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THE CLASSICAL MAXIMUM
PRINCIPLE. SOME OF ITS

EXTENSIONS AND APPLICATIONS.∗

Cristian - Paul Danet †

Abstract

The intention of this paper is to survey some extensions (the P
function method) and applications of the classical maximum principle
for elliptic operators.

MSC: 35B50, 35G15, 35J40.

keywords: maximum principle, P function method, higher order elliptic
equations, plate theory.

1 Introduction

The intention of this paper is to survey some extensions (the P function
method) and applications of the classical maximum principle for elliptic op-
erators.

The maximum principle is one of the most useful and best known tools
employed in the study of partial differential equations. The maximum prin-
ciple enables us to obtain information about the uniqueness, approximation,
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274 Cristian-Paul Danet

boundedness and symmetry of the solution, the bounds for the first eigen-
value, for quantities of physical interest (maximum stress, the torsional stiff-
ness, electrostatic capacity, charge density etc), the necessary conditions of
solvability for some boundary value problems, etc.

The first chapter specializes the maximum principle for partial differential
equations to the one variable case. We present the one dimensional classical
maximum principle and a new extension.
In chapter two, we present the classical maximum principle of Hopf for elliptic
operators and some possible extensions (the P function method (in honour
of L. Payne, see [43]) and give a number of applications.

The maximum principle occurs in so many places and in such varied
forms that is impossible to treat all topics. We treat here only the classical
maximum principle and one of its extensions, namely the P function method
for the elliptic case.

2 The one dimensional case

The one dimensional maximum principle represents a generalization of the
following simple result: Let the smooth function u satisfy the inequality u′′ ≥
0 in Ω = (α, β). Then the maximum of u in Ω occurs on ∂Ω = {α, β} (on
the boundary of Ω), i.e.,

max
Ω

u = max{u(α), u(β)}.

Theorem 1. (one dimensional weak maximum principle) Let u ∈ C2(Ω) ∩
C0(Ω) be a nonconstant function satisfying Lu ≡ u′′ + b(x)u′ ≥ 0 in Ω, with
b bounded in closed subintervals of Ω. Then,

max
Ω

u = max
∂Ω

u.

Drawing the graph of a function u satisfying u′′ ≥ 0 (u′′ 6= 0) reveals us
the interesting fact that at a point on ∂Ω (where u attains its maximum),
the slope of u is nonzero. More precisely, du/dn > 0 at such a point. Here
d/dn denotes the outward derivative on ∂Ω, i.e.,

du

dn
(α) = −u′(α),

du

dn
(β) = u′(β).
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The next theorem is an extension of this result:

Theorem 2. (one dimensional strong maximum principle) Let u ∈ C2(Ω)∩
C0(Ω) be a nonconstant function satisfying Lu ≡ u′′+b(x)u′+c(x)u ≥ 0 in Ω,
with b and c bounded in closed subintervals of Ω and c ≤ 0 in Ω. Then a
nonnegative maximum can occur only on ∂Ω, and du/dn > 0 there. If c ≡ 0
in Ω then, u takes its maximum on ∂Ω and du/dn > 0 there.

The following simple counterexample shows that we have to impose some
restrictions to c: The function u(x) = e−x sinx satisfies

Lu ≡ u′′ + 2u′ + 3u ≥ 0 in Ω = (0, π).

We see that the nonnegative u vanishes on ∂Ω and hence there can be no
maximum principle. A result can still be proven if c ≥ 0. The result is a
version of Theorem 5 on page 9 in [65].

Theorem 3. (one dimensional generalized maximum principle) Let u ∈
C2(Ω)∩C0(Ω) be a nonconstant function satisfying Lu ≡ u′′+c(x)u ≥ 0 in Ω.
Suppose that

sup
Ω
c <

π2

(diam Ω)2
. (1)

Then, the function u/wε cannot attain a nonnegative maximum in Ω unless
it is a constant. diam Ω represents the diameter of Ω and

wε = cos
π(2x− diam Ω)
2(diam Ω + ε)

cosh(εx),

where ε > 0 is small.

The proof follows from Theorem 5, page 9 in [65] and Lemma 2.1. [11].
Although our result is stated only for a particular operator L (b ≡ 0), is it
more precise than the result stated for general operators Lu ≡ u′′+ b(x)u′+
c(x)u (see Theorem 5, page 9 in [65]). The authors do not indicate when a
maximum principle is valid. They state that a maximum principle is valid
for " any sufficiently short interval Ω ".

The proofs of these theorems as well as their applications (uniqueness
of the solution of the boundary value problem, approximation in boundary
value problems, the classical Sturm- Liouville theory, existence for nonlinear
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equations via monotone methods) can be found in the excellent book of
Protter and Weinberger [65].

Certain solutions of equations of higher order exhibit a maximum princi-
ple:

Theorem 4. Let 1 ≤ k ≤ n − 1, n ≥ 2 and u ∈ Cn(Ω) be a nonconstant
function satisfying Lu ≡ un ≥ 0 in Ω. Suppose that

(−1)n−ku(i)(α) ≥ 0, i = 1, . . . , k − 1 (if such i exist),

(−1)n−k+ju(j)(β) ≥ 0, j = 1, . . . , n− k − 1 (if such j exist).

Then, in the case n − k even u attains its minimum value and in case
n− k odd u attains its maximum either at α or β.

The nontrivial proof is given in [76]. For n=4, k=2, Theorem 4 generalizes
the maximum principle in [6]: Let u satisfy the inequality u(4) ≤ 0 in Ω. If
u′(α) ≤ 0, u′(β) ≥ 0, then u attains its maximum at α or β.
A maximum principle for general fourth order operators appears in [41].

3 The n dimensional case

In this section, we treat the n dimensional variants of results presented in
section 1, some possible extensions for nonlinear equations and for equations
of higher order as well as their applications.

We consider the linear operator (summation convention is assumed, i.e.,
summation from 1 to n is understood on repeated indices)

Lu = aij(x)uij + bi(x)ui + c(x)u, aij(x) = aji(x),

where x = (x1, ..., xn) ∈ Ω, Ω is a bounded domain (unless otherwise stated)
of IRn, n ≥ 1 and ui = ∂u

∂xi
, uij = ∂2u

∂xi∂xj
.

The operator L is called elliptic at a point x ∈ Ω if the matrix [aij(x)] is pos-
itive, i.e., if λ(x) and Λ(x) denote respectively the minimum and maximum
eigenvalues of [aij(x)], then

0 < λ(x)|ξ|2 ≤ aij(x)ξiξj ≤ Λ(x)|ξ|2,

for all ξ = (ξ1, ..., ξn) ∈ IRn − {0}. If λ ≥ 0, then L is called elliptic in Ω. If
Λ/λ is bounded in Ω, we shall call L uniformly elliptic in Ω.
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Theorem 5. (weak maximum principle) ([25]). Let L be elliptic in Ω. Sup-
pose that |bi|/λ < +∞ in Ω, i = 1, ..., n. If Lu ≥ 0 in Ω, c = 0 in Ω and
u ∈ C2(Ω)∩C0(Ω), then the maximum of u in Ω is achieved on ∂Ω, that is:

max
Ω

u = max
∂Ω

u. (2)

Remarks: 1). Theorem 5 holds under the weaker hypothesis: the ma-
trix [aij ] is nonnegative and the ratio |bk|/akk is locally bounded for some
k ∈ {1, ..., n}.

2). The maximum principle for subharmonic functions goes back to Gauss
(1838) ([17]). The first proof of a maximum principle for operators more gen-
eral than the Laplace operator was proved in two dimensions by Paraf in 1892
([42]).

Theorem 6. (the strong maximum principle of E. Hopf) ([30]). Let L be
uniformly elliptic, c = 0 and Lu ≥ 0 in Ω (not necessarily bounded), where
u ∈ C2(Ω). Then, if u attains its maximum in the interior of Ω, then u is
constant. If c ≤ 0 and c/λ is bounded then u cannot attain a nonnegative
maximum in the interior of Ω, unless u is constant.

The proof is a consequence of the following useful result known as Hopf’s
lemma [30]:

Lemma 1. Suppose that L is uniformly elliptic in Ω, c = 0 in Ω and Lu ≥ 0
in Ω. Let x0 ∈ ∂Ω be such that
i) u is continuous at x0,
ii) u(x0) > u(x) for all x ∈ Ω,
iii) ∂Ω satisfies an interior sphere condition at x0 (i.e., there exists a ball
B ⊂ Ω with x0 ∈ ∂B).
Then the outer normal derivative of u at x0, if it exists, satisfies the strict
inequality

∂u

∂n
(x0) > 0. (3)

If c ≤ 0 and c/λ is bounded in Ω, then the same conclusion holds provided
u(x0) ≥ 0, and if u(x0) = 0 then, the same conclusion holds irrespective of
the sign of c.

We now restrict ourselves to the case bi ≡ 0 and prove Danet, [11]:
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Theorem 7. (generalized maximum principle) Let u ∈ C2(Ω)∩C0(Ω) satisfy
the inequality Lu ≡ ∆u+ c(x)u ≥ 0, where c ≥ 0 in Ω. Suppose that

sup
Ω
c < C1 =

4n+ 4
(diam Ω)2

. (4)

Then, the function u/w1 cannot attain a nonnegative maximum in Ω,
unless it is a constant.

Similarly, if Ω lies in a slab of width d and

sup
Ω
c < C2 =

π2

d2
, (5)

we obtain a similar result for u/w2. Here

w1(x) = 1− (sup
Ω
c/2n)(x2

1 + · · ·+ x2
n)

and

w2 = cos
π(2xi − d)
2(d+ ε)

n∏
j=1

cosh(εxj),

for some i ∈ {1, . . . , n}, where ε > 0 is small.

Comments
1. A broad class of domains satisfy Ω ⊂ BdiamΩ/2. For these domains C1

may be replaced by C3 = 8n/(diamΩ)2.
2. We may improve the constant C3 (i.e., choose a larger constant) if

Ω = {x ∈ IRn | 0 < R <| x |< R + ε}, where ε > 0 is sufficiently small. A
maximum principle holds if

sup
Ω
c < C4 =

2(n− 1)
(ε+ δ)diamΩ

. (6)

For sufficiently small ε we have C4 > C3.
3. A similar result was given in [65], Theorem 10, p.73. for general

operators. The authors proved that if

sup
Ω
γ <

4
d2e2

, (7)

then a similar maximum principle is valid. Here Lu ≡ ∆u+ c(x)u, c ≥ 0 in
Ω and Ω is supposed to lie in a strip of width d. Of course, Theorem 7 (valid
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only for the case bi ≡ 0, c > 0) is sharper that their result, but does not hold
for general operators.

4. We have to impose some restrictions to c. Otherwise, as the following
example shows, the maximum principle (Theorem 7) is false. The function
u(x, y) = sinx sin y satisfies u = 0 on ∂Ω and is solution of the equation
∆u+ 2u = 0 in Ω = (0, π)× (0, π). Of course, (4) does not hold.

