 + 1
r

∂
∂r

)
v(r, t),

(7)

where ν = µ/ρ is the kinematic viscosity of the fluid.

3 Motions due to an oscillating pressure gradient

Let us assume that an IGBF is at rest in an annular region between
two infinite coaxial circular cylinders of radii R0 and R (> R0). After time
t = 0+ an oscillating pressure gradient

−∂p

∂z
= P cos(ωt) or − ∂p

∂z
= P sin(ωt), (8)

acts on the inner fluid along the common axis of cylinders. Here, P is the
amplitude and ω is the frequency of oscillations. The fluid is gradually
moved and its velocity is of the form (4). In order to solve such a problem,
we have to determine the solution of the linear partial differential equation
(7) with the initial and boundary conditions

v(r, 0) =
∂v(r, t)

∂t

∣∣∣∣
t=0

=
∂2v(r, t)

∂t2

∣∣∣∣
t=0

= 0, (9)
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v(R0, t) = v(R, t) = 0. (10)

The starting solutions corresponding to such problems, as it results from
the existing literature, are usually presented as a sum of permanent and tran-
sient solutions. They describe the fluid motion some time after its initiation.
After this time, when the transients disappear, the fluid flows according to
the permanent solutions which are independent of the initial conditions.
Denoting by vc(r, t) and vs(r, t) the time-dependent permanent solutions
corresponding to the cosine or sine oscillations of the pressure gradient and
by

u(r, t) = vc(r, t) + ivs(r, t), (11)

the complex velocity, it results that u(r, t) has to satisfy the partial diffe-
rential equation

(
1 + λ1

∂
∂t + λ2

∂2

∂t2

)
∂u(r,t)

∂t = P
ρ (1 − ω2λ2 + iωλ1)e

iωt

+ν
(
1 + λ3

∂
∂t + λ4

∂2

∂t2

) (
∂2

∂r2 + 1
r

∂
∂r

)
u(r, t),

(12)

with the boundary conditions

u(R0, t) = u(R, t) = 0. (13)

Due to the previous assumptions concerning the pressure gradient (see
Eqs. (8)), we are looking for a solution of the form

u(r, t) = U(r)eiωt, (14)

and determine U(r) from Eq. (12) and the boundary conditions (13). Direct
computations show that U(r) has to satisfy the ordinary differential equation

d2U(r)
dr2 + 1

r
dU(r)

dr − iω
ν

1−ω2λ2+iωλ1
1−ω2λ4+iωλ3

U(r)

+P
µ

1−ω2λ2+iωλ1
1−ω2λ4+iωλ3

= 0,
(15)

with the boundary conditions

U(R0) = U(R) = 0. (16)

The general solution of Eq. (15) is of the form

U(r) = C1I0(γr) + C2K0(γr) − i
P

ρω
, (17)
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where I0(·) and K0(·) are modified Bessel functions of the first and second
kind, C1 and C2 are arbitrary constants, −iP/(ρω) is a particular solution
of this equation and

γ =

√
iω

ν

1 − ω2λ2 + iωλ1

1 − ω2λ4 + iωλ3
·

Using the boundary conditions (16) and bearing in mind the notation
(11), we find that

vc(r, t) =
P

ρω
Re{[1 + AI0(γr) + BK0(γr)]ei(ωt−π/2)}, (18)

vs(r, t) =
P

ρω
Im{[1 + AI0(γr) + BK0(γr)]ei(ωt−π/2)}, (19)

where Re and Im denote the real and imaginary parts of that which follows
and

A = K0(γR)−K0(γR0)
I0(γR)K0(γR0)−I0(γR0)K0(γR) ,

B = I0(γR0)−I0(γR)
I0(γR)K0(γR0)−I0(γR0)K0(γR) ·

A simple analysis clearly shows that vc(r, t) and vs(r, t), given by Eqs.
(18) and (19), satisfy the boundary conditions (10).

Now, for completion, we also present the similar solutions

vc(r, t) =
P

ρω
Re

{[
1 − I0(γr)

I0(γR)

]
ei(ωt−π/2)

}
, (20)

vs(r, t) =
P

ρω
Im

{[
1 − I0(γr)

I0(γR)

]
ei(ωt−π/2)

}
, (21)

corresponding to the same motions through an infinite circular cylinder of
radius R. These solutions can be obtained as a limiting case of Eqs. (18)
and (19) (by making R0 → 0) or following the same way as before. By
now letting λ1 = λ2 = λ3 = λ4 = 0 into Eqs. (18), (19) or (20), (21),
the solutions corresponding to linearly viscous fluids performing the same
motion are obtained. Eqs. (20) and (21), for instance, become

vc(r, t) =
P

ρω
Re






1 −

I0

(
(i + 1)r

√
ω/(2ν)

)

I0

(
(i + 1)R

√
ω/(2ν)

)


 ei(ωt−π/2)



 , (22)

vs(r, t) =
P

ρω
Im






1 −

I0

(
(i + 1)r

√
ω/(2ν)

)

I0

(
(i + 1)R

√
ω/(2ν)

)


 ei(ωt−π/2)



 , (23)
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In Figs. 1 and 2, for comparison, the profiles of velocities vc(r, t) and
vs(r, t) corresponding to motions through an infinite circular cylinder are
presented for different values of physical parameters. As expected, the velo-
city diagrams corresponding to generalized Burgers fluids tend to superpose
over those of Newtonian fluids when λi → 0 (i = 1, 2, 3, 4).

Fig. 1. Profiles of the velocity v ( , ) given by Eqs. (20) and (22).c r  t

Fig. 2. Profiles of the velocity v ( , ) given by Eqs. (21) and (23).S r  t
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4 Motion induced by an infinite cylinder
that applies an oscillatory longitudinal
shear stress to the fluid

The flow between circular cylinders or through a cylinder is one of the
most important and interesting problems of motion. It has been intensively
studied and during recent years many papers of this type have been pub-
lished. In the following, unlike the previous works, we shall consider the
motion of an IGBF produced by an oscillatory shear stress on the bound-
ary.

4.1 Motion between circular cylinders

Consider again an IGBF at rest in the same annular region as before. At
time t = 0+ the outer cylinder of radius R applies an oscillatory longitudinal
shear stress f sin(ωt) or f cos(ωt) to the fluid while the inner one of radius R0

is fixed. Owing to the shear the fluid between cylinders is gradually moved
and its velocity is again of the form (4). Assuming that the extra-stress
S is also a function of r and t only, we find the same partial differential
equation (5) for the non-trivial shear stress τ(r, t). In the absence of a
pressure gradient in the flow direction, the motion equations reduce to

ρ
∂v(r, t)

∂t
=

1

r

∂

∂r
[rτ(r, t)], (24)

while the boundary conditions are

τ(R0, t) = 0; τ(R, t) = f cos(ωt) or τ(R, t) = f sin(ωt). (25)

In order to solve a problem with shear stress on the boundary, we eliminate
the velocity v(r, t) between Eqs. (5) and (24) and find that

(
1 + λ1

∂
∂t + λ2

∂2

∂t2

)
∂τ(r,t)

∂t

= ν
(
1 + λ3

∂
∂t + λ4

∂2

∂t2

)(
∂2

∂r2 + 1
r

∂
∂r − 1

r2

)
τ(r, t),

(26)

Denoting by τc(r, t) and τs(r, t) the time-dependent permanent shear stresses
corresponding to the motion due to the cosine or sine oscillations of the shear
stress on the boundary and by

T (r, t) = τc(r, t) + iτs(r, t), (27)
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the complex shear stress, we attain to the next boundary value problem

(
1 + λ1

∂
∂t + λ2

∂2

∂t2

)
∂T (r,t)

∂t

= ν
(
1 + λ3

∂
∂t + λ4

∂2

∂t2

)(
∂2

∂r2 + 1
r

∂
∂r − 1

r2

)
T (r, t),

(28)

T (R0, t) = 0, T (R, t) = feiωt. (29)

We now seek a separable solution of the form

T (r, t) = F (r)eiωt (30)

and follow the same way as before. A simple analysis shows that the function
F (·) has to satisfy the Bessel equation

s2 d2F (s)

ds2
+ s

dF (s)

ds
− (1 + s2)F (s) = 0, (31)

where s = γr. The general solution of Eq. (31) is

F (s) = C1I1(s) + C2K1(s), (32)

where C1 and C2 are again arbitrary constants while I1(·) and K1(·) are
modified Bessel functions of one order.

Introducing Eq. (32) into (30) and using the boundary conditions (29),
we find that

τc(r, t) = f Re

{
K1(γR0)I1(γr) − I1(γR0)K1(γr)

K1(γR0)I1(γR) − I1(γR0)K1(γR)
eiωt

}
, (33)

τs(r, t) = f Im

{
K1(γR0)I1(γr) − I1(γR0)K1(γr)

K1(γR0)I1(γR) − I1(γR0)K1(γR)
eiωt

}
, (34)

Direct computations show that τc(r, t) and τs(r, t) satisfy both the boundary
conditions and the governing equation (26) (see for instance [15, Eq. (1.1)]).