The maximum principles that we have presented above are valid only for
the class C2(Ω)∩C0(Ω), i.e., the results are valid for classical solutions. We
may consider operators L of the divergence form

Lu ≡ (aij(x)ju+ bi(x)u)i + ci(x)ui + d(x)u,

whose coefficients aij , bi, ci, d, i, j = 1, 2, ..., n are assumed to be measur-
able functions on a domain Ω ⊂ IRn.

The divergence form has the advantage that the operator L may be de-
fined for a significant broader class of functions than the class C2(Ω).

Assume that u is weakly differentiable and that aijDju + biu and that
ciDiu + du, i = 1, 2, ..., n are locally integrable. Then u satisfies in a weak
sense Lu = 0 (≥ 0, ≤ 0) in Ω if :

L(u, ϕ) =
∫

Ω

[
(aijuj + biu)ϕi − (ciui + du)ϕ

]
dx = 0 (≤ 0, ≥ 0),

for all non-negative ϕ ≥∈ C1
0 (Ω).

We shall assume that L is strictly elliptic in Ω and that L has bounded
coefficients, i.e. there exists some constants Λ and ν ≥ 0 such that:∑

i,j

|aij |2 ≤ Λ, λ−2
∑
i

(
|bi|2 + |ci|2

)
+ λ−1|d| ≤ ν2. (8)

is valid in Ω.
We state now the weak maximum principle for weak solutions.

Theorem 8. ([4], [25]) Let u ∈W 1,2(Ω) ∩ C0(Ω) satisfy Lu ≥ 0 in Ω. If∫
Ω

(dϕ− biϕi)dx ≤ 0, ∀ ϕ ≥ 0, ϕ ∈ C1
0 (Ω) (9)
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then,
sup

Ω
u ≤ sup

∂Ω
u+.

Here u+ = max{u, 0}.

Extensions and application of this result are presented in the book of
Gilbarg and Trudinger [25].

We now deal with a possible extension of the maximum principle, namely
the P function method. The method consists in determining a function
P = P(x, u,∇u, . . . ), satisfying a maximum principle, i.e.,

max
Ω

P = max
∂Ω

P,

where u is a solution of the studied equation (boundary value problem). This
powerful method has many applications of interest and represents the core
of the paper.

I. The second order case
1. The St.-Venant problem. (the torsion problem)
First, we examine one of the simplest cases, the problem of the torsional

rigidity of a beam {
∆u = −2 in Ω
u = 0 on ∂Ω.

(10)

Theorem 9. The function P1 = |∇u|2 + 4u takes its maximum value either
at a critical point of u or at some point on the boundary, unless P1 is a
constant. If Ω is convex and smooth (∂Ω ∈ C2+ε), then P1 cannot take its
maximum value on ∂Ω. Moreover, if Ω degenerates to an infinite strip, then
P1 ≡ const. Similarly the function P2 = |∇u|2 attains its maximum on ∂Ω.

The proof is due to L.E.Payne, [43] and follows from the differential
inequality

∆P1 +
1
|∇u|2

{4∇P1 · ∇u+
1
2
|∇P1|2} ≥ 0 in Ω,

and the maximum principle.
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Theorem 10. ([83])
The function P3 = |∇u|2 + (4/n)u takes its maximum value at some

point on the boundary, unless P3 is a constant. Moreover, P3 is identically
constant in Ω if and only if Ω is a n dimensional ball.

Remarks. 1. The simplest P function is P = u (the classical maximum
principle).
2. There are no general methods to determine P functions. Sometimes we
can check the one dimensional case in order to get an idea of what types of P
functions we have to look in the n dimensional case. For example considering
the one dimensional equation

u′′ + 2 = 0 inΩ = (0, α)

and multiplying it by u′ and then integrating it we get that

P = (u′)2 + 4u ≡ const. inΩ.

This function is the one dimensional version of P1.
Applications
a). Upper bound for the stress function u, if Ω is convex.
Let M be the unique critical point of u and Q a point on ∂Ω, nearest to

P. Let r measure the distance from M along the ray connecting M and Q.
Hence

−du
dr
≤ |∇u| in Ω. (11)

From Theorem 9 we have |∇u|2 ≤ 4(uM − u(x)) in Ω, where uM = supΩ u.
Using (11) we get ∫ uM

0

du

2
√
uM − u

≤
∫ M

Q
dr = |MQ|.

Hence √
uM ≤ |MQ| ≤ ρ,

where ρ is the radius of the largest ball contained in Ω.
Note that the following bound was also obtained using similar methods

([15])

uM ≤
α

β

[
1

cos(ρ
√
β)
− 1
]
,
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where α ≥ 1 +
√

2 and 0 < β < π2/4ρ2.
A lower bound for uM was given in [54] (in the case Ω convex and bidi-

mensional). Further isoperimetric inequalities as well as bounds in terms of
the stress function for the curvature of the level curves u=const are presented
in [54].

b). Upper bound for the maximum stress.
An important quantity is the maximum stress σ = max∂Ω |∇u|. Since P2

and P3 attain their maximum value on the boundary of Ω and using standard
calculations (see [78]) we get,

|∇u|2 ≤ σ ≤ 2
nK(P )

≤ 2
nKmin

, (12)

where Kmin = min∂ΩK, K represents the average curvature of ∂Ω (the
curvature if n = 2) and P is a point on the boundary where P2 assumes its
maximum.

c). Upper bound for the average curvature of ∂Ω.
Integrating (12) over Ω we obtain

K(P ) ≤ |∂Ω|
n|Ω|

, (13)

where P is defined above, |∂Ω| stands for the n−1 dimensional measure and
|Ω| stands for the n dimensional measure.

Equation (13) tells us that at a point of maximum stress, the boundary
must be sufficiently flat.

d). Upper bound for the torsional rigidity.
The torsional rigidity of Ω is T = 2

∫
Ω udx =

∫
Ω |∇u|

2dx. We have the
following bound:

T ≤ 4
3
|Ω|uM ≤

4
3
|Ω|ρ2.

e). An overdetermined St. - Venant problem.
We consider the problem (10) overdedermined by the boundary condition

K|∇u|3 = const. > 0 on ∂Ω, (14)

where Ω is a simply connected domain in IR2 and K the curvature of ∂Ω.
Makar-Limanov ([34]) introduced the function

P4 = uijuiuj − |∇u|2∆u+ u((∆u)2 − uijuij),
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(u is a solution of St. - Venant problem (10)) and showed that it satisfies
a maximum principle. A consequence is the convexity of level lines {u =
const.}. Moreover, we have P = K|∇u|3 ≥ 0 on ∂Ω. and P4 is constant in Ω
if and only if Ω is an ellipse. The next theorem (Henrot and Philippin, [32])
tells us that ellipses are the only domains for which condition (14) holds.

Theorem 11. The over determined problem (10), (14) is solvable only if Ω
is an ellipse.

The proof follows from the implication:

P4 = const. on ∂Ω⇒ P4 = const. inΩ.

Standard methods of investigation for overdetermined problems may not
work (Serrin’s moving plane method). In this case, we can take advantage
of the P function method.

2. The membrane problem.
We are concerned now with eigenvalues of elastically supported membrane

problem: {
∆u+ λu = 0 in Ω ⊂ IR2

∂u/∂n+ αu = 0 on ∂Ω,
(15)

where ∂/∂n is the outward normal derivative operator, α is a positive con-
stant and is Ω simply connected, smooth and convex .

If α is large, Payne and Schaefer [53] derived a lower bound for the first
eigenvalue λ1

λ1 > ρ−2(tan−1(α/
√

Λ1))2, (16)

using that the P function P5 = |∇u1|2 + λ1u
2
1 takes its maximum either

on ∂Ω or at an interior point at which ∇u = 0. Here u1 represents the first
eigenfunction and ρ the radius of the largest inscribed disc. We see that the
bound (16) involves Λ1, the first eigenvalue for the problem,{

∆v + Λv = 0 in Ω
v = 0 on ∂Ω.

(17)

If necessary, we can use upper bounds for Λ1. A known bound for convex
regions was given by Hersch [28]
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Λ1 ≥
π2

4ρ2
. (18)

On the other hand if α is small we have

λ1 > ρ−2(tan−1(αA/L)1/2)2, (19)

where L is the perimeter of Ω and A its area.
Bounds for eigenvalue of (15) have been previously obtained by Sperb

[77], [78], [79], Payne and Weinberger [55].
Bounds for the first positive eigenvalue in the free membrane problem{

∆u+ µu = 0 in Ω ⊂ IR2

∂u
∂n = 0 on ∂Ω,

are discussed in the book of Sperb [78].
3). A classical problem of electrostatics.
We consider the exterior Dirichlet problem

∆u = 0 in Ω∗ ≡ IR3 − Ω
u = 1 on ∂Ω
u = O(1

r ) as r →∞.
(20)

u is the electrostatic potential of the conductor and r measures the distance
from some origin inside Ω.

The following useful result was proven by Payne and Philippin [49].

Theorem 12. Let H and h be harmonic functions in Ω, where H ∈ C1(Ω),
h ∈ C0(Ω) and let f(h) be a positive C2 function. Assume that f satisfies

[fn−2/2(n−1)]′′ ≤ 0, if n ≥ 3,

[log f ]′′ ≤ 0, if n = 2.

Then the function

P6 =
∇H · ∇H
f(h)

,

assumes its maximum on ∂Ω.
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Theorem 12 tells that the function

P6 =
∇u · ∇u
u4

, x ∈ Ω∗

satisfies

P6 ≤ max
∂Ω

P6, (21)

with equality if Ω is a sphere. Moreover

C−2 ≤ max
∂Ω

P6, (22)

with equality if Ω is a sphere where, C is the capacity C =
∫

Ω∗ |∇u|
2dx.

At the point P0 ∈ ∂Ω, where P6 assumes its maximum it follows from
Hopf’s lemma (lemma 1) that either Ω is a sphere or

∂P6

∂n
= 2

∂u

∂n

∂2u

∂n2
− 4
(∂u
∂n

)2
> 0.

For a smooth hypersurface S in IRn we have on S the relation (see [78],
p.62)

∆u = ∆su+ (n− 1)K
∂u

∂n
+
∂2u

∂n2
, (23)

where ∆su is the Laplacian in the induced metric of S and K the mean
curvature (the curvature if n = 2).

From (23) we obtain on ∂Ω

∂2u

∂n2
= 2K

∂u

∂n
.

Now it follows that

∂u(P0)
∂n

< K(P0).

Since P6 and ∂u
∂n take their maximum at the same point on the boundary

it follows that either Ω is a sphere or

max
∂Ω

∂u

∂n
< K(P0) < max

∂Ω
K ≡ K0. (24)
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A bound for the capacity C follows now from (22) and (24)

C ≥ K−1
0 , (25)

where the equality sign holds if Ω is a sphere.
An upper bound for the capacity is also given in [49]:

C ≤ 3|Ω|K2
0

4π
, (26)

where the equality sign holds if Ω is a sphere (|Ω| = vol(Ω)).
Bounds for the derivatives of Green’s function are also a consequence of

Theorem 12. See for details [49].
4). Estimates for capillary free surfaces without gravity.
In the paper [36], Ma studied (using the P function method) the influence

of boundary geometry and constant contact angle θ0, 0 ≤ θ0 < π/2 (against
the wall of the tube) on the size and shape for the capillary free surface
without gravity.

Let Ω be a bounded, smooth and convex domain in IR2 and let K =
cos θ0|∂Ω|/2|Ω| be a given constant.

Consider the problem:{ (
ui√

1+|∇u|2

)
i

= 2K in Ω

∂u/∂n = cos θ0

√
1 + |∇u|2 on ∂Ω,

(27)

where ∂u/∂n denoted the directional derivative of u along the outer unit
normal.

The graph of solution u of (27) describes a capillary free surface (having
the nonparametric form x3 = u(x1, x2), (x1, x2) ∈ Ω) without gravity over
the cross section Ω. We have the following result (Xi- Nan Ma)

Theorem 13. If u ∈ C3(Ω) is a solution of (27), then

u(A)− u(C) ≤ 1− sin θ0

K
, k(A) ≤ K

cos θ0
(28)

u(B)− u(C) ≥ 1− sin θ0

K
, k(B) ≥ K

cos θ0
. (29)

If the equality sign holds in (28) and (29), then Ω is a disk of radius
cos θ0/K.
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Here A ∈ ∂Ω is a point that corresponds to the minimum boundary value
of u, B ∈ ∂Ω is a point that corresponds to the maximum boundary value of
u and C ∈ Ω is the unique critical point of u.

If S =
∫

Ω

√
1 = |∇u|2dx is the area of the free capillary surface and

V =
∫

Ω udx the volume of the liquid in the vertical tube, then we have the
bound:

Theorem 14.

(sin θ0 + 3Ku(A))|Ω| − 3KV ≤ S ≤ (sin θ0 + 3Ku(B))|Ω| − 3KV.

Here and in the above mentioned result A ∈ ∂Ω is a point where u
assumes its minimum on ∂Ω, B ∈ ∂Ω is a point where u assumes its maximum
on ∂Ω, C is the unique critical point of u and K is the curvature of ∂Ω.

The proofs follow from

Theorem 15. If u ∈ C3(Ω) is a solution of (27), then the function

P7 = 2− 2Ku− 2(1 + |∇u|2)−
1
2

attains its minimum on the boundary of Ω.

Similar problems are treated in the paper of Payne and Philippin [46],
e.g. equation of a surface of constant mean curvature, equation of the fluid
in a capillary tube, equation of thin extensible film under the influence of
gravity and surface tension. The authors obtain various bounds in terms of
boundary data and geometry of Ω.

5). Equations of Monge - Ampère type.
We consider a class of Monge - Ampère equations

detD2u = f(x, u,∇u) (30)

with a prescribed contact angle boundary value on a bounded convex
domain in two dimensions.

∂u/∂n = cos θ(x, u)
√

1 + |∇u|2 on ∂Ω,

where D2u is the hessian matrix and θ(x, u) ∈ (0, π/2) is the wetting angle.
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The existence of solutions for such boundary value problems is still open.
Even the particular case is untreated in the literature.{

detD2u = c in Ω ⊂ IR2

∂u/∂n = cos θ0

√
1 + |∇u|2 on ∂Ω,

(31)

where Ω is convex, c > 0 is a constant and θ0 ∈ (0, π/2) .

Ma Xi-nan [35] gave a necessary condition of solvability for the problem
(31).

Theorem 16. Let u ∈ C2(Ω)∩C3(Ω) be a strictly convex solution of problem
(31). Under the above stated hypotheses on Ω, c, θ0 we must have the relation

K0 ≤ max{
√
c · cos θ0,

√
c · tan θ0},

where
K0 = min

∂Ω
K > 0

and K is curvature of ∂Ω.

The proof is achieved by using the P function P8 = |∇u|2− 2
√
cu (which

satisfies a maximum principle) and introducing a curvilinear coordinate sys-
tem.

Bounds for solutions and gradient of general Monge - Ampère equations
(30) are presented in the work of Philippin and Safoui [58].

II. The higher order case
Miranda [39] was the first that showed that for the biharmonic equation

∆2u = 0, where u ∈ C4(Ω)∩C2(Ω) is a function defined on a bounded plane
domain the function P9 = |∇u|2 − u∆u takes its maximum value on the
boundary of the domain, i.e.,

max
Ω

P9 = max
∂Ω

P9.

Since then many authors have extended the Miranda’s result. For exam-
ple, maximum principles for fourth order equations containing nonlinearities
in u or ∆u can be found in works of Payne [44], Schaefer [67], [70],[71]. Sim-
ilar results are proved by H. Zhang and W. Zhang [84], Mareno [37], [38]
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(studied some equations from plate theory), Danet [8], Tseng and Lin [80],
[10], [11] etc. (see the references). We will list only a few as an indication of
the types of results that can be obtained.

1). Equations of fourth order arising in plate theory.
a). Von Kármán equations.
Assume that Ω is a bounded domain in the plane. We consider the von

Kármán equations: {
∆2φ = −1

2 [w,w] in Ω
∆2w = [w, φ] + f(x, y) in Ω.

(32)

The equations (32) govern the equilibrium configuration of a thin elas-
tic plate under stress. f(x, y) represents nonconstant perpendicular loading
terms. The function w denotes the deflection of the thin plate and φ repre-
sents the stress function. The operator [·, ·] is defined as follows:

[w, φ] = wxxφyy − 2wxyφxy + wyyφxx.

Mareno [38] proved (the first that proved a maximum principle for such
equations) that the P function

P10 = |∇2φ|2 + |∇2w|2 − φi∆φi −wi∆wi + h(x, y)[|∇w|2 + |∇φ|2] + f2(x, y)

satisfies a maximum principle and as a consequence obtained the following
bound:

2
|Ω|

∫
Ω

(
|∇2φ(x, y)|2 + |∇2w(x, y)|2

)
dxdy ≤ |∇2φ(x0, y0)|2 + |∇2w(x0, y0)|2

+f2(x0, y0),

for some point (x0, y0) on ∂Ω, if φ = w = ∂φ/∂n = ∂w/∂n = 0 on ∂Ω. Here
|∇2w| = wijwij , and h(x, y) is a smooth function.

b). An equation arising in plate theory.
We deal with the following equation

∆2u+ k1u+ k2u
3 = 0 in Ω ⊂ IRn, n ≥ 2, (33)

where k1, k2 > 0 are constants.
The equation (33) arises in the plate theory and in the bending of cylindrical
shells [67].
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The next maximum principle ([10]) will be used to obtain solution and
gradient bounds for the equation (33)

Theorem 17. Let u be a classical solution of (33). Then the function

P11 = (∆u)2 +
k2

2
u4 + k1u

2

attains its maximum value on ∂Ω.

If u satisfies (33) then, we have the following bounds
a).

max
Ω
|u| ≤

√
1
k1

(
max
∂Ω
|∆u|+

√
k2

2
max
∂Ω

u2 +
√
k1 max

∂Ω
|u|
)
, (34)

where n ≥ 2.
b).

max
Ω
|∇u|2 ≤ max

∂Ω
|∇u|2 +

3 + k1

2
max
∂Ω

u2 +
k2

2k1
max
∂Ω

u4 +
2k1 + 1

2k1
max
∂Ω

(∆u)2,

(35)
where n = 2.

The hypothesis that is assumed over and over again in plate theory is
convexity. Under this assumption, Schaefer [67] proved the uniqueness for
the solution of {

∆2u+ k1u+ k2u
3 = 0 in Ω

u = ∆u = 0 on ∂Ω,
(36)

where Ω ⊂ IR2 is a convex domain.
An application the maximum principle (Theorem 17) shows that the con-

vexity assumption is redundant. Moreover, our result holds for n ≥ 2.
The result reads as follows:

Theorem 18. Let u be a classical solution of (36), where Ω ⊂ IRn is an
arbitrary domain. Then u ≡ 0 in Ω.

Maximum principles for fourth and six order equations are presented in
the author’s paper [10] and [11].
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2). The m (> 4) order case.
We conclude this paper with a result for the general case due to the

author [11].

Theorem 19. Let u be a classical solution of equation

∆mu+ a0u = 0

in Ω, where Ω ⊂ IRn,m even, n ≥ 2.
Suppose that a0 > 0, ∆a0 ≤ 0 in Ω.
We define the function P10

P12 =
(

(∆m−1u)2 + (∆m−2u)2 + · · ·+ u2
)
/a0.

a). If

max{1 + sup
Ω
a0, 2}+ sup

Ω

∆a0

a0
≤ 0, (37)

then, the function P12 attains its maximum value on ∂Ω.
b). If

max{1 + sup
Ω
a0, 2}+ sup

Ω

∆a0

a0
<

4
d2e2

(38)

and if there exists i ∈ {1, . . . , n} such that ∂
∂xi

(
1
a0

)
≥ 0 in Ω, then, the

function P12/w3 attains its maximum value on ∂Ω, where w3 = 1−βeαxi , β =
supΩ c/α

2 and α > 0 is a constant.

The proof follows from the generalized maximum principle, Theorem 7
and works also for the case m odd.

As an immediate consequence of the above mentioned maximum principle
we obtain the uniqueness of the classical solution (C2m(Ω)∩C2m−2(Ω),m ≥
3) of the boundary value problem{

∆mu+ (−1)ma0(x)u = f in Ω
u = g1, ∆u = g2, . . . , ∆m−1u = gm on ∂Ω.

(39)

Moreover the following classical maximum principle holds for solutions of
(39), if g2 = · · · = gm = 0 on ∂Ω and f = 0 in Ω.

max
Ω
|u| ≤ C max

∂Ω
|u|, (40)
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where C > 1 is a constant.
Note that the problem was solved for a more general problem, but under

the restriction Ω is of class C2 (see [73]).

Final remark. Below we collected many papers concerning the P func-
tion method for the interested reader (not all are quoted in this paper).