4.2 Motion through a circular cylinder

The solutions corresponding to the motion within an infinite circular
cylinder that applies an oscillatory longitudinal shear stress f cos(ωt) or
f sin(ωt) to the fluid, namely

τc(r, t) = f Re

{
I1(γr)

I1(γR)
eiωt

}
, τs(r, t) = f Im

{
I1(γr)

I1(γR)
eiωt

}
, (35)
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can be obtained following the same way as before and bearing in mind the
fact that the fluid velocity has to remain finite along the axis of cylinder. The
solutions (35) can be also obtained as a limiting case of Eqs. (33) and (34)
when R0 → 0. The velocity fields corresponding to these motions, namely

vc(r, t) = f
ρω Re

{
I0(γr)
I1(γR) γei(ωt−π/2)

}
,

vs(r, t) = f
ρω Im

{
I0(γr)
I1(γR) γei(ωt−π/2)

}
,

(36)

are immediately obtained introducing Eqs. (35) into (24) and integrating
with respect to t.

Finally, for completion, the diagrams of the shear stresses τc(r, t) and
τs(r, t) corresponding to motions through an infinite circular cylinder that
applies oscillating shears to the fluid are depicted in Figs. 3 and 4 both for
Newtonian and generalized Burgers fluids. It is clearly seen from these figures
that the shear stress profiles corresponding to generalized Burgers fluids tend
to superpose over those of Newtonian fluids when λi → 0 (i = 1, 2, 3, 4).

Fig. 3. Profiles of the shear stress ( , ) given by Eq. (35) .tc 1r  t

Fig. 4. Profiles of the shear stress ( , ) given by Eq. (35) .ts 2r  t
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4.3 Applications to oscillatory rotational motions

Motions between rotating cylinders have been intensively studied since
Taylor [16] reported the results of his famous investigations. Here, we con-
sider the rotational motion of an IGBF due to the outer cylinder that oscil-
lates around its axis with the angular velocities W cos(ωt) or W sin(ωt). In
this case the velocity of the fluid is of the form

v = v(r, t) = w(r, t)eθ, (37)

where eθ is the unit vector along the θ-direction. The constraint of incom-
pressibility is again satisfied and the governing equation for the fluid velocity,
namely [12, Eq. (13)]

(
1 + λ1

∂
∂t + λ2

∂2

∂t2

)
∂w(r,t)

∂t

= ν
(
1 + λ3

∂
∂t + λ4

∂2

∂t2

)(
∂2

∂r2 + 1
r

∂
∂r − 1

r2

)
w(r, t),

(38)

has the same form as Eq. (26) for the shear stress τ(r, t).
As the associated boundary conditions

w(R0, t) = 0; w(R, t) = W cos(ωt) or w(R, t) = W sin(ωt), (39)

are identical to those from Eqs. (25), it results that the time-dependent
permanent solutions corresponding to such motions are given by

wc(r, t) = W Re

{
K1(γR0)I1(γr) − I1(γR0)K1(γr)

K1(γR0)I1(γR) − I1(γR0)K1(γR)
eiωt

}
, (40)

ws(r, t) = W Im

{
K1(γR0)I1(γr) − I1(γR0)K1(γr)

K1(γR0)I1(γR) − I1(γR0)K1(γR)
eiωt

}
. (41)

Of course, the similar solutions corresponding to the motion through an
infinite circular cylinder, namely

wc(r, t) = W Re

{
I1(γr)

I1(γR)
eiωt

}
, ws(r, t) = W Im

{
I1(γr)

I1(γR)
eiωt

}
, (42)

are immediately obtained using Eqs. (35).

5 Conclusions

In this note two unsteady oscillatory motions of an IGBF in an annulus
are considered and closed form time-dependent permanent solutions are esta-
blished in terms of the modified Bessel functions I0(·), I1(·),K0(·) and K1(·).
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These solutions, which are periodic in time and independent of the initial
conditions, satisfy the boundary conditions and governing equations and can
be easy reduced to the similar solutions for Burgers, Oldroyd-B, Maxwell,
second grade and linearly viscous fluids performing the same motions. By
now taking λ1 = λ2 = λ3 = λ4 = 0 into Eqs. (42), for instance, the solutions

wc(r, t) = W Re

{
I1[(1+i)r

√
ω/(2ν)]

I1[(1+i)R
√

ω/(2ν)]
eiωt

}
,

ws(r, t) = W Im

{
I1[(1+i)r

√
ω/(2ν)]

I1[(1+i)R
√

ω/(2ν)]
eiωt

}
,

(43)

corresponding to Newtonian fluids (see [10, Eqs. (35)2]) are recovered. Fur-
thermore, in the view of some asymptotic expansions of modified Bessel
functions (see for instance Bandelli and Rajagopal [17, Sect. 4], all these so-
lutions can be well enough approximated by simple expressions containing
the elementary functions cos(·), sin(·), cosh(·) and sinh(·). Indeed, follow-
ing [4] we can show that the shear stress τc(r, t) given by Eq. (35)1 can be
approximated by

f
√

R
r cos(ωt) cosh[(r+R)a] cos[(r−R)b]−cosh[(r−R)a] sin[(r+R)b]

cosh(2Ra)− sin(2Rb)

−f
√

R
r sin(ωt) sinh[(r+R)a] sin[(r−R)b]+sinh[(r−R)a] cos[(r+R)b]

cosh(2Ra)− sin(2Rb)

(44)

where

a =
√

δ cos
(φ

2

)
, b =

√
δ sin

(φ
2

)
,

φ = arctg
(

ω2λ1λ3+(1−ω2λ2)(1−ω2λ4)
ωλ3(1−ω2λ2)−ωλ1(1−ω2λ4)

)

δ = ω
ν

√
[ωλ3(1−ω2λ2)−ωλ1(1−ω2λ4)]2+[ω2λ1λ3+(1−ω2λ2)(1−ω2λ4)]2

(1−ω2λ4)2+ω2λ2
3

·

Finally, it is worth pointing out that based on a simple remark regarding
the governing equations corresponding to the shear stress τ(r, t) in longitu-
dinal motions and the velocity ω(r, t) in the case of rotational motions in
cylindrical domains, some important applications of our results have been
brought to light.



Axial motions of generalized Burgers fluids 283

Acknowledgement. The authors would like to express their sincere grat-
itude to reviewers for their careful assessments, fruitful remarks and valu-
able suggestions regarding the earlier version of the paper. S. Akhtar is also
highly thankful and grateful to the Abdus Salam School of Mathematical
Sciences, GC University Lahore, Pakistan for generous support and facili-
tating this research work.

References

[1] M.E. Erdogan, A note on an unsteady flow of a viscous fluid due to an
oscillating plane wall, Int. J. Non-Linear Mech., 35 : 1 − 6, 2000.

[2] T. Hayat, M.F. Afzad, C. Fetecau, A.A. Hendi, Slip effects on the os-
cillatory flow in a porous medium, J. Porous Media, 14 : 481 − 493,
2011.

[3] Corina Fetecau, M. Jamil, C. Fetecau, I. Siddique, A note on the second
problem of Stokes for Maxwell fluids, Int. J. Non-Linear Mech., 44 :
1085 − 1090, 2009.

[4] Corina Fetecau, T. Hayat, C. Fetecau, Starting solutions for oscillating
motions of Oldroyd-B fluids in cylindrical domains, J. Non-Newtonian
Fluid Mech., 153 : 191 − 201, 2008.

[5] Corina Fetecau, T. Hayat, M. Khan, C. Fetecau, A note on longitudinal
oscillations of a generalized Burgers fluid in cylindrical domains, Int.
J. Non-Newtonian Fluid Mech., 165 : 350 − 361, 2010.

[6] K.R. Rajagopal, A note on unsteady unidirectional flows of a non-
Newtonian fluid, Int. J. Non-Linear Mech., 17 : 369 − 373, 1992.

[7] K.R. Rajagopal, Longitudinal and torsional oscillations of a rod in a
non-Newtonian fluid, Acta Mech., 40 : 281 − 285, 1983.

[8] K.R. Rajagopal, R.K. Bhatnagar, Exact solutions for some simple flows
of an Oldroyd-B fluid, Acta Mech., 113 : 233 − 239, 1995.

[9] T. Hayat, C. Fetecau, S. Asghar, Some simple flows of a Burgers’ fluid,
Int. J. Eng. Sci., 44 : 1423 − 1431, 2006.

[10] D. Vieru, W. Akhtar, Corina Fetecau, C. Fetecau, Starting solution
for the oscillating motion of a Maxwell fluid in cylindrical domains,
Meccanica, 42 : 573 − 583, 2007.



284 Constantin Fetecau, Corina Fetecau, Shehraz Akhtar

[11] C. Fetecau, T. Hayat, Corina Fetecau, Steady-state solutions for some
simple flows of generalized Burgers fluids, Int. J. Non-Linear Mech., 41,
880 − 887, 2006.

[12] D. Tong, H. Hu, Starting solutions for oscillating motions of a genera-
lized Burgers’ fluid in cylindrical domains, Acta Mech., 214 : 395−407,
2010.

[13] Corina Fetecau, Qammar Rubbab, Shahraz Akhter, Constantin
Fetecau, New methods to provide exact solutions for some uni-
directional motions of rate type fluids, Thermal Science, DOI:
10.2298/TSCI130225130F.

[14] K.R. Rajagopal, A.R. Srinivasa, A thermodynamic frame work for rate
type fluid models, J. Non-Newtonian Fluid Mech., 88 : 207 − 227, 2010.

[15] K.P. Tolstov, Serii Fourier. Editura Tehnica, 1995 (translation from
Russian).