Acknowledgement. This research was supported by the Ministry of
Education and Research Romania under Grant no. ID - PCE 1192 - 09.
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Abstract
In this paper we introduce four multigrid algorithms for the con-

strained minimization of non-quadratic functionals. These algorithms
are combinations of additive or multiplicative iterations on levels with
additive or multiplicative ones over the levels. The convex set is decom-
posed as a sum of convex level subsets, and consequently, the algorithms
have an optimal computing complexity. The methods are described as
multigrid V -cycles, but the results hold for other iteration types, the
W -cycle iterations, for instance. We estimate the global convergence
rates of the proposed algorithms as functions of the number of levels,
and compare them with the convergence rates of other existing multi-
grid methods. Even if the general convergence theory holds for convex
sets which can be decomposed as a sum of convex level subsets, our
algorithms are applied to the one-obstacle problems because, for these
problems, we are able to construct optimal decompositions. But, in
this case, the convergence rates of the methods introduced in this pa-
per are better than those of the methods we know in the literature.
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1 Introduction

The multigrid or multilevel methods for the constrained minimization of
functionals have been studied almost exclusively for the complementarity
problems. Such a method has been proposed by Mandel in [22], [23] and
[11]. Related methods have been introduced by Brandt and Cryer in [8]
and Hackbush and Mittelmann in [14]. The method has been studied later
by Kornhuber in [16] and extended to variational inequalities of the second
kind in [17] and [18]. A variant of this method using truncated nodal basis
functions has been introduced by Hoppe and Kornhuber in [15] and analyzed
by Kornhuber and Yserentant in [20]. Also, versions of this method have been
applied to Signorini’s problem in elasticity by Kornhuber and Krause in [19]
and Wohlmuth and Krause in [27]. Evidently, the above list of citations
is not exhaustive and, for further information, we recommend the review
article [13] written by Gräser and Kornhuber. For the two-level method,
global convergence rates have been established by Badea, Tai and Wang in
[7], and for its additive variant by Badea in [3]. A global convergence rate
has been also estimated by Tai in [24] for a subset decomposition method.

In [2], a projected multilevel method has been introduced for the con-
strained minimization of non quadratic functionals. The convex set may
be a little more general than of one- or two-obstacle type. The drawback
of this method is its sub-optimal computing complexity because the convex
set, which is defined on the finest mesh, is used in the smoothing steps on
the coarse levels. Multigrid methods with optimal computing complexity
have been introduced in [4] (see also, [5]) for the two-obstacle problems. In
these algorithms, the convex level sets are recursively constructed for each
smoothing step of the iterations. In the present paper, we introduce four
multilevel algorithms in which the convex set is decomposed as a sum of
convex level subsets. These algorithms, like those introduced in [4], have
an optimal computing complexity, and are combinations of additive or mul-
tiplicative iterations on levels with additive or multiplicative ones over the
levels. Even if the general convergence theory holds for convex sets which
can be decomposed as a sum of convex level subsets, these algorithms are
applied for the constrained minimization problems of the one-obstacle type.
To our knowledge, optimal decompositions as sums of convex level sets for
more general convex sets (two-obstacle convex sets, for instance) is an open
problem. The methods are described as multigrid V -cycles, but the results
hold for W -cycle iterations, for instance.
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Regarding the convergence study of the classical multigrid method, an
estimate of the asymptotic convergence rate of 1− 1/(1 +CJ3), J being the
number of levels, has been proved by Kornhuber in [16] for the complemen-
tarity problems in the bidimensional space. For these problems, the same
estimate, but for the global convergence rate, is obtained for the methods in
[4] which are of the multiplicative type over the levels. The methods in that
paper which are of the additive type over the levels have a global convergence
rate of 1− 1/(1 +CJ4). The global convergence rates of the methods intro-
duced in this paper are better than those of the methods in [4]. We found, for
the complementarity problems in R2, that the convergence rate of the meth-
ods which are of the multiplicative type over the levels is of 1− 1/(1 +CJ2),
and of 1− 1/(1 + CJ3) for the methods of additive type over the levels.

The paper is organized as follows. In Section 2, we state four algorithms in
a general framework of reflexive Banach spaces, and prove their convergence
under some assumptions. In Section 3, we show that these algorithms can
be viewed as multilevel methods for the constrained minimization of non
quadratic functionals, if we associate finite element spaces to the level meshes
and consider decompositions of the domain at each level. We prove that the
assumptions made in the previous section hold for convex sets of one-obstacle
type. If the decompositions of the domain are made using the supports of
the nodal basis functions we get, in Section 4, the multigrid methods. This
particular choice of the domain decompositions allows us to obtain better
estimates for the convergence rate of the methods.

2 Abstract convergence results

We consider a reflexive Banach space V and V1, . . . , VJ , are some closed
subspaces of V , where VJ = V . Let K ⊂ V be a nonempty closed convex set,
and we assume that there exist some closed convex setsKj ⊂ Vj , j = 1, . . . , J
such that

K = K1 + . . .+KJ (2.1)

The algorithms we introduce will be combinations of additive or multiplica-
tive algorithms over levels with additive or multiplicative algorithms on each
level. To this end, we assume that at each level 1 ≤ j ≤ J we have Ij closed
subspaces of Vj , Vji, i = 1, . . . , Ij , and we shall write I = max

j∈J
Ij . Also, for a
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fixed σ > 1, we assume that there exists a constant C1 such that

||
J∑
j=1

Ij∑
i=1

wji|| ≤ C1(
J∑
j=1

Ij∑
i=1

||wji||σ)
1
σ (2.2)

for any wji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij . Evidently, we can take, for
instance,

C1 = (IJ)
σ−1
σ (2.3)

but sharper estimations can be available in certain cases. In the case when we
use multiplicative algorithms on the levels 1 ≤ j ≤ J , we make the following

Assumption 2.1. We assume that there exist two positive constants C2 and
C3, and that any w ∈ K can be written as w =

∑J
j=1wj, with wj ∈ Kj,

j = 1, . . . , J , such that
- for any v ∈ K,
- and any wji ∈ Vji satisfying wj +

∑i
k=1wjk ∈ Kj, j = 1, . . . , J ,

i = 1, . . . , Ij,
there exist vji ∈ Vji, j = 1, . . . , J , i = 1, . . . , Ij, which satisfy

wj +
i−1∑
k=1

wjk + vji ∈ Kj for j = 1, . . . , J, i = 1, . . . , Ij ,

v − w =
J∑
j=1

Ij∑
i=1

vji and
J∑
j=1

Ij∑
i=1

||vji||σ ≤ Cσ2 ||v − w||σ + Cσ3

J∑
j=1

Ij∑
i=1

||wji||σ.

If we use additive algorithms on the levels 1 ≤ j ≤ J , we assume

Assumption 2.2. We assume that there exists a constant C2 > 0, and that
any w ∈ K can be written as w =

∑J
j=1wj, with wj ∈ Kj, j = 1, . . . , J ,

such that for any v ∈ K,
there exist vji ∈ Vji, j = 1, . . . , J , i = 1, . . . , Ij, which satisfy

wj + vji ∈ Kj for j = 1, . . . , J, i = 1, . . . , Ij ,

v − w =
J∑
j=1

m∑
i=1

vji and
J∑
j=1

Ij∑
i=1

||vji||σ ≤ Cσ2 ||v − w||σ.
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Remark 2.1. In the proofs, for the writing uniformity, we shall consider
in Assumption 2.2 a constant C3 = 0 and inequality

∑J
j=1

∑Ij
i=1 ||vji||σ ≤

Cσ2 ||v − w||σ will be written like in Assumption 2.1,
∑J

j=1

∑Ij
i=1 ||vji||σ ≤

Cσ2 ||v − w||σ + Cσ3
∑J

j=1

∑Ij
i=1 ||wji||σ, for any wji ∈ Vji.

Now, we consider a Gâteaux differentiable functional F : V → R, which
is assumed to be coercive on K, in the sense that F (v)

||v|| → ∞, as ||v|| → ∞,
v ∈ K, if K is not bounded. Also, we assume that there exist two real
numbers p, q > 1 such that p

p−q+1 ≤ σ ≤ p and that, for any real number
M > 0 there exist αM , βM > 0 for which

αM ||v − u||p ≤< F ′(v)− F ′(u), v − u > and
||F ′(v)− F ′(u)||V ′ ≤ βM ||v − u||q−1 (2.4)

for any u, v ∈ V with ||u||, ||v|| ≤ M . Above, we have denoted by F ′ the
Gâteaux derivative of F , and we have marked that the constants αM and βM
may depend on M . It is evident that if (2.4) holds, then for any u, v ∈ V ,
||u||, ||v|| ≤M , we have

αM ||v − u||p ≤< F ′(v)− F ′(u), v − u >≤ βM ||v − u||q.

Following the way in [12], we can prove that for any u, v ∈ V , ||u||, ||v|| ≤M ,
we have

< F ′(u), v − u > +αM
p ||v − u||

p ≤ F (v)− F (u) ≤
< F ′(u), v − u > +βM

q ||v − u||
q.

(2.5)

Also, using the same techniques, we can prove that if F satisfies (2.4), then
1 < q ≤ 2 ≤ p. We point out that since F is Gâteaux differentiable and
satisfies (2.4), then F is a convex functional (see Proposition 5.5 in [10], pag.
25).

In certain cases, the second equation in (2.4) can be refined, and we
assume that there exist some constants 0 < βjk ≤ 1, βjk = βkj , j, k =
J, . . . , 1, such that

〈F ′(v + vji)− F ′(v), vkl〉 ≤ βMβjk||vji||q−1||vkl|| (2.6)

for any v ∈ V , vji ∈ Vji, vkl ∈ Vkl with ||v||, ||v + vji||, ||vkl|| ≤ M , i =
1, . . . , Ij and l = 1, . . . , Ik. Evidently, in view of (2.4), the above inequality
holds for

βjk = 1, j, k = J, . . . , 1 (2.7)
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We consider the variational inequality

u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K, (2.8)

and since the functional F is convex and differentiable, it is equivalent with
the minimization problem

u ∈ K : F (u) ≤ F (v), for any v ∈ K. (2.9)

We can use, for instance, Theorem 8.5 in [21], pag. 251, to prove that problem
(2.9) has a unique solution if F has the above properties. In view of (2.5),
for a given M > 0 such that the solution u ∈ K of (2.9) satisfies ||u|| ≤ M ,
we have

αM
p
||v − u||p ≤ F (v)− F (u) for any v ∈ K, ||v|| ≤M. (2.10)

To solve problem (2.8), we propose four algorithms which are either of
additive or multiplicative type from a level to another one, in combination
with additive or multiplicative iterations on the levels. We first define the
algorithm which is of the multiplicative type over the levels as well as on
each level.

Algorithm 2.1. We start the algorithm with a u0 ∈ K and decompose it as
in Assumption 2.1 with w = u0, u0 = u0

1 + . . . + u0
J , u

0
j ∈ Kj, j = 1, . . . , J .

At iteration n+1, n ≥ 0, assuming that we have un ∈ K, we decompose it as
in Assumption 2.1 with w = un, un = un1 + . . .+ unJ , u

n
j ∈ Kj, j = 1, . . . , J .