[16] G.I. Taylor, Stability of a viscous liquid contained between two rotating
cylinders, Phil. Trans. R. Soc. Lond., A 223 : 289 − 343, 1923.

[17] R. Bandelli, K.R. Rajagopal, Start-up flows of second grade fluids in
domains with one finite dimension, Int. J. Non-Linear Mech., 30 : 817−
839, 1995.



ISSN 2066-6594

Ann. Acad. Rom. Sci.
Ser. Math. Appl.

Vol. 7, No. 2/2015

Higher Order Boundary Value Problem

for Impulsive Differential Inclusions∗

Johnny Henderson† Abdelghani Ouahab‡ Samia Youcefi§

Abstract

In this paper, we present some existence results for the higher order
impulsive differential inclusion:




x(n)(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), a.e. t ∈ J = [0,∞), t 6= tk,
k = 1, . . . ,

∆x(i)|t=tk = Iik(x(tk), x′(tk), . . . , x(n−1)(tk)), i = 0, 1, . . . , n− 1,
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1 Introduction

Differential equations with impulses were considered for the first time in
the 1960’s by Milman and Myshkis [20]. Their work was followed by a period
of active research, mostly in Eastern Europe during 1960-1970, culminating
with the monograph by Halanay and Wexler [15].

The dynamics of many evolving processes are subject to abrupt changes,
such as shocks, harvesting and natural disasters. These phenomena involve
short-term perturbations from continuous and smooth dynamics, whose du-
ration is negligible in comparison with the duration of an entire evolution.
In models involving such perturbations, it is natural to assume these pertur-
bations act instantaneously or in the form of “impulses”. As a consequence,
impulsive differential equations have been developed in modeling impulsive
problems in physics, population dynamics, ecology, biotechnology, industrial
robotics, pharmcokinetics, optimal control, and so forth. Again, associated
with this development, a theory of impulsive differential equations has been
given extensive attention. Works recognized as landmark contributions in-
clude [14, 21]. The existence theory of impulsive differential equations in
Banach space was studied by Guo [11, 12, 13]. There are also many differ-
ent studies in biology and medicine for which impulsive differential equations
are good models (see for instance, [2] and the references therein).

In recent years, many examples of differential equations with impulses
with fixed moments have flourished in several contexts. In the periodic
treatment of some diseases, impulses correspond to administration of a drug
treatment or a missing product. In environmental sciences, seasonal changes
of the water level of artificial reservoirs are often considered as impulses.

More precisely, we will consider nth order impulsive differential inclu-
sions of the form,

x(n)(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), a.e. t ∈ J = [0,∞)\{t1, . . .} (1.1)

∆x(i)|t=tk = Iik(x(tk), x
′(tk), . . . , x

(n−1)(tk)), i = 0, 1, . . . , n− 1, k = 1, . . . ,
(1.2)

x(i)(0) = x0i, (i = 0, 1, . . . , n− 2, ), x(n−1)(∞) = βx(n−1)(0), (1.3)

where F : R+ × E × E × · · · × E → P(E) is a multifunction, x0i ∈ E, i =
0, 1, . . . , n − 1, 0 = t0 < t1 < · · · < tm < · · · , lim

k→∞
tk = ∞, Iik ∈ C(E ×
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· · · × E,E) (i = 1, . . . , n − 1, k = 1, . . . , ), ∆x(i)|t=tk = x(i)(t+k ) − x(i)(t−k ),

where x(i)(t+k ) = lim
h→0+

x(i)(tk + h) and x(i)(t−k ) = lim
h→0+

x(i)(tk − h) repre-

sent the right and left limits of x(i)(t) at t = tk, respectively, x(n−1)(∞) =
lim
t→∞

x(n−1)(t), and (E, | · |) is real separable Banach space.

Our goal in this work is to give some existence results when the right-
hand side multi-valued nonlinearity can be either convex or nonconvex.
Some auxiliary results from multi-valued analysis are gathered together in
Section 2. In the Section 3, we give an existence result based on nonlin-
ear alternative of Leray-Schauder type for condensing maps (in the convex
case). In Section 4, some existence results are obtained based on the nonlin-
ear alternative of Leray-Schauder type and on the Covitz and Nadler fixed
point theorem for contractive multi-valued maps (in the nonconvex case).

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
from multivalued analysis which are used throughout this paper.

Let (X, d) be a metric space and Y be a subset of X. We denote:

• P(X) = {Y ⊂ X : Y 6= ∅} and

• Pp(X) = {Y ∈ P(X) : Y has the property “p”}, where p could be:
cl=closed, b=bounded, cp=copmact, cv=convex, etc.

Thus

• Pcl(X) = {Y ∈ P(X) : Y closed},

• Pb(X) = {Y ∈ P(X) : Y bounded},

• Pcv(X) = {Y ∈ P(X) : Y convex}, where X is a Banach space

• Pcp(X) = {Y ∈ P(X) : Y compact},

• Pcv,cp(X) = Pcv(X) ∩ Pcp(X), etc.

In what follows, by E we shall denote a separable Banach space over the
field of real numbers R, and by J̄ a closed bounded interval in R. We let

C(J̄ , E) = {x : J̄ → E | x is continuous}.
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We consider the Tchebyshev norm:

‖ · ‖∞ : C(J̄ , E)→ [0,∞)

defined as follows:
‖x‖∞ = max{|x(t)| : t ∈ J̄},

where | · | stands for the norm in E. Then (C(J̄ , E), ‖ · ‖∞) is a Banach
space.

The following are classical concepts:
A function x : R+ → E is called measurable provided for every open

U ⊂ E the set:
x−1(U) = {t ∈ R+ | x(t) ∈ U}

is Lebesgue measurable.
We shall say that a measurable function x : R+ → E is Bochner in-

tegrable provided the function |x| : R+ → [0,∞) is Lebesgue integrable
function.

We let:

L1(R+, E) = {x : R+ → E | x is Bochner integrable}.

Let us add that two functions x1, x2 : J → E such that the set {x1(t) 6=
x2(t) | t ∈ R+} has Lebesgue measure equal to zero are considered as equal.

Then, we are able to define on L1,

‖x‖L1 =

∫ ∞

0
|x(t)| dt.

It is well-known that:
(L1(R+, E), ‖ · ‖L1)

is a Banach space.

Definition 1. Let (Ω,Σ, µ) be a finite measure space. A subset C in L1(Ω,Σ,
µ) is called uniformly integrable if, for each ε > 0 there exists δ(ε) > 0 such
that, for each measurable subset R ⊂ Σ whose µ(R) < δ(ε), we have

∫

R
|f(ω)|dµ(ω) < ε.

Remark 1. Let C ⊂ L1(Ω,Σ, µ), then:

(i) if µ(Ω) < ∞ and C is bounded in Lp(Ω,Σ, µ) where p > 1, then C is
uniformly integrable.
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(ii) if there exist p ∈ L1(Ω, µ,R+) such that

|f(ω)| ≤ p(ω), for each f ∈ C and a.e. ω ∈ Ω,

then C is uniformly integrable.

Let K ⊂ X. We define K by

K = {f ∈ L1(Ω,Σ, µ) : f(ω) ∈ K a.e. ω ∈ Ω}.

Theorem 1. [8] Let (Ω,Σ, µ) be a finite measure space and X a Banach
space, and let K be a bounded uniformly integrable subset of L1(Ω,Σ, µ).
Suppose that given ε > 0 there exists a measurable set Ωε and a weakly
compact set Kε ⊂ X such that µ(Ω\Ωε) < ε and for each f ∈ K, f(ω) ∈ Kε

for almost all ω ∈ Ωε. Then K is a relatively weakly compact subset of
L1(Ω,Σ, µ).

Next we present a new result due to Vrabie [23].

Theorem 2. Let (Ω,
∑
, µ) be a σ−finite measure space, let {Ωk : k ∈ N}

be a subfamily of
∑

such that





µ(Ωk) <∞ for k = 0, 1, . . . ,
Ωk ⊂ Ωk+1 for k = 0, 1, . . . ,
∪∞k=0Ωk = Ω,

and let X be a Banach space. Let K ⊂ L1(Ω, µ,X) be bounded and uniformly
integrable in L1(Ωk, µ,X), for k = 0, 1, . . ., and

lim
k→∞

∫

Ω\Ωk

|f(ω)|dµ(ω) = 0

uniformly for f ∈ K. If for each γ > 0 and each k ∈ N, there exist a
weakly compact subset Cγ,k ⊂ X and a measurable subset Ωγ,k ⊂ Ωk with
µ(Ω\Ωγ,k) ≤ γ and f(Ωγ,k) ⊂ Cγ,k for all f ∈ K, then K is weakly relatively
compact in L1(Ω,

∑
, µ).

2.1 Multi-valued analysis

Let (X, ‖·‖) be a Banach space. A multi-valued map G : X → P(X) has
convex (closed) values if G(x) is convex (closed) for all x ∈ X. We say that
G is bounded on bounded sets if G(B) is bounded in X for each bounded
set B of X, i.e., sup

x∈B
{sup{‖y‖ : y ∈ G(x)}} < ∞). The map G is called
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upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is a
nonempty, subset of X and if for each open set N of X containing G(x0),
there exists an open neighborhood M of x0 such that G(M) ⊆ N. Also, G
is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊆ X. If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). Finally, we
say that G has a fixed point if there exists x ∈ X such that x ∈ G(x).

A multi-valued map G : R+ → Pcl(X) is said to be measurable if for
each x ∈ E, the function Y : R+ → X defined by

Y (t) = dist(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)},

is Lebesgue measurable.

Definition 2. A measure of noncompactness β is called

(a) Monotone if Ω0,Ω1 ∈ P(X) Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1).

(b) Nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ X,Ω ∈ P(X).

(c) Invariant with respect to the union with compact sets if β(K ∪ Ω) =
β(Ω) for every relatively compact set K ⊂ X and Ω ∈ P(X).

(d) Real if A=R+ = [0,∞] and β(Ω) <∞ for every bounded Ω.

(e) Semi-additive if β(Ω0 ∪ Ω1) = max(β(Ω0), β(Ω1)) for every Ω0,Ω1 ∈
P(X).

(f) Lower-additive if β is real and β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for every
Ω0,Ω1 ∈ P(X).

(g) Regular if the condition β(Ω) = 0 is equivalent to the relative compact-
ness of Ω.

Definition 3. A sequence {vn}n∈N ⊂ L1([a, b], X) is said to be semi-compact
if

(a) it is integrably bounded, i.e. if there exists ψ ∈ L1([a, b],R+) such that

‖vn(t)‖ ≤ ψ(t), for a.e. t ∈ [a, b] and every n ∈ N,

(b) the image sequence {vn(t)}n∈N is relatively compact in X for a.e. t ∈
[a, b].
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Lemma 1. [18] Every semi-compact sequence in L1([a, b], X) is weakly com-
pact in L1([a, b], X).

Lemma 2. [18] If F : X → P(Y ) is u.s.c., then Gr(F) is a closed subset of
X×Y Conversely, if F is locally compact and has nonempty compact values
and a closed graph, then it is u.s.c.

Next we state the nonlinear alternative of Leray-Schauder type for con-
densing maps.

Lemma 3. [18] Let V ⊂ X be a bounded open neighborhood of zero and
N : V →Pcp,cv(X) a β−condensing u.s.c. multi-map, where β is a nonsin-
gular measure of noncompactness defied on subsets of X. If N satisfies the
boundary condition

x 6∈ N(x)

for all x ∈ ∂V and 0 < λ < 1, then the set Fix(N) = {x ∈ V, x ∈ N(x)} is
nonempty.

Lemma 4. [18] Let W be a closed bounded convex subset of a Banach space
X and F :W →Pcp(W ) be a closed

β−condensing multi-map where β is a monotone MNC on X. Then
Fix(F) is nonempty and compact.

For more details on multi-valued maps we refer to the books Hu and
Papageorgiou [17] and Kamenskii et al [18].

3 Convex case

Before stating the results of this section we consider the following spaces.

PC =
{
x : R+ → E | x(t−k ), x(t+k ) exist with x(tk) = x(t−k ),

xk ∈ C(Jk, E), k = 1, . . .
}
,

where xk is the restriction of x to Jk = (tk, tk+1], k = 0, . . . .

DPC(R+, E) = {x ∈ PC : sup
t∈J

e−t|x(t)| <∞},

It is clear that DPC(R+, E) is a Banach space with norm

‖x‖B = sup
t∈R+

e−t|x(t)|.
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PC(n−1) =
{
x ∈ PC(R+, E) | x(i) exist and it is continuous at t 6= tk,

i = 1, . . . , n− 1, and x(i)(t−k ), x(i)(t+k ) exist with

x(i)(t−k ) = x(i)(tk), k = 1, . . .
}
,

DPCn−1(R+, E) = {y ∈ PC(n−1) : sup
t∈J

e−t|x(i)(t)| < ∞ i = 1, . . . , n − 1}
is a Banach space with the norm

‖x‖D = max(‖x‖B, ‖x′‖B, . . . , ‖x(n−1)‖B).

Set

AC(J,E) = {y : [a, b]→ E absolutely continuous,

y(t) = y(a) +

∫ t

a
y′(s)ds, and y′ ∈ L1([a, b], E)}.

in general, on interval [a, b], there need not exist y′(t), for almost all t ∈ [a, b]
with y′ ∈ L1([a, b], E) and

y(t) = y(a) +

∫ t

a
y′(s)ds.

It is so if E satisfies the Radon-Nikodym property, in particular, if E is
reflexive. Moreover, we have the following.

Lemma 5. [1] Suppose y : [a, b]→ E is absolutely continuous, y′ exists a.e.,
and

|y′(t)| ≤ l(t) a.e. for some l ∈ L1([a, b], E).

Then y′ ∈ L1([a, b], E)

∫ t

τ
y′(s)ds = y(t)− (τ), t, τ ∈ [a, b].

Let us start by defining what we mean by a solution of problem (1.1)-
(1.3).

Definition 4. We say that the function x ∈ PC(n−1) is a solution of the
system (1.1)-(1.3) if x0i = x(i)(0), i = 0 , . . . , n − 1 and there exists v(·) ∈
L1([0,∞), E), such that v(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)) a.e [0,∞), and
such that x(n)(t) = v(t), and the impulsive systems ∆x(i)|t=tk = Iki(x(tk)),
i = 0, 1, . . . , n− 1, k = 1, 2, . . . , are satisfied.
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A fundamental notation for a solution of problem (1.1)-(1.3) is given by
the following auxiliary result.

Lemma 6. [13]. Let f ∈ L1(R+, E) and β ∈ R\{1}. Then x is the unique
solution of the impulsive boundary value problem,

x(n)(t) = f(t), t ∈ J := [0,∞), t 6= tk, k = 1, . . . , (3.1)

∆x(i)|t=tk = Iki(x(t−k ), x′(tk), . . . , x
(n−1)(tk)), i = 0, . . . , n− 1, k = 1, . . . ,

(3.2)
x(i)(0) = x0i, i = 0, . . . , n− 1, x(n−1)(∞) = βx(n−1)(0), (3.3)

if and only if x is a solution of impulsive integral differential equation

x(t) =





n−2∑

j=0

tj

j!
x0i +

tn−1

(β − 1)(n− 1)!

∫ ∞

0
f(s)ds

+
tn−1

(β − 1)(n− 1)!

∞∑

k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+
1

(n− 1)!

∫ t

0
(t− s)n−1f(s)ds

∑

0<tk<t

n−1∑

j=0

(t− tk)j
j!

Ijk(x(tk), x
′(tk), . . . , x

(n−1)(tk)) if t ∈ [0,∞).

(3.4)

Let F : J ×E× . . .×E → Pcp,cv(E) be a Carathéodory multimap which
satisfies the following assumptions:

(H1) There exist functions a, bj ∈ L1(J,R+), j = 0, . . . , n− 1, such that

‖F (t, z0, z1, . . . , zn−1)‖P ≤ a(t) +

n−1∑

j=0

bj(t)|zj |

for a.e. t ∈ J, zj ∈ E, (j = 0, . . . , n− 1),

a∗ =

∫ ∞

0
a(t)dt <∞, b∗j =

∫ ∞

0
bj(t)e

tdt <∞, j = 0, . . . , n− 1,

and F has a measurable selection.
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(H2) There exist nonnegative constants cikj , dik (i, j = 0, . . . , n − 1; k =
1, 2, . . .) such that

|Iik(z0, z1, . . . , z(n−1))| ≤ dik +

n−1∑

j=0

cikj |zj |,

∀zj ∈ E, (i, j = 0, . . . , n− 1; k = 1, 2, . . .),

d∗ =
∞∑

k=1

d∗k, c∗ =
∞∑

k=1

etk(
n−1∑

j=0

c∗kj) <∞,

where

d∗k = max{dik, i = 0, . . . , n− 1}, c∗kj = max{cikj , i = 0, . . . , n− 1}.

(H3) There exists p ∈ L1(J,R+) such that, for every bounded subset D in
DPCn−1(J,E),

χ(F (t,D(i)(t))) ≤ p(t)χD(D), ∀t ∈ J ; (i = 0, . . . , n− 1),

with

p∗ =

∫ ∞

0
p(t)etdt <∞,

where D(i)(t) = {x(i)(t), x ∈ D}, and χ is the Hausdorff MNC.

(H4) There exists lik > 0 such that, for every bounded subset D in
DPCn−1(J,E),

χ(Ik(D
(i)(t))) ≤ likχD(D), (i = 0, . . . , n− 1; k = 1, 2, . . .),

l∗ =
∞∑

k=1

l∗k, l∗∗ =
∞∑

k=1

n−1∑

j=0

ljk <∞,

where
l∗k = max{lik, i = 0, . . . , n− 1},

and
χD(D) = max{sup

t∈J
(χ(D(i)(t))), i = 0, . . . , n− 1}.

(H5) There exists a nonnegative constant q such that

q :=
1

β − 1
(p∗ + l∗) + l∗∗ + ‖p‖L1 < 1.
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Lemma 7. [11] Let D ⊂ DPC(n−1) be bounded set such that D(i) is equicon-
tinous and limt→+∞ e−t|u(i)(t)| = 0 uniformly for every u ∈ D. Then

αD(D) = max{sup
t∈J

e−tα(D(i)(t)) : i = 0, 1, . . . , n− 1}

is a measure of noncompactness in DPC(n−1), where α is the Kurataowski
measure of noncompactness on bounded sets in E.