Then, for j ∈ J, . . . , 1,
- we successively calculate, the corrections wn+1

j ∈ Vj, unj + wn+1
j ∈ Kj,

by the multiplicative algorithm: we first write wnj = 0, and for i = 1, . . . , Ij,

successively calculate wn+1
ji ∈ Vji, unj +w

n+ i−1
Ij

j +wn+1
ji ∈ Kj, the solution of

the inequality

〈F ′
un +

J∑
k=j+1

wn+1
k + w

n+ i−1
Ij

j + wn+1
ji

 , vji − wn+1
ji 〉 ≥ 0 (2.11)

for any vji ∈ Vji, unj +w
n+ i−1

Ij

j +vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

j +wn+1
ji ,

- then, we write, un+J−j+1
J = un+J−j

J + wn+1
j .
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The algorithm which is of multiplicative type over the levels and of the
additive type on levels is written as,

Algorithm 2.2. We start the algorithm with an u0 ∈ K and decompose it
as in Assumption 2.2 with w = u0, u0 = u0

1 + . . .+u0
J , u

0
j ∈ Kj, j = 1, . . . , J .

At iteration n+1, n ≥ 0, assuming that we have un ∈ K, we decompose it as
in Assumption 2.2 with w = un, un = un1 + . . .+ unJ , u

n
j ∈ Kj, j = 1, . . . , J .

Then, for j = J, . . . , 1,
- we successively calculate, the corrections wn+1

j ∈ Vj, unj +wn+1
j ∈ Kj, by

the additive algorithm: we simultaneously calculate wn+1
ji ∈ Vji, unj +wn+1

ji ∈
Kj, the solution of the inequality

〈F ′
un +

J∑
k=j+1

wn+1
k + wn+1

ji

 , vji − wn+1
ji 〉 ≥ 0 (2.12)

for any vji ∈ Vji, unj +vji ∈ Kj, and write wn+1
j = r

I

∑Ij
i=1w

n+1
ji , with a fixed

0 < r ≤ 1.
- then, we write, un+J−j+1

J = un+J−j
J + wn+1

j .

Now, the additive algorithm over levels and which is of multiplicative
type on each level reads,

Algorithm 2.3. We start the algorithm with an u0 ∈ K and decompose it as
in Assumption 2.1 with w = u0, u0 = u0

1+. . .+u0
J , u

0
j ∈ Kj, j = 1, . . . , J . At

iteration n+ 1, n ≥ 0, assuming that we have un ∈ K, we decompose it as in
Assumption 2.1 with w = un, un = un1 +. . .+unJ , u

n
j ∈ Kj, j = 1, . . . , J . Then

we simultaneously calculate, for j = 1, . . . , J , the corrections wn+1
j ∈ Vj,

unj + wn+1
j ∈ Kj, by the multiplicative algorithm:

– we first write wnj = 0, and for i = 1, . . . , Ij, successively calculate

wn+1
ji ∈ Vji, unj + w

n+ i−1
Ij

j + wn+1
ji ∈ Kj, the solution of the inequality

〈F ′
(
un + w

n+ i−1
Ij

j + wn+1
ji

)
, vji − wn+1

ji 〉 ≥ 0 (2.13)

for any vji ∈ Vji, unj +w
n+ i−1

Ij

j +vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

j +wn+1
ji ,

Then, we write un+1 = un + s
J

∑J
j=1w

n+1
j , with a fixed 0 < s ≤ 1.
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Finally, the algorithm which is of additive type over the levels as well as
on each level is written as,

Algorithm 2.4. We start the algorithm with an u0 ∈ K and decompose it as
in Assumption 2.2 with w = u0, u0 = u0

1+. . .+u0
J , u

0
j ∈ Kj, j = 1, . . . , J . At

iteration n+ 1, n ≥ 0, assuming that we have un ∈ K, we decompose it as in
Assumption 2.2 with w = un, un = un1 +. . .+unJ , u

n
j ∈ Kj, j = 1, . . . , J . Then

we simultaneously calculate, for j = 1, . . . , J , the corrections wn+1
j ∈ Vj,

unj + wn+1
j ∈ Kj, by the additive algorithms:

– we simultaneously calculate wn+1
ji ∈ Vji, unj + wn+1

ji ∈ Kj, the solution
of the inequality

〈F ′
(
un + wn+1

ji

)
, vji − wn+1

ji 〉 ≥ 0 (2.14)

for any vji ∈ Vji, unj +vji ∈ Kj, and write wn+1
j = r

I

∑Ij
i=1w

n+1
ji , with a fixed

0 < r ≤ 1.
Then, we write un+1 = un + s

J

∑J
j=1w

n+1
j , with a fixed 0 < s ≤ 1.

Like inequality (2.8), inequalities (2.11)–(2.14) are equivalent with mini-
mization problems (see [6]).

The convergence result is given by

Theorem 2.1. We consider that V is a reflexive Banach, Vj, j = 1, . . . , J ,
are closed subspaces of V , and Vji, i = 1, . . . , Ij, are some closed subspaces of
Vj, j = 1, . . . , J . Let K be a non empty closed convex subset of V decomposed
as in (2.1) where Kj are closed convex subsets of Vj, j = 1, . . . , J , and F be
a Gâteaux differentiable functional on V which is supposed to be coercive if
K is not bounded, and satisfies (2.4). Also, we assume that Assumption 2.1
holds for Algorithms 2.1 and 2.3, and Assumption 2.2 holds for Algorithms
2.2 and 2.4. On these conditions, if u is the solution of problem (2.8) and un,
n ≥ 0, are its approximations obtained from the above described algorithms,
then there exists M > 0 such that ||u||, ||un|| ≤M , n ≥ 0, and the following
error estimations hold:

(i) if p = q = 2 we have

F (un)− F (u) ≤

(
C̃1

C̃1 + 1

)n [
F (u0)− F (u)

]
, (2.15)

||un − u||2 ≤ 2
αM

(
C̃1

C̃1 + 1

)n [
F (u0)− F (u)

]
, (2.16)
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where C̃1 is given in (2.30), and
(ii) if p > q we have

F (un)− F (u) ≤ F (u0)− F (u)[
1 + nC̃2 (F (u0)− F (u))

p−q
q−1

] q−1
p−q

, (2.17)

||u− un||p ≤ p

αM

F (u0)− F (u)[
1 + nC̃2 (F (u0)− F (u))

p−q
q−1

] q−1
p−q

, (2.18)

where C̃2 is given in (2.34).

Proof. Step 1. We first prove the boundedness of the approximations un of
u as well as of the corrections wn+1

ji obtained from the above algorithms. If
K is not bounded, using the coercivity and convexity of F , we get that there
exists a M > 0, such that ||u||, ||un||, ||wn+1

ji || ≤ M , n ≥ 0, j = J, . . . , 1,
i = 1, . . . , Ij , for the four Algorithms 2.1–2.4. The proof is similar with that
given in [1], [3] or [4], and can be found in [6].

Step 2. Now, we study the boundedness of
∑J

j=1

∑Ij
i=1 ||w

n+1
ji ||p. For

Algorithm 2.1, in view of (2.5) and (2.11), we have

αM
p ||w

n+1
ji ||p ≤ F

un +
J∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j

−
F

un +
J∑

k=j+1

wn+1
k + w

n+ i
Ij

j


ie.,

αM
p

Ij∑
i=1

||wn+1
ji ||

p ≤ F

un +
J∑

k=j+1

wn+1
k

−
F

un +
J∑
k=j

wn+1
k

 (2.19)

Also, for Algorithm 2.2, from (2.12), we get

αM
p
||wn+1

ji ||
p ≤ F

un +
J∑

k=j+1

wn+1
k

− F
un +

J∑
k=j+1

wn+1
k + wn+1

ji
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But,

F

un +
J∑

k=j+1

wn+1
k + wn+1

j

 = F

un +
J∑

k=j+1

wn+1
k +

r

I

Ij∑
i=1

wn+1
ji

 ≤
(1− rIj

I
)F

un +
J∑

k=j+1

wn+1
k

+
r

I

Ij∑
i=1

F

un +
J∑

k=j+1

wn+1
k + wn+1

ji


From the above two equations, we get

r

I

αM
p

Ij∑
i=1

||wn+1
ji ||

p ≤ F

un +
J∑

k=j+1

wn+1
k

−
F

un +
J∑
k=j

wn+1
k

 (2.20)

By a similar proof, for Algorithm 2.3, using (2.13), we get

αM
p

IJ∑
i=1

||wn+1
ji ||

p ≤ F (un)− F
(
un + wn+1

j

)
(2.21)

and, in view of (2.14), for Algorithm 2.4, we have,

r

I

αM
p

Ij∑
i=1

||wn+1
ji ||

p ≤ F (un)− F
(
un + wn+1

j

)
(2.22)

Now, let us write

t =


1 for Algorithm 2.1
r
I for Algorithm 2.2
s
J for Algorithm 2.3
s
J
r
I for Algorithm 2.4

(2.23)

For Algorithms 2.1 and 2.2, in view of (2.19) and (2.20), we can write

t
αM
p

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p ≤ F (un)− F
(
un+1

)
(2.24)
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With t in (2.23), the same equation holds for Algorithms 2.3 and 2.4. Indeed,

F
(
un+1

)
= F

un +
s

J

J∑
j=1

wn+1
j

 ≤ (1− s)F (un) +
s

J

J∑
j=1

F
(
un + wn+1

j

)
and (2.24) follows from (2.21) and (2.22).

Step 3. We now estimate F (un+1) − F (u). For a given j ∈ J , we write
wn+1
j =

∑Ij
i=1w

n+1
ji . Evidently, for Algorithm 2.1, we have

F (un+1) = F

un +
J∑
j=1

wn+1
j


For Algorithm 2.2, we get,

F (un+1) = F

un +
r

I

J∑
j=1

wn+1
j

 ≤ (1− r

I
)F (un) +

r

I
F

un +
J∑
j=1

wn+1
j


It is clear that for Algorithm 2.3, we have

F (un+1) ≤ (1− s

J
)F (un) +

s

J
F

un +
J∑
j=1

wn+1
j


Finally, for Algorithm 2.4, we get,

F (un+1) = F

un +
s

J

r

I

J∑
j=1

wn+1
j

 ≤
(1− s

J

r

I
)F (un) +

s

J

r

I
F

un +
J∑
j=1

wn+1
j


From the above four equations we conclude that

F (un+1) ≤ (1− t)F (un) + tF

un +
J∑
j=1

wn+1
j

 (2.25)

where t is given in (2.23). With v = u and w = un, we consider a decomposi-
tion

∑J
j=1

∑Ij
i=1 v

n
ji of u−un as in Assumption 2.1, in the case of Algorithms
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2.1 and 2.3, or as in Assumption 2.2, in the case of Algorithms 2.2 and 2.4.
In Assumption 2.1, we take wji = wn+1

ji , j = J, . . . , 1, i = 1, . . . , Ij , which
are obtained from Algorithms 2.1 or 2.3. In view of (2.5), we have

F

un +
J∑
j=1

wn+1
j

− F (u) +
αM
p
||un +

J∑
j=1

wn+1
j − u||p ≤

〈F ′
un +

J∑
j=1

wn+1
j

 , un +
J∑
j=1

wn+1
j − u〉 =

−
J∑
k=1

Ik∑
i=1

〈F ′
un +

J∑
j=1

wn+1
j

 , vnki − wn+1
ki 〉

(2.26)