Theorem 3. [3] Let E be a Banach space. The Kuratowski and Hausdorff
MNCs are related by the inequalities

χ(B) ≤ α(B) ≤ 2χ(B), for every B ∈ Pb(E).

Theorem 4. Assume that hypotheses (H1) − (H5) hold. Then the BVP
(1.1)–(1.3) has at least one solution.

Proof. Let N : DPC(n−1)(J,E)→ P(DPC(n−1)(J,E)) be defined by

N(x) =





h ∈ DPC(n−1) : h(t) =





n−2∑

j=0

tj

j!
x0i

+ tn−1

(β−1)(n−1)!

∫ ∞

0
v(s)ds

+ tn−1

(β−1)(n−1)!

∞∑

k=1

In−1k(x(tk), x
′(tk),

. . . , x(n−1)(tk)))

+ 1
(n−1)!

∫ t

0
(t− s)n−1v(s)ds

+
∑

0<tk<t

n−1∑

j=0

(t− tk)j
j!

Ijk(x(tk), x
′(tk),

. . . , xn−1(tk))
if t ∈ [0,∞),





where

v ∈ SF,x = {v ∈ L1(J,E) : v(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), a.e t ∈ R+}.

(H1) implies that the set SF,x is nonempty. Since for each x ∈ DPCn−1

the nonlinearity F takes convex values, the selection set SF,x is convex and
therefore N has convex values. Under assumptions (H1), (H2), N sends
bounded sets into bounded and equicontinuous sets.
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Step 1. For bounded D ⊂ DPCn−1, we show that for all h ∈ N(D),

e−t|h(i)(t)| → 0 as t→∞,

independent of y ∈ D. Let h ∈ N(y). Then there exists v ∈ SF,y such that

h(i)(t) =





n−2∑

j=i

tj−i

(j − i)!x0i +
tn−i−1

(β − 1)(n− i− 1)!

∫ ∞

0
v(s)ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑

k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1v(s)ds

+
∑

0<tk<t

n−1∑

j=i

(t− tk)j−i
(j − i)! Ijk(x(tk), x

′(tk), . . . , x
n−1))), t ∈ [0,∞).

Thus

e−t|h(i)(t)| ≤ e−t



n−2∑

j=i

tj−i

(j − i)!


max{|x0i| : i = 0, . . . , n− 1}

+
e−ttn−i−1

(β − 1)(n− i− 1)!


a∗ +

n∑

j=0

b∗jR




+
e−ttn−i−1

(β − 1)(n− i− 1)!

∞∑

k=1

(dn−1k + etk
n−1∑

i=0

ckiR)

+
e−ttn−i−1

(n− i− 1)!


a∗ +

n∑

j=0

b∗jR




+te−t
∑

0<tk<t

n−1∑

j=i

(dik + etk
n−1∑

i=0

ckiR)

→ 0 as t→∞.

Step 2. To see that N is a β−condensing operator for a suitable MNC β,
let modC(D) the modulus of quasi-equicontinuity of the set of functions D
defined by

modC(D) = max{lim
δ→0

sup
x∈D

max |x(i)(τ1)− x(i)(τ2)|, i = 0, . . . , n− 1}.
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Then modC(D) defines an MNC in DPCn−1 which satisfies all of the prop-
erties in Definition 2 except regularity. Given the Hausdorff MNC χ, let γ
be the real MNC defined on bounded subsets on DPCn−1 by

γ(D) = sup
t∈J

e−tχD(D(t)).

Let D ∈ DPCn−1 be bounded and define the following MNC on bounded
subsets of DPCn−1 by

β(D) = max
D∈∆(DPCn−1)

(γ(D),modC(D)),

where ∆(DPCn−1) is the collection of all denumerable bounded subsets of
D. Then the MNC β is monotone, regular, and nonsingular. To show that
N is β−condensing, let D ∈ DPCn−1 be bounded set and

β(D) ≤ β(N i(D)). (3.5)

We will show that D is relatively compact. Let {xm,m ∈ N} ⊂ D and let

N = L1 + L2 ◦ Γ1 ◦ SF + Γ ◦ SF ,

where L1 : DPCn−1 → DPCn−1 is defined by

(L1x)(t) =

n−2∑

j=0

tj−i

(j − i)!x0i +
tn−i−1

(β − 1)(n− i− 1)!
×

∞∑

k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+
∑

0<tk<t

n−1∑

j=i

(t− tk)j−i
(j − i)! Ijk(x(tk), x

′(tk), . . . , x
(n−1)(tk)).

L2 : R+ → B(E) is defined by

L2(x) =
tn−i−1

(β − 1)(n− i− 1)!
x.

SF : DPCn−1(J,E)→ L1(J,E) is defined by

SF (x) = {v ∈ L1(J,E) : v ∈ F (t, x(t), x′(t), . . . , xn−1(t)), a.e t ∈ J}.

Γ1 : L1(J,E)→ DPCn−1(J,E) is defined by

Γ1(g)(t) =

∫ ∞

0
g(s)ds, t ∈ [0,∞),
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and

Γ(g)(t) =

∫ t

0

(t− s)n−i−1

(n− i− 1)!
g(s)ds.

Then

|Γg1(t)− Γg2(t)| ≤
∫ t

0
et−s|g1(s)− g2(s)|ds.

Moreover, each element hm ∈ N(xm) can be represented as

h(i)
m = L1(xm) +

tn−i−1

(β − 1)(n− i− 1)
Γ1(gm) + Γ(gm), (3.6)

with some gm ∈ SF (xm) and (3.5) yields

β({hm,m ∈ N}) ≥ β({xm,m ∈ N}). (3.7)

From hypothesis (H3), for a.e. t ∈ J , we have

χ({gm(t),m ∈ N}) ≤ etp(t)γ({xm}∞m=1), (3.8)

and then,
e−tχ({gm(t),m ∈ N}) ≤ p(t)γ({xm}∞m=1).

We have

χ({Γ(gm)(t)}∞m=1) ≤ etγ({xm}∞m=1)

∫ t

0
p(s)ds,

then

e−tχ({Γ(gm)(t)}∞m=1) ≤ γ({xm}∞m=1)

∫ t

0
p(s)ds,

χ({ tn−i−1

(β−1)(n−i−1)Γ1(gm)(t)}∞m=1) ≤ et

β − 1
γ({xm}∞m=0)p∗.

And so,

e−tχ({ tn−i−1

(β − 1)(n− i− 1)
Γ1(gm)(t)}∞m=1) ≤ p∗

β − 1
γ({xm}∞m=1),

and

χ(L1{xm(t)}∞m=1) ≤ et(
l∗

β − 1
+ l∗∗)γ({xm}∞m=1),

so that,

e−tχ(L1{xm(t)}∞m=1) ≤ (
l∗

β − 1
+ l∗∗)γ({xm}∞m=1).
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(3.6) and the lower additivity of γ yield

γ({hm}∞m=1) ≤
[

1

β − 1
(p∗ + l∗) + l∗∗ + ‖p‖L1

]
γ({xm}∞m=1). (3.9)

Therefore
γ({xm}∞m=1) ≤ γ({hm}∞m=1) ≤ qγ({xm}∞m=1). (3.10)

Since 0 < q < 1, we infer that

γ({xm}∞m=1) = 0. (3.11)

Next, we show that modC(B) = 0 i.e, the set B is equicontinuous. This
is equivalent to showing that every {him} ⊂ N i(B) satisfies this property.
Given a sequence {hm}, there exist sequences {xm} ⊂ B and {gm} ⊂ SF,xm
such that

him = L1(xm) +
tn−i−1

(β − 1)(n− i− 1)
Γ1(gm) + Γ(gm).

From (3.11), we infer that

χD({xm(t)} = 0, for a.e.t ∈ [0,∞).

Hypothesis (H1) in turn implies that

χ({gm(t)} = 0, for a.e.t ∈ [0,∞).

From (H1), the sequence {gm} is integrable bounded, hence semi-compact
in L1(Ωk, E), k ∈ N, Ωk = [0, k]. Given γ ∈ (0, 1) and Kγ a measurable set
of R+ such that λ(Kγ) ≤ γ, then λ(Ωk \ Ωγ,k) ≤ γ, where Ωγ,k = Ωk \Kγ ,

gn(Ωγ,k) ⊆ Cγ,k := {gm(t) : t ∈ Ωk \Kγ , m ∈ N}, n ∈ N,

and

lim
k→∞

∫

Ω\Ωk

|gm(t)|dλ(t) ≤ lim
k→∞

∫ ∞

k
p(t)dλ(t) = 0, Ω = [0,∞).

Hence {gm : m ∈ N} is weakly compact in L1([0,∞), E). Using Mazur’s
lemma, we deduce that, up to a subsequence, {hm} is relatively compact.
Therefore β({hm}∞m=1) = 0 which implies that β({xm}∞m=1) = 0. We have
proved that B is relatively compact and so the map N is β−condensing.

Step 3. By essentially the same method used in [14, Theorem 10.2], it can
be proved that N has a closed graph and is a locally compact operator.
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Step 4. A priori bounds on solutions.
Let x ∈ DPCn−1 be such that x ∈ N(x). Then there exists v ∈ SF,x such
that

x(t) =





n−2∑

j=0

tj

j!
x0i

+ tn−1

(β−1)(n−1)!