For Algorithm 2.1, in view of (2.11) and (2.6), we have,

−〈F ′
un +

J∑
j=1

wn+1
j

 , vnki − wn+1
ki 〉 ≤

〈F ′
(
un +

J∑
l=k+1

wn+1
l + w

n+ i−1
Ik

k + wn+1
ki

)
−

F ′

un +
J∑
j=1

wn+1
j

 , vnki − wn+1
ki 〉 ≤

βM

J∑
j=1

βkj

Ij∑
l=1

||wn+1
jl ||

q−1||vnki − wn+1
ki ||

Above, we have added and subtracted the missing terms between

F ′

(
un +

∑J
l=k+1w

n+1
l + w

n+ i−1
Ij

k + wn+1
ki

)
and F ′

(
un +

∑J
j=1w

n+1
j

)
. Also,
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for Algorithm 2.2, from (2.12), we have

−〈F ′
un +

J∑
j=1

wn+1
j

 , vnki − wn+1
ki 〉 ≤

〈F ′
un +

r

I

J∑
j=k+1

wn+1
j + wn+1

ki

− F ′
un +

J∑
j=1

wn+1
j

 , vnki − wn+1
ki 〉 ≤

2βM
J∑
j=1

βkj

Ij∑
l=1

||wn+1
jl ||

q−1||vnki − wn+1
ki ||

Here, we have added and subtracted the missing terms between F ′(un) and
F ′
(
un + r

I

∑J
j=k+1w

n+1
j + wn+1

ki

)
, between F ′(un) and

F ′
(
un +

∑J
j=1w

n+1
j

)
, and used the fact that r

I ≤ 1. Similarly, we get the
above inequality from (2.13) for Algorithm 2.3, and from (2.14) for Algorithm
2.4. Consequently, in view of (2.26), we can write for all the four algorithms,

F (un +
J∑
j=1

wn+1
j )− F (u) +

αM
p
||un +

J∑
j=1

wn+1
j − u||p ≤

2βM
J∑
j=1

J∑
k=1

βkj

Ij∑
l=1

||wn+1
jl ||

q−1
Ik∑
i=1

||vnki − wn+1
ki || ≤

2βMI
σ−1
σ

+ p−q+1
p

J∑
j=1

(
J∑
k=1

βkj(
Ik∑
i=1

||vnki − wn+1
ki ||

σ)
1
σ

) Ij∑
l=1

||wn+1
jl ||

p


q−1
p

≤

2βMI
σ−1
σ

+ p−q+1
p

 J∑
j=1

(
J∑
k=1

βkj(
Ik∑
i=1

||vnki − wn+1
ki ||

σ)
1
σ

)σ 1
σ

·

 J∑
j=1

(
Ij∑
l=1

||wn+1
jl ||

p)
q−1
p

σ
σ−1

σ−1
σ

≤2βMI
σ−1
σ

+ p−q+1
p J

σ−1
σ
− q−1

p ( max
k=1,··· ,J

J∑
j=1

βkj)·

(
J∑
j=1

Ij∑
i=1

||vnji − wn+1
ji ||

σ)
1
σ (

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p)
q−1
p
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Above, we have used the inequality (see Corollary 4.1 in [25])

||Ax||lσ ≤ (max
i

∑
j

|Aij |)||x||lσ (2.27)

where A = (Aij)ij is a symmetric matrix. In view of (2.2), Assumptions 2.1
and 2.2 and Remark 2.1, we have

(
J∑
j=1

Ij∑
i=1

||vnji − wn+1
ji ||

σ)
1
σ ≤ (

J∑
j=1

Ij∑
i=1

||vji||σ)
1
σ + (

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

σ)
1
σ ≤

(Cσ2 ||u− un||σ + Cσ3

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

σ)
1
σ + (

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

σ)
1
σ ≤

C2||u− un||+ (1 + C3)(
J∑
j=1

Ij∑
i=1

||wn+1
ji ||

σ)
1
σ ≤

C2||u− un −
J∑
j=1

wn+1
j ||+ (1 + C1C2 + C3)(IJ)

p−σ
pσ (

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p)
1
p

Therefore, we get

F (un +
J∑
j=1

wn+1
j )− F (u) +

αM
p
||un +

J∑
j=1

wn+1
j − u||p ≤

2βMI
σ−1
σ

+ p−q+1
p J

σ−1
σ
− q−1

p ( max
k=1,··· ,J

J∑
j=1

βkj)·C2||u− un −
J∑
j=1

wn+1
j ||(

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p)
q−1
p +

(1 + C1C2 + C3)(IJ)
p−σ
pσ (

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p)
q
p



But, for any ε > 0, p > 1 and x, y ≥ 0, we have xy ≤ εxp + 1

ε
1
p−1

y
p
p−1 .
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Consequently, we have

F (un +
J∑
j=1

wn+1
j )− F (u) +

αM
p
||un +

J∑
j=1

wn+1
j − u||p ≤

2βMI
σ−1
σ

+ p−q+1
p J

σ−1
σ
− q−1

p ( max
k=1,··· ,J

J∑
j=1

βkj)·C2ε||u− un −
J∑
j=1

wn+1
j ||p + C2

1

ε
1
p−1

(
J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p)
q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ
pσ (

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p)
q
p


for any ε > 0. With

ε =
αM
p

1

2C2βMI
σ−1
σ

+ p−q+1
p J

σ−1
σ
− q−1

p ( max
k=1,··· ,J

J∑
j=1

βkj)

(2.28)

the above equation becomes,

F (un +
J∑
j=1

wn+1
j )− F (u) ≤

αM
p

C2ε
· C2

ε
1
p−1

(
J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p)
q−1
p−1 + (1 + C1C2 + C3)(IJ)

p−σ
pσ (

J∑
j=1

Ij∑
i=1

||wn+1
ji ||

p)
q
p


From this equation and (2.24)

F (un +
J∑
j=1

wn+1
j )− F (u) ≤

αM
p

C2ε
·

 C2

ε
1
p−1 (tαMp )

q−1
p−1

(F (un)− F (un+1))
q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ
pσ

(tαMp )
q
p

(F (un)− F (un+1))
q
p


with t in (2.23) and ε in (2.28). In view of the above equation and (2.25),
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we have
F (un+1)− F (u) ≤ 1−t

t (F (un)− F (un+1)) +
αM
p

C2ε
· C2

ε
1
p−1 (tαMp )

q−1
p−1

(F (un)− F (un+1))
q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ
pσ

(tαMp )
q
p

(F (un)− F (un+1))
q
p


(2.29)

Step 4. We prove error estimations (2.15)–(2.18). First, using (2.10), we
see that error estimations in (2.16) and (2.18) can be obtained from (2.15)
and (2.17), respectively. Now, if p = q = 2, then σ = 2, and from the above
equation, we easily get equation (2.15), where

C̃1 =
1− t
t

+
1

C2tε

[
C2

ε
+ 1 + C1C2 + C3

]
with

ε =
αM
2

2C2βMI( max
k=1,··· ,J

J∑
j=1

βkj)

(2.30)

Finally, if p > q, from (2.29), we have

F (un+1)− F (u) ≤ C̃3(F (un)− F (un+1))
q−1
p−1 (2.31)

where

C̃3 =
1− t
t

(F (u0)− F (u))
p−q
p−1 +

αM
p

C2ε

 C2

ε
1
p−1 (tαMp )

q−1
p−1

+

(1 + C1C2 + C3)(IJ)
p−σ
pσ

(tαMp )
q
p

(F (u0)− F (u))
p−q
p(p−1)

 (2.32)

with ε in (2.28). From (2.31), we get

F (un+1)− F (u) +
1

C̃
p−1
q−1

3

(F (un+1)− F (u))
p−1
q−1 ≤ F (un)− F (u),

and we know (see Lemma 3.2 in [25]) that for any r > 1 and c > 0, if
x ∈ (0, x0] and y > 0 satisfy y + cyr ≤ x, then y ≤ ( c(r−1)

crxr−1
0 +1

+ x1−r)
1

1−r .
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Consequently, we have F (un+1)−F (u) ≤ [C̃2 +(F (un)−F (u))
q−p
q−1 ]

q−1
q−p , from

which,

F (un+1)− F (u) ≤ [(n+ 1)C̃2 + (F (u0)− F (u))
q−p
q−1 ]

q−1
q−p , (2.33)

where
C̃2 =

p− q

(p− 1)(F (u0)− F (u))
p−q
q−1 + (q − 1)C̃

p−1
q−1

3

. (2.34)

Equation (2.33) is another form of equation (2.17).

3 Multilevel Schwarz methods

We consider a family of regular meshes Thj of mesh sizes hj , j = 1, . . . , J
over the domain Ω ⊂ Rd. We write Ωj = ∪τ∈Thj τ and assume that Thj+1

is
a refinement of Thj on Ωj , j = 1, . . . , J − 1, and Ω1 ⊂ Ω2 ⊂ . . . ⊂ ΩJ = Ω.
Also, we assume that, if a node of Thj lies on ∂Ωj , then it lies on ∂Ωj+1, too,
that is, it lies on ∂Ω. Besides, we suppose that dist(xj+1,Ωj) ≤ Chj , for any
node xj+1 of Thj+1

, j = 1, . . . , J − 1. In this section, C denotes a generic
positive constant independent of the mesh sizes, the number of meshes, as
well as of the overlapping parameters and the number of subdomains in the
domain decompositions which will be considered later. Since the mesh Thj+1

is a refinement of Thj , we have hj+1 ≤ hj , and assume that there exists a
constant γ, independent of the number of meshes or their sizes, such that

1 < γ ≤ hj
hj+1

≤ Cγ, j = 1, . . . , J − 1. (3.1)

At each level j = 1, . . . , J , we consider an overlapping decomposition
{Ωi

j}1≤i≤Ij of Ωj , and assume that the mesh partition Thj of Ωj supplies a
mesh partition for each Ωi

j , 1 ≤ i ≤ Ij . Also, we assume that the overlapping
size for the domain decomposition at the level 1 ≤ j ≤ J is δj . In addition,
we suppose that if ωij+1 is a connected component of Ωi

j+1, j = 1, . . . , J − 1,
i = 1, . . . , Ij , then

diam(ωij+1) ≤ Chj (3.2)

Since hj+1 ≤ δj+1, from (3.1), we also have

hj
δj+1

≤ Cγ, j = 1, . . . , J − 1. (3.3)
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Finally, we assume that I1 = 1.
At each level j = 1, . . . , J , we introduce the linear finite element spaces,

Vhj = {v ∈ C(Ω̄j) : v|τ ∈ P1(τ), τ ∈ Thj , v = 0 on ∂Ωj}, (3.4)

and, for i = 1, . . . , Ij , we write

V i
hj

= {v ∈ Vhj : v = 0 in Ωj\Ωi
j}. (3.5)

The functions in Vhj j = 1, . . . , J − 1, will be extended with zero outside Ωj

and the spaces will be considered as subspaces of W 1,σ, 1 ≤ σ ≤ ∞. We
denote by || · ||0,σ the norm in Lσ, and by || · ||1,σ and | · |1,σ the norm and
seminorm in W 1,σ, respectively.