∫ ∞

0
v(s)ds

+ tn−1

(β−1)(n−1)!

∞∑

k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk)))

+ 1
(n−1)!

∫ t

0
(t− s)n−1v(s)ds

+
∑

0<tk<t

n−1∑

j=0

(t− tk)j
j!

Ijk(x(tk), x
′(tk), . . . , x

n−1(tk))

if t ∈ [0,∞).

We have

x(i)(t) =





n−2∑

j=i

tj−i

(j − i)!x0i +
tn−i−1

(β − 1)(n− i− 1)!

∫ ∞

0
v(s)ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑

k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1v(s)ds

+
∑

0<tk<t

n−1∑

j=i

(t− tk)j−i
(j − i)! Ijk(x(tk), x

′(tk), . . . , x
(n−1)(tk)),

if t ∈ [0,∞).

Then

e−t|xi(t)| ≤
n−2∑

j=i

|x0i|+
(

1

|β − 1| + 1

)
(a∗ + d∗)

+

(
1

|β − 1| + 1

)
(c∗ +

n−1∑

j=0

b∗j )‖x‖D.

Hence

‖x‖D ≤
∑n−2

j=i |x0i|+ ( 1
|β−1| + 1)(a∗ + d∗)

1− ( 1
|β−1| + 1)(c∗ +

∑n−1
j=0 b

∗
j )

:= Mi, (i = 0, . . . , n− 1).
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Finally

‖x‖D ≤ max(Mi, i = 0, . . . , n− 1) := M.

From Lemma 3, we deduce that N has at least one fixed point denoted by x.
Moreover since Fix(N) is bounded, by Lemma 4, Fix(N) is compact.

4 Nonconvex case

In this section we present a second existence result for problem (1.1)–
(1.3) when the multi-valued nonlinearity is not necessarily convex. In the
proof, we will make use of the nonlinear alternative of Leray-Schauder type
for condensing map, combined with a selection theorem due to Bressan and
Colombo [6], for lower semicontinious multi-valued maps with decomposable
values. Also, another result is presented as an application of the fixed point
theorem for contractive multi-valued operators. Let A be a subset of J ×B.
A is L ⊗ B measurable if A belongs to the σ-algebra generated by all sets
of the form N × D where N is Lebesgue measurable in J and D is Borel
measurable in B. A subset A of L1(J,E) is decomposable if, for all u, v ∈ A
and N ⊂ L1(J,E) measurable, the function uχ̃N + vχ̃J\N ∈ A, where χ̃
stands for the characteristic function of the set A. Let X be a nonempty
closed subset of E and G : X → P(E) be a multivalued operator with
nonempty closed values. G is lower semi-continuous (l.s.c.) if the set {x ∈
X : G(x) ∩B 6= ∅} is open for any open set B in E.

Definition 5. Let Y be a separable metric space and let N : Y → P(L1(J,E))
be a multivalued operator. We say that N has property (BC) if

1) N is lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

Let F : J × E → P(E) be a multivalued map with nonempty compact
values. Assign to F the multivalued operator

F : C(J,E)→ P(L1(J,E))

by letting

F(y) = {v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) for a.e. t ∈ J}.

The operator F is called the Niemytzki operator associated to F.
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Definition 6. Let F : J × E → P(E) be a multivalued function with
nonempty compact values. We say that F is of lower semi-continuous type
(l.s.c. type) if its associated Niemytzki operator F is lower semi-continous
and has nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo. let Y
be a Banach space. Then every l.s.c. multi-valued operator decomposable
values has a continuous selection.

Theorem 5. [6] Let Y be separable metric space and let N : Y → P(L1(J,E))
be a multivalued operator which has property (BC). Then N has a con-
tinuous selection, i.e. there exists a continuous function (single-valued)
f : Y → L1(J,E) such that f(x) ∈ N(x) for every x ∈ Y.

Lemma 8. [10] Let F : J×Y → Pcp(Y ) be an integrably bounded multimap
satisfying

(Hlsc) F : J ×Y → P(Y ) is a nonempty compact valued multi-map such that

(a) the mapping (t, y) 7→ F (t, y) is L ⊗ B measurable;

(b) the mapping y 7→ F (t, y) is l.s.c. for a.e. t ∈ J .

Then F is of lower semi-continuous type.

Theorem 6. Suppose that hypotheses (H1)− (H5) and the conditions

(A1) F : J × E × E . . .× E −→ Pcl(E) is a multi-valued map such that:
a) (t, x0, x1, . . . , xn) 7→ F (t, x0, x1, . . . , xn) is L ⊗ B measurable;
b) (x, u) 7→ F (t, x0, x1, . . . , xn) is lower semi-continuous for a.e. t ∈ J ;

(A2) F (t, x0, x1, . . . , xn) ⊂ G(t) for a.e t ∈ J and for all (x0, x1, . . . , xn) ∈
E × E . . .× E and with G : J → Pw,cp,c(E) integral bounded;

are satisfied. Then the impulsive boundary value problem (1.1)–(1.3) has at
least one solution.

Proof. First, let F : DPC(n−1) → P(DPC(n−1)) be defined by

F(x) = {v ∈ L1([0,∞), E) : v(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t))),

a.e. t ∈ [0,∞)}.

Now, we establish the properties of F(·). Analogous results can be found in
Halidias and Papageorgiou [16]. We prove that F(·) has nonempty, closed,
decomposable values and is l.s.c.
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For the nonempty part, from hypothesis (A2) we have F (·, x(·), x′(·), . . . ,
x(n−1)(·)) is a measurable multifunction. Then there exists a sequence of
measurable selections {fm(t) : m ≥ 1} of F such that

F (t, x(t), x′(t), . . . , x(n−1)(t)) = {fm(t) : m ≥ 1}.

From (A2), we have fm(·) ∈ G(·). Using the fact that G has weakly compact
values, we pass to a subsequence if necessary to get fmk

(·) converges weakly
to f(·) in E. Since {fmk

: k ≥ 1} ⊆ {fm : m ≥ 1}, then f ∈ {fm : m ≥ 1}. By
Mazur’s Lemma there exists vm(t) ∈ conv{fmk

(t) : m ≥ 1} such that vm(·)
converges strongly to f(·) in E. So f(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), for
a.e. t ∈ [0,∞). Therefore, for every x ∈ DPCn−1, F(x) 6= ∅. The closedness
and decomposability of the values of F(·) are easy to check.

To prove that F(·) is l.s.c., (H1) and (A1) imply by Lemma 8 that F is of
lower semi-continuous type. Using the Theorem 5 of Bressan and Colombo
[6], we get that there is a continuous selection

f : DPC(n−1) → L1([0,∞), E)

such that f(x) ∈ F(x) for every x ∈ DPCn−1. We consider the following
problem:

x(n)(t) = f(x)(t), a.e. t ∈ J\{t1, . . . , tm} (4.1)

∆x(i)|t=tk = Iik(x(tk), x
′(tk), . . . , x

(n−1)(tk)), i = 0, 1, . . . , n− 1, k = 1, . . . ,
(4.2)

x(i)(t) = x0i, (i = 0, 1, . . . , n− 2), x(n−1)(∞) = βx(n−1)(0), (4.3)

Transform the problem (4.1)-(4.3) into a fixed point problem. Consider the
operator P i : DPC(n−1) → DPC(n−1) defined by

P i(x) =





n−2∑

j=i

tj−i

(j − i)!x0i +
tn−i−1

(β − 1)(n− i− 1)!

∫ ∞

0
f(x(s))ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑

k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1f(x(s))ds

+
∑

0<tk<t

n−1∑

j=i

(t− tk)j−i
(j − i)! Ijk(x(tk), x

′(tk), . . . , x
(n−1)(tk)),

if t ∈ [0,∞).
(4.4)
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We shall show that the single-valued operator P i is completely continuous.
From Step 1 through Step 3 of the proof Theorem 4, we can check that P i

maps bounded sets into bounded sets in DPCn−1 and P i is condensing.
Then P i is a completely continuous. There exists b∗ > 0 such that, for

every solution x of the problem (4.1)–(4.3), we have

‖x‖D ≤ b∗.

Let
U = {x ∈ DPC(n−1) : ‖x‖D < b∗ + 1}.

From the choice of U there is no x ∈ ∂U such that x = λP i(x) for some
λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray Schauder
type, we deduce that P i has a fixed point x in U is a solution of the problem
(4.1)–(4.2). Then there exists x which is a solution to problem (1.1)–(1.3)
on [0,∞).

In this next part we present a second result for the problem (1.1)–(1.3)
with a non-convex valued right-hand side. Let (X, d) be a metric space
induced from the normed space (X, ‖ · ‖). Consider the Hausdorff-Pompeiu
metric [5, 22]

Hd : P(X)× P(X) −→ R+ ∪ {∞}, given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b).

Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized (com-
plete) metric space (see [19]).

Definition 7. A multivalued operator G : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(G(x), G(y)) ≤ γd(x, y), for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Our considerations are based on the following fixed point theorem for
contractive multivalued operators given by Covitz and Nadler

Lemma 9. [19] Let (X, d) be a complete metric space. If G : X → Pcl(X)
is a contraction, then FixN 6= ∅.
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Let us introduce the following hypotheses:

(A3) F : J × B × E −→ Pcp(E); (t, x0, x1, . . . , xn) 7−→ F (t, x0, x1, . . . , xn)
is measurable for each (x0, x1, . . . , xn) ∈ E × E × · · · × E.

(A4) There exists a function l ∈ L1(J,R+) such that, for a.e. t ∈ J

and all (x0, x1, . . . , xn), (x̄0, x̄1, . . . , x̄n) ∈ E × E × · · · × E,

Hd(F (t, x0, x1, . . . , xn), F (t, x̄0, x̄1, . . . , x̄n) ≤ l(t)
n∑

j=0

|xj − x̄j |

and

Hd(0, F (t, 0, 0, . . . , 0)) ≤ l(t) for a.e. t ∈ J,

with ∫ ∞

0
l(s)esds <∞.

(A5) There exist constants cik such that

|Iik(x0, x1, . . . , xn)− Iik(x̄0, x̄1, . . . , x̄n)| ≤
∞∑

k=1

cike
−tk |xi − x̄i|

with

∞∑

k=1

cik <∞ and

∞∑

k=1

n−1∑

j=i

cike
−tk <∞, i = 0, 1, . . . , n− 1.

Theorem 7. Let Assumptions (A3)–(A6) be satisfied. If, in addition,

∫ ∞

0
l(s)esds+ ‖l‖L1 +

∞∑

k=1

cjk +
∑

0<tk<t

n−1∑

j=i

cjke
−tk < 1,

then the BVP (1.1)-(1.3) has at least one solution.

Proof. In order to transform problem (1.1)-(1.3) into a fixed point problem,
let the multi-valued operator N : DPCn−1 → P(DPCn−1) be as defined in
Theorem 4. We shall show that N satisfies all the assumptions of Lemma
9. The proof will be given in one step.
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Step 1. N(x) ∈ Pcl(DPCn−1) for each x ∈ DPCn−1.

Indeed, let (xm)m≥0 ∈ N(x) such that xm −→ x̃ in DPCn−1. Then
there exists vm ∈ SF,x such that for each t ∈ [0,∞)

x(i)
m (t) =





n−2∑

j=i

tj−i

(j − i)!x0i +
tn−i−1

(β − 1)(n− i− 1)!

∫ ∞

0
vm(s)ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑

k=1

In−1k(xm(tk), x
′
m(tk), . . . , x

(n−1)
m (tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1vm(s)ds

+
∑

0<tk<t

n−1∑

j=i

(t− tk)j−i
(j − i)! Ijk(xm(tk), x

′
m(tk), . . . , x

(n−1)
m (tk)).

Since vm(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)),we may pass to a subse-
quence if necessary to get that vm converges almost everywhere to
some v in E. From (A4), we have

|vm(t)| ≤ etl(t)(M + 1), ‖x‖D ≤M.

Also by (A4), we get

v(t) ∈ F (t, x̃(t), x̃′(t), . . . , x̃(n−1)(t)), a.e. t ∈ [0,∞).

Thus

x̃(i)(t) =





n−2∑

j=i

tj−i

(j − i)!x0i +
tn−i−1

(β − 1)(n− i− 1)!

∫ ∞

0
v(s))ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑

k=1

In−1k(x̃(tk), x̃
′(tk), . . . , x̃

(n−1)(tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1v(s))ds

+
∑

0<tk<t

n−1∑

j=i

(t− tk)j−i
(j − i)! Ijk(x̃(tk), x̃

′(tk), . . . , x̃
(n−1)(tk)).

So x̃ ∈ N(x). By the same method used in [14] Theorem 9.61, we can
easily prove that

Hd(N(x), N(x∗)) ≤
[ ∫ ∞

0
l(s)esds+ ‖l‖L1 +

Σ∞k=1cjk + Σ0<tk<tΣ
n−1
j=i cjke

−tk
]
‖x− x∗‖D.
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So N i is a contraction and thus, by Lemma 9, N has a fixed point x
which is a solution of the problem (1.1)–(1.3) on [0,∞).

5 Concluding remarks

In this work, we have established the existence of solutions for Problem
(1.1)–(1.3) in both the convex case and the nonconvex case for the nonlin-
earity. In particular, in each case, the Problem is formulated as a fixed point
problem for a multi-valued operator, and then applications have been made
from multi-valued analysis, topological fixed point theory, and measure of
noncompactness in obtaining solutions.

While in this paper, we have focused on the existence of solutions for
impulsive boundary value problems for higher order differential inclusions
on the half-line, results concerning boundary value problems for first order
impulsive differential equations and inclusions on bounded intervals can be
found in [4, 9] and the references therein

Moreover, existence results for nth order impulsive integrodifferential
equations on the half-line can be found, to name a few, in [11, 12, 13] and
the references therein.

Acknowledgement. The authors would like to thank anonymous referees
for their careful reading of the manuscript and pertinent comments; their
constructive suggestions substantially improved the quality of the work.
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Abstract

We discuss the solution of implicit systems in the critical case, i.e.
when the classical assumptions of the implicit functions theorem are
not satisfied. The generalized solution introduced bellow solves such
cases and it may not be a manifold. In certain examples, it may have
a complex structure and its approximation is nontrivial. We present
here an algorithm for the approximation of the generalized solution.
Numerical tests are also included.
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1 Introduction

In this paper, we discuss the approximation of the solution for implicit
functions systems, in the critical case. The method we use was introduced
in [6] and was further studied in [4] and [7]. It is based on iterated systems
of ordinary differential equations, to obtain the solution in parametric form.

We investigate a new algorithm solving this question.
This paper is organized as follows. In section two we recall some pre-

liminary notions and results from [6] and [4]. Section three describes the
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algorithm. In section four we give some numerical examples in dimension
two and three, computed with MatLab.

For general references on the subject of implicit functions and parametriza-
tions, we quote [3], [2]. In [3], Ch. 5 it is specified that a general solution of
the critical case is not known.

2 Preliminaries

In dimension two, the problem we study is given by the implicit equation:

f(x, y) = 0, f(x0, y0) = 0, (1)

where (x0, y0) ∈ Ω ⊂ R2, an open subset and f ∈ C1(Ω). Consider the
critical case, i.e.:

∇f(x0, y0) = 0, (2)

There exists (xn, yn) ∈ Ω, (xn, yn) → (x0, y0), such that ∇f(xn, yn) 6=
0, ∀n. Otherwise f is identically null in a neighborhood of (x0, y0).

We solve (1) with the initial condition (xn, yn). We use the Hamiltonian
system (see [6]):

x′n(t) = −∂f
∂y

(xn, yn)

y′n(t) =
∂f

∂x
(xn, yn)

(3)

with the initial condition: xn(0) = xn, yn(0) = yn.
By Peano’s theorem [1], we know that system (3) has a local solution on

some interval Imax that may be chosen independent of n.
We consider a closed disc D, with the center in (x0, y0) ∈ Ω ⊂ R2 and

the set:
Tn = {(x, y) ∈ D; (x, y) = (xn(t), yn(t)), t ∈ Īmax}

.
We consider a convergent subsequence Tnk

→ Tα in the Hausdorff-
Pompeiu sense and put T = ∪αTα, where α is the subsequence.

If f(x0, y0) = 0 and relation (2) is true, then T is called the local gener-
alized solution for (1).

In dimension three, we consider the following problem:

f(x, y, z) = 0, f(x0, y0, z0) = 0, (4)

where (x0, y0, z0) ∈ Ω ⊂ R3, f is in C1(Ω).
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Because we discuss the critical case, we have the following condition:

∇f(x0, y0, z0) = 0.

Let (x̃n, ỹn, z̃n) → (x0, y0, z0) in Ω, such that ∇f(x̃n, ỹn, z̃n) 6= 0 (in
fact, we may without loss of generality, fix here fx(x̃n, ỹn, z̃n) 6= 0). The
existence of such a sequence follows as before (otherwise f is identically null
in a neighborhood of (x0, y0, z0)).

Consider two iterated Hamiltonian systems:

x′n = −fy(xn, yn, zn), t ∈ In1 ,
y′n = fx(xn, yn, zn), t ∈ In1 , (5)

z′n = 0, t ∈ In1 ,
xn(0) = x̃n, yn(0) = ỹn, zn(0) = z̃n;

and

ϕ̇n = −fz(ϕn, ψn, ξn), s ∈ In2 (t),

ψ̇n = 0, s ∈ In2 (t), (6)

ξ̇n = fx(ϕn, ψn, ξn), s ∈ In2 (t),

ϕn(0) = xn(t), ψn(0) = yn(t), ξn(0) = zn(t).

where In1 and In2 (t) are real closed intervals containing 0. It is proved in
[4] that In1 , In2 (t) may be chosen independent of n and t, that is In1 = I1
In2 (t) = I2.

For (ϕn, ψn, ξn) : I1 × I2 → R3, we denote

Tn = {(ϕn(t, s), ψn(t, s), ξn(t, s)); (t, s) ∈ I1 × I2}.

Like in dimension two, there is a convergent subsequence such that Tn →
Tα in the Hausdorff-Pompeiu metric, where α denotes the subsequence.

So, we can again define the set called the generalized solution of (4):

T = ∪αTα.