We consider the obstacle problem

u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K, (3.6)

where
K = {v ∈ VhJ : ϕ ≤ v}, (3.7)

with ϕ ∈ VhJ . We shall prove that Assumptions 2.1 and 2.2 hold for this type
of convex set, and explicitly write the constants C2 and C3 as functions of
the mesh and overlapping parameters. We can then conclude from Theorem
2.1 that if the functional F has the asked properties, then Algorithms 2.1–2.4
are globally convergent.

We first introduce the operators Ihj : Vhj+1
→ Vhj , j = 1, . . . , J − 1,

defined as follows. Let us denote by xji a node of Thj , by φji the linear
nodal basis function associated with xji and Thj , and by ωji the support of
φji. Given a v ∈ Vhj+1

, we write Ijiv = minx∈ωji v(x). Finally, we define
Ihjv :=

∑
xjinode of Thj

(Ijiv)φji(x).

Remark 3.1. 1) In [24], similar operators, Ihj : VhJ → Vhj , are defined. For
a v ∈ VhJ , we write as above, Ijiv = minx∈ωji v(x) and Ihjv :=∑

xjinode of Thj
(Ijiv)φji(x). These operators have the disadvantage that Ihjv

can not be computed from Ihj+1
v. For this reason, in the case of the multigrid

method, their definition is modified in [13] by taking Ijiv = minx∈Intωji v(x)
in the place of Ijiv = minx∈ωji v(x).

2) Since the finite element spaces are linear, for a v ∈ Vhj , we can take
Ijiv = min

x∈ωji, x node of Thj+1

v(x) in the place of Ijiv = minx∈ωji v(x) in our

above definition.
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3) In [2] some more general operators Ihj : Vhj+1
→ Vhj have been intro-

duced. They coincide with those above defined ones for v ≥ 0.

For a v ∈ VhJ , we recursively define

vJ = v and vj = Ihjv
j+1, j = J − 1, . . . , 1 (3.8)

Writing

Cd,σ(H,h) =


1 if d = σ = 1

or 1 ≤ d < σ <∞
(ln H

h + 1)
d−1
d if 1 < d = σ <∞

(Hh )
d−σ
σ if 1 ≤ σ < d <∞,

(3.9)

we have the following result

Lemma 3.1. Let vj , wj ∈ Vhj , j = J, . . . , 1 defined as in (3.8) for some
v, w ∈ VhJ , respectively. Then, for j = J, . . . , 1, we have

|vj − wj |1,σ ≤ CCd,σ(hj , hJ)|v − w|1,σ (3.10)

Proof. Equation (3.10) is evident for j = J . For a j = J−1, . . . , 1, let ωj(xj)
be the support of the nodal basis function in Vhj corresponding to the node
xj of Thj . Then there exist two nodes of Thj , x1

j , x
2
j ∈ ωj(xj), such that

|vj − wj |σ1,σ,ωj(xj) ≤ Ch
d−σ
j |(vj − wj)(x1

j )− (vj − wj)(x2
j )|σ (3.11)

and let us assume that

|(vj − wj)(x1
j )− (vj − wj)(x1

j )| = (vj − wj)(x1
j )− (vj − wj)(x2

j ) (3.12)

Now, we have

(vj − wj)(x1
j )− (vj − wj)(x2

j ) =
(Ihjv

j+1 − Ihjwj+1)(x1
j ) + (Ihjw

j+1 − Ihjvj+1)(x2
j )

and let

Ihjw
j+1(x1

j ) = wj+1(x1
j+1) and Ihjv

j+1(x2
j ) = vj+1(x2

j+1)
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where x1
j+1 ∈ ωj(x1

j ) and x2
j+1 ∈ ωj(x2

j ) are two nodes of Thj+1
, ωj(x1

j ) and
ωj(x2

j ) being the supports of the nodal basis functions in Vhj corresponding
to the nodes x1

j and x2
j , respectively. Consequently, we get

(vj − wj)(x1
j )− (vj − wj)(x2

j ) ≤
(vj+1 − wj+1)(x1

j+1)− (vj+1 − wj+1)(x2
j+1)

Repeating the above reasoning, we get that, for k = j, . . . , J − 1, there exist
xk+1

1 ∈ ωk(xk1) and xk+1
2 ∈ ωk(xk2) are two nodes of Thk+1

, ωk(xk1) and ωk(xk2)
being the supports of the nodal basis functions in Vhk corresponding to the
nodes xk1 and xk2, respectively, such that

(vk − wk)(xk1)− (vk − wk)(xk2) ≤
(vk+1 − wk+1)(xk+1

1 )− (vk+1 − wk+1)(xk+1
2 )

(3.13)

From (3.11), (3.12) and (3.13), we get

|vj − wj |σ1,σ,ωj(xj) ≤ Ch
d−σ
j [(v − w)(x1

J)− (v − w)(x2
J)]σ (3.14)

Since the radius of ωk is less than hk, and in view of (3.1), it follows that
dist(xj , x1

J), dist(xj , x1
J)≤ hj+(hj+. . .+hJ−1) ≤ (1+1+ 1

γ+. . .+ 1
γJ−1−j )hj ≤

2γ−1
γ−1 hj . Therefore, if we write

ω̃j(xj) =
⋃

τ∈Thj , dist(xj ,τ)≤
γ
γ−1

hj

τ,

then x1
J , x

2
J ∈ ω̃j(xj). Subtracting and adding (v−w)(x), x ∈ ω̃j(xj), in the

right hand side of (3.14), integrating over ω̃j(xj), in view of Lemma 4.1 in
[2], we have

(2γ−1
γ−1 hj)

d|vj − wj |σ1,σ,ωj(xj) ≤ Ch
d−σ
j

[
||(v − w)(x1

j )− (v − w)(x)||σ0,σ,ω̃j(xj)+

||(v − w)(x2
j )− (v − w)(x)||σ0,σ,ω̃j(xj)

]
≤

Chd−σj (22γ−1
γ−1 hj)

σCd,σ(22γ−1
γ−1 hj , hJ)σ|v − w|σ1,σ,ω̃j(xj),

ie.,
|vj − wj |1,σ,ωj(xj) ≤ CCd,σ(hj , hJ)|v − w|1,σ,ω̃j(xj)

Finally, since the mesh Thj is regular and γ is independent of J and of
the mesh parameters, then ωj(xj) and ω̃j(xj) contain a bounded number of
simplexes of Thj , which is also independent of J and of the mesh parameters.
Consequently, we get (3.10).
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Another result we shall utilize is given by the following lemma.

Lemma 3.2. For any v, w ∈ Vhj+1
, j = J − 1, . . . , 1, we have

||v − w − Ihjv + Ihjw||0,σ ≤ ChjCd,σ(hj , hj+1)|v − w|1,σ (3.15)

Proof. As in the proof of the previous lemma, we denote by ωj(xj) the sup-
port of the nodal basis function φj in Vhj corresponding to the node xj of
Thj . For a τ ∈ Thj , we have

||v − w − Ihjv + Ihjw||0,σ,τ =
||

∑
xj node of τ

[v − w − (Ihjv − Ihjw)(xj)]φj ||0,σ,τ ≤∑
xj node of τ

||v − w − (Ihjv − Ihjw)(xj)||0,σ,τ

From the definition of Ihj , there exist two nodes of Thj+1
, x1

j+1, x
2
j+1 ∈ ωj(xj),

such that (Ihjv)(xj) = v(x1
j+1) and (Ihjw)(xj) = w(x2

j+1). Therefore,

||v − w − Ihjv + Ihjw||0,σ,τ ≤∑
xj node of τ

||v − w − v(x1
j+1) + w(x2

j+1)||0,σ,ωj(xj)

Now, let ωj(xj)+ = {x ∈ ωj(xj) : v − w − v(x1
j+1) + w(x2

j+1) ≥ 0} and
ωj(xj)− = {x ∈ ωj(xj) : v − w − v(x1

j+1) + w(x2
j+1) ≤ 0}. From the above

equation, the definition of Ihj and Lemma 4.1 in [2], we get

||v − w − Ihjv + Ihjw||0,σ,τ ≤∑
xj node of τ

[
||v − w − v(x1

j+1) + w(x1
j+1)||σ0,σ,ωj(xj)++

||w − v − w(x2
j+1) + v(x2

j+1)||σ0,σ,ωj(xj)−
]1/σ

≤

ChjCd,σ(hj , hj+1)
∑

xj node of τ

[
|v − w|σ1,σ,ωj(xj)+ + |w − v|σ1,σ,ωj(xj)−

]1/σ
=

ChjCd,σ(hj , hj+1)
∑

xj node of τ
|v − w|1,σ,ωj(xj)

Since the mesh Thj is regular, ωj(xj) contains a bounded number of simplexes
of Thj , which is independent of J and of the mesh parameters. Consequently,
inequality (3.15) can be obtained from the above equation.
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Now, we consider a decomposition of ϕ = ϕJ + . . . + ϕ1 with ϕj ∈ Vhj ,
j = J, . . . , 1, and define

Kj = {v ∈ Vhj : ϕj ≤ v}, j = J, . . . , 1 (3.16)

In this way, we get a decomposition of K as in (2.1). For a v ∈ K, with the
notation in (3.8), we write

vj = ϕj + (v − ϕ)j − (v − ϕ)j−1, j = J, . . . , 2
v1 = ϕ1 + (v − ϕ)1

(3.17)

Evidently,
vj ∈ Kj , j = J, . . . , 1, and v = vJ + . . .+ v1 (3.18)

We have the following

Lemma 3.3. If vj , wj ∈ Kj, j = J, . . . , 1, are defined as in (3.17) for some
v, w ∈ K, respectively, then

|vj − wj |1,σ ≤ CCd,σ(hj−1, hJ)|v − w|1,σ (3.19)

and
||vj − wj ||0,σ ≤ Chj−1Cd,σ(hj , hJ)|v − w|1,σ (3.20)

where we take h0 = h1 for j = 1.