Moreover, if we also have fy(x̃n, ỹn, z̃n) 6= 0, one can also consider the
following supplementary iterated Hamiltonian system:

x′n = −fy(xn, yn, zn), t ∈ In1 ,
y′n = fx(xn, yn, zn), t ∈ In1 , (7)

z′n = 0, t ∈ In1 ,
xn(0) = x̃n, yn(0) = ỹn, zn(0) = z̃n;
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and

ϕ̇n = 0, s ∈ In2 (t)

ψ̇n = −fz(ϕn, ψn, ξn), s ∈ In2 (t), (8)

ξ̇n = fy(ϕn, ψn, ξn), s ∈ In2 (t),

ϕn(0) = xn(t), ψn(0) = yn(t), ξn(0) = zn(t).

Notice that if ∇f(x̃n, ỹn, z̃n) 6= 0, then by a good choice of the axes, one
may obtain both fx(x̃n, ỹn, z̃n) 6= 0 and fy(x̃n, ỹn, z̃n) 6= 0. The solutions
provided by the Hamiltonian systems or the iterated Hamiltonian systems
are local around the initial condition. In dimension three, the solution of
the supplementary system (7)- (8) should be taken together with the one of
(5)-(6) in order to obtain more information.

3 The Algorithm

In this section we describe the steps of our algorithm. The question
is related to the choice of the approximating initial conditions used in the
definition of the generalized solution, according to Section 2. We write a
unified algorithm in dimension two and three and we denote by x0 ∈ Ω ⊂
Rd, d = 2 or d = 3, the critical point in the implicit functions problem (9):

f(x) = 0, x ∈ Ω, f(x0) = 0,

∇f(x0) = 0, (9)

where f ∈ C1(Ω).
Similar algorithms may be formulated for general implicit systems, as

discussed in [7].

Algorithm 2.1

Step 1: Consider ε > 0 and a division of a neighborhood of the initial
condition x0, of dimension ε, in equal parts. We can choose for the neighbor-
hood a sphere or a cube of ”dimension” ε and a division of this neighborhood
in k parts.

Step 2: We compute the solution for (3) in dimension two and for (5)-(6)
in dimension three. These solutions are computed in each of some k points
chosen as initial conditions, fixed respectively in the k parts of the division.

Step 3: We make a refinement of the neighborhood by dividing it in 2k
parts and/or we take its new dimension ε/2.
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Step 4: We again compute the approximate solutions for (3) or (5)-(6),
in each of the corresponding new 2k points.

Step 5: After each new iteration, we compute the Hausdorff-Pompeiu
distance between the corresponding obtained solutions. The trajectories
taken into account for this computations are truncated to a certain neigh-
borhood of x0, prescribed from the beginning.

Step 6: If the Hausdorff-Pompeiu distance is less then a certain fixed
tolerance, then the algorithm stops. If it is greater than the tolerance, we
return to step 3.

For the stopping criterion one can use different conditions. For example,
we can also fix from the beginning a maximum number of iterations. In Step
2 and 4 one can also use the systems (7)-(8).

4 Numerical examples

All the computations were performed with MatLab.

Example 1 Let f(x, y) = (x2 − y2)

(
x2 − 1

4
y2
)(

x2 − 1

16
y2
)

, with the

critical point (x0, y0) = (0, 0).

We have f(x0, y0) = 0 and ∇f(x0, y0) = 0.

In this example, the initial neighborhood of (0, 0) is fixed as

(
− 3

16
,

3

16

)
×

(
−1

8
,
1

8

)
.

For the first iteration we take the approximate initial conditions as the
four corners of this rectangle. We compute the corresponding truncated

solution trajectories that lie in the square

[
−1

4
,
1

4

]
×

[
−1

4
,
1

4

]
.

For the second iteration we add four more approximate initial conditions,
the middles of the edges of the above rectangle.

For the third iteration we consider the rectangle

(
− 3

32
,

3

32

)
×
(
− 1

16
,

1

16

)

with initial conditions given by the corners and the middles of the edges. In
the fourth iteration we add as initial conditions the middles of all the seg-
ments formed in the previous iteration. The last computed iteration again
halves the edges of the rectangle and takes as approximate initial conditions
sixteen similar points as in iteration four.

In Fig. 1, 2, 3, we show the computed trajectories in iterations 1, 3,
respectively 5 (in Fig. 3, we also include the exact solution for comparison).
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We have stopped the algorithm after five iterations since the result is already
satisfactory.

Figure 1: Iteration 1

Figure 2: Iteration 3

We have computed the Hausdorff-Pompeiu distance between the ob-
tained trajectories in two consecutive iterations and we have got the values:
h12 = 0.191, h23 = 0.093, h34 = 0.060, h45 = 0.046. We have used the
hausdorff routine of Hassan Radvar-Esfahlan [5].
In solving the Hamiltonian system (3) we have used the ode45 routine of
MatLab with a fine discretization. Since we work in the neighborhood of a
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Figure 3: Iteration 5 and the exact solution

critical point, the gradient (the speed) is very small and it is necessary to
integrate the equation over long time intervals in order to obtain significant
trajectories.

Another variant of our algorithm is the following.

We keep fixed in all the iterations the same initial neighborhood of (0, 0),

for instance as the one in the previous example:

(
− 3

16
,

3

16

)
×

(
−1

8
,
1

8

)
.

For the first iteration, we take as approximate initial conditions the
corners of the rectangle and compute the solutions that are in the square[
−1

4
,
1

4

]
×

[
−1

4
,
1

4

]
.

For the second iteration we add the ones that have as approximate initial
conditions the middles of the edges of the rectangle.

In the third iteration, we supplement the approximate initial conditions
by the middles of all the segments formed in iterations one and two. This
process can be, of course, continued.

In Fig. 4 we show the trajectories in iteration three together with the ex-
act solution. In Fig. 5, the fourth iteration together with the exact solution
is shown. The computed branches of the solution, in Fig. 5, intersect the true
solution, which is impossible theoretically since they represent different level

lines. This is due to the very small initial value f

(
− 3

64
,
1

8

)
= 2.8012e− 8

and the routine does not distinguish between very close level lines.
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Figure 4: Iteration 3

Figure 5: Iteration 4
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We compute the Hausdorff-Pompeiu distance between two consecutive
iterations, and we obtain the following result: h12 = 0.1913, h23 = 0.0978,
h34 = 0.0617. We again used the hausdorff routine of Hassan Radvar-
Esfahlan [5].

Example 2 Let f(x, y) = (x2 − y2)(x2 + y2 − 1).

We compute the corresponding solutions of (3), with four different initial

conditions:

(
0,

1

8

)
,

(
1

8
, 0

)
,

(
0,−1

8

)
,

(
−1

8
, 0

)
, around the critical point

(0, 0).

This choice of f(x, y) has five critical points and the obtained trajecto-
ries, see Fig. 6, look very differently with respect to the previous example.

In case the second variant of the algorithm is used, in this example, in
not a very fine neighborhood of (0, 0), with the approximating initial condi-

tions

(
0,

9

8

)
,

(
9

8
, 0

)
,

(
0,−9

8

)
,

(
−9

8
, 0

)
, the numerical result would look

like in Fig. 7 and would be incorrect. Clearly, if we work with fδ(x, y) =
(x2 − y2)(x2 + y2 − δ2), δ > 0 small, then such confusions may arise eas-
ily. We recommend in each possible example to use various choices of the
approximating initial conditions in order to get a good description of the
searched solution.

Figure 6: Example 2



Algorithm for the generalized solution 319

Figure 7: initial conditions

(
0,

9

8

)
,

(
9

8
, 0

)
,

(
0,−9

8

)
,

(
−9

8
, 0

)

Example 3 Let

f(x, y, z) = (x2 + y2 − z2)(x2 + y2 − 4z2)(x2 + y2 − 16z2), (10)

with the critical point (x0, y0, z0) = (0, 0, 0).

We have:

f(x0, y0, z0) = (0, 0, 0) and ∇f(x0, y0, z0) = 0.

For this example we choose four approximate initial conditions:

(
3

32
,

1

16
,

1

10

)
,

(
3

32
,

1

16
,

15

100

)
,

(
3

32
,

1

16
,

3

10

)
and

(
3

32
,

1

16
,

6

10

)
, which are on a vertical

line through

(
3

32
,

1

16

)
.

In Fig. 8 we show the upper part (with positive z) of the exact solution
for (10) together with the approximating initial conditions and the solutions
of the first Hamiltonian system (5). This figure can be rotated to see all
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such details. The other half is symmetrical with it. In Fig 9 and Fig. 10 we
show the solutions of the second Hamiltonian system (6) corresponding to

initial conditions

(
3

32
,

1

16
,

1

10

)
, respectively

(
3

32
,

1

16
,

6

10

)
(the other two

initial conditions give similar graphical representations as in Fig. 10). Due
to the second equation in (6), the surfaces represented in Fig. 9 and 10 are
limited by the planes defined when the second coordinate is constant. One
can remove this constraint by using as well the system (7), (8).

Remark 1 The above numerical examples use various choices of the ap-
proximate initial conditions. The chosen points are in a neighborhood of the
critical point and should create a ”net” around it. The neighborhood should
be sufficiently small around the critical point, otherwise the obtained result
may be flawed, as explained in Example 2.

Figure 8: Example 3
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Figure 9:

(
3

32
,

1

16
,

1

10

)

Figure 10:

(
3

32
,

1

16
,

6

10

)



322 M. R. Nicolai

Acknowledgement. This work was supported by Grant 145/2011 of CNCS
Romania.

References
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