Proof. For j = J, . . . , 2, in view of (3.10), we have

|vj − wj |1,σ = |(v − ϕ)j − (v − ϕ)j−1 − (w − ϕ)j + (w − ϕ)j−1|1,σ ≤
C[Cd,σ(hj , hJ) + Cd,σ(hj−1, hJ)]|v − w|1,σ

ie., (3.19) holds for j = J, . . . , 2. Also, by a similar proof, we get that (3.19)
for j = 1. Now, using (3.15) and (3.10), for j = J, . . . , 2, we get

||vj − wj ||0,σ =
||(v − ϕ)j − Ihj−1

(v − ϕ)j − (w − ϕ)j + Ihj−1
(w − ϕ)j ||0,σ ≤

Chj−1Cd,σ(hj−1, hj)|(v − ϕ)j − (w − ϕ)j |1,σ ≤
Chj−1Cd,σ(hj−1, hj)Cd,σ(hj , hJ)|v − w|1,σ

and therefore, (3.20) holds for j = J, . . . , 2. For j = 1, from the classical
Friedrichs-Poincaré inequality and (3.10), we have

||v1 − w1||0,σ = ||(v − ϕ)1 − (w − ϕ)1||0,σ ≤
Ch1|(v − ϕ)1 − (w − ϕ)1|1,σ ≤ Ch1Cd,σ(h1, hJ)|v − w|1,σ,

ie., we obtained (3.20) for j = 1.
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To prove that Assumption 2.1 holds, we associate to the decomposition
{Ωi

j}1≤i≤Ij of Ωj , some functions θij ∈ C(Ω̄j), θij |τ ∈ P1(τ) for any τ ∈ Thj ,
i = 1, · · · , Ij , such that

0 ≤ θij ≤ 1 on Ωj ,

θij = 0 on ∪Ijl=i+1 Ωl
j\Ωi

j , θ
i
j = 1 on Ωi

j\ ∪
Ij
l=i+1 Ωl

j

(3.21)

Also, for Assumption 2.2, we associate a unity partition to each domain
decomposition {Ωi

j}1≤i≤Ij , j = J, . . . , 1,

0 ≤ θij ≤ 1 and
Ij∑
i=1

θij = 1 on Ωj (3.22)

with θij ∈ C(Ω̄j), θij |τ ∈ P1(τ) for any τ ∈ Thj , i = 1, · · · , Ij . Such func-
tions θij with the above properties exist (see [2] or [26] p. 59, for instance).
Moreover, since the overlapping size of the domain decomposition on a level
j = J, . . . , 1 is δj , the above functions θij can be chosen to satisfy

|∂xkθ
i
j | ≤ C/δj , a.e. in Ωj , for any k = 1, . . . , d (3.23)

Finally, we recall some interpolation properties. For a v ∈ Vhj and a
continuous functions θ which is of polynomial form on the elements of τ ∈ Thj ,
we have (see [9] and [28]),

||θv − Lhj (θv)||0,σ ≤ Chj |θv|1,σ and |Lhj (θv)|1,σ ≤ C|θv|1,σ

where Lhj is the P1-Lagrangian interpolation operator which uses the func-
tion values at the nodes of the mesh Thj . Therefore, we have

||Lhj (θv)||1,σ ≤ C||θv||1,σ (3.24)

Now, we can prove

Proposition 3.1. Assumption 2.1 holds with the constants C2 and C3 are
given in (3.29) for the convex sets Kj, j = J, . . . , 1, defined in (3.16).

Proof. Let us consider v, w ∈ K and let vj , wj ∈ Kj , j = J, . . . , 1, be
their decompositions defined as in (3.17), respectively. Also, let wji ∈ V i

hj
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such that wj + wj1 + . . . + wji ∈ Kj , j = J, . . . , 1, i = 1, . . . , Ij . Now, for
j = J, . . . , 2, we define

vj1 = Lhj (θ
1
j (vj − wj) + (1− θ1

j )wj1)

vji = Lhj (θ
i
j((vj − wj)−

i−1∑
l=1

vjl) + (1− θij)wji), i = 2, . . . , Ij

with θij in (3.21). Like in Proposition 3.1 in [2], where we take v = vj and
w = wj , we can prove that

vji ∈ V i
hj
, wj + wj1 + . . .+ wji−1 + vji ∈ Kj , i = 1, . . . , Ij

vj − wj =
Ij∑
i=1

vji
(3.25)

We point out that here, the condition wj +wj1 + . . .+wji−1 + vji ∈ Kj can
be proved by verifying that it is satisfied only at the nodes of Thj . At the
level j = 1, we do not have a domain decomposition, I1 = 1, and we take

v11 = v1 − w1.

From this equation, (3.18) and (3.25), we get that the first two conditions of
Assumption 2.1 are satisfied.

We estimate now the constants C2 and C3. Using Lemma 3.3 and the
same techniques as in [2] or [4] (see [6] for details), we can write

||vji||σ1,σ ≤ CIσ
Cd,σ(hj−1, hJ)σ|u− w|σ1,σ +

Ij∑
k=1

|wjk|σ1,σ

 (3.26)

for any j = J, . . . , 2 and i = 1, . . . , Ij . At the level j = 1, from Lemma 3.3,
we have

||v11||σ1,σ ≤ CCd,σ(h1, hJ)σ|v − w|σ1,σ (3.27)

From (3.26) and (3.27), we get

J∑
j=1

Ij∑
i=1

||vji||σ1,σ ≤ CIσ+1


J∑
j=2

Ij∑
i=1

|wji|σ1,σ+ J∑
j=2

Cd,σ(hj−1, hJ)σ

 |u− w|σ1,σ


(3.28)
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Consequently, from (3.28), we get that the constants C2 and C3 can be
written as

C2 = CI
σ+1
σ

 J∑
j=2

Cd,σ(hj−1, hJ)σ

 1
σ

and C3 = CI
σ+1
σ (3.29)

Concerning Assumption 2.2 we have

Proposition 3.2. Assumption 2.2 holds with the constants C2 and C3 are
given in (3.32) for the convex sets Kj, j = J, . . . , 1, defined in (3.16).

Proof. Let us consider v, w ∈ K, and let vj , wj ∈ Kj , j = J, . . . , 1, be their
decompositions defined as in (3.17), respectively. Now, we define

vji = Lhj (θ
i
j(vj − wj)), i = 1, . . . , Ij , for j = J, . . . , 2,

and v11 = v1 − w1
(3.30)

with θij in (3.22). In view of (3.18) and (3.30), we get that the first two
conditions of Assumption 2.2 hold.

We estimate now the constants C2 and C3. For j = J, . . . , 2, from (3.23)
and (3.24), we get

||vji||σ1,σ ≤ C(|vj − wj |σ1,σ + (1 +
1
δj

)σ||vj − wj ||σ0,σ)

Using this equation, the proof is similar with that of the previous proposition.
For j = J, . . . , 2, in view of (3.19) and (3.20), we have

||vji||σ1,σ ≤ CCd,σ(hj−1, hJ)σ|v − w|σ1,σ
and we use (3.27) for the estimation of ||v11||1,σ. From these equations, we
get

J∑
j=1

Ij∑
i=1

||vji||σ1,σ ≤ CI

 J∑
j=2

Cd,σ(hj−1, hJ)σ

 |v − w|σ1,σ (3.31)

Consequently, the constants C2 and C3, can be written as

C2 = CI
1
σ [

J∑
j=2

Cd,σ(hj−1, hJ)σ]
1
σ and C3 = 0 (3.32)
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The constants C1 and βjk, j, k = J, . . . , 1, can be taken as in (2.3) and
(2.7), but better choices are available in the case of the multigrid methods in
the next section. As we see form the above estimations, the convergence rates
given in Theorem 2.1 depend on the functional F , the maximum number of
the subdomains on each level, I, and the number J of levels. The number of
subdomains on levels can be associated with the number of colors needed to
mark the subdomains such that the subdomains with the same color do not
intersect with each other. Since this number of colors depends in general on
the dimension of the Euclidean space where the domain lies, we can conclude
that our convergence rate essentially depends on the number J of levels.

We first estimate the constants C1–C3 as functions of J . To this end, in
the remainder of this section, C will be a generic constant which does not

depend on J . Writing Sd,σ(J) =
[∑J

j=2Cd,σ(hj−1, hJ)σ
] 1
σ from (3.1) and

(3.9), we can consider

Sd,σ(J) =


(J − 1)

1
σ if d = σ = 1

or 1 ≤ d < σ <∞
CJ if 1 < d = σ <∞
CJ if 1 ≤ σ < d <∞

(3.33)

in our estimations. In this general framework, we take C1, and βjk, j, k =
J, . . . , 1, as in (2.3) and (2.7),

C1 = CJ
σ−1
σ and max

k=1,··· ,J

J∑
j=1

βkj = J (3.34)

Also, from (3.29) and (3.32), we get

C2 = CSd,σ(J) and C3 =
{
C for Algorithms 2.1 and 2.3
0 for Algorithms 2.2 and 2.4

(3.35)

As a consequence of Theorem 2.1 and Propositions 3.1 and 3.2 we have

Corollary 3.1. Let us consider the finite element spaces Vhj defined in (3.4)
which are associated with the levels j = 1, . . . , J , and their subspaces V i

hj
,

i = 1, . . . , Ij, given in (3.5), which are associated with the level domain de-
compositions. Also, let K be the closed convex subset of V = VJ given in
(3.7), which is decomposed as a sum of the level closed convex sets Kj ⊂ Vhj ,
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j = J, . . . , 1, defined in (3.16). If F is a Gâteaux differentiable functional
on V which is supposed to be coercive and to satisfy (2.4), then the approx-
imation sequences un, n ≥ 0 obtained from Algorithms 2.1–2.4 converge to
the solution u of the one-obstacle problem (3.6) and the error estimations in
Theorem 2.1 hold. The constants C̃1 and C̃2 in these error estimations de-
pend on the number of levels J through the constants C1–C3 given in (3.34)
and (3.35).

Remark 3.2. 1) The results of this section have referred to problems in
W 1,σ with Dirichlet boundary conditions, and the functions corresponding
to the coarse levels have been extended with zero outside the domains Ωj ,
j = J − 1, . . . , 1. Let us assume that the problem has mixed boundary
conditions: ∂ΩJ = Γd ∪ Γn, with Dirichlet conditions on Γd and Neumann
conditions on Γn. In this case, if a node of Thj , j = J − 1, . . . , 1, lies in
Int(Γn), we have to assume that all the sides of the elements τ ∈ Thj having
that node are included in Γn.

2) Similar convergence results with those ones presented in this section
can be obtained for problems in (W 1,s)d.

4 Multigrid methods

In the above multilevel methods a mesh is the refinement of that one on the
previous level, but the domain decompositions are almost independent from
one level to another. We obtain similar multigrid methods by decomposing
the level domains by the supports of the nodal basis functions. Consequently,
the subspaces V i

hj
, i = 1, . . . , Ij , are one-dimensional spaces generated by the

nodal basis functions associated with the nodes of Thj , j = J, . . . , 1. In
this case Algorithms 2.1–2.4 are V-cycle multigrid iterations in which the
smoothing steps are performed by a combination of multiplicative methods
with additive ones. Evidently, similar results can be given for the W-cycle
multigrid iterations.

In this section, we show that the estimations given in (2.3) and (2.7) for
the constants C1 and βjk, j, k = J, . . . , 1 can be improved in the case of the
multigrid methods. Finally, we summarize the previous results by writing
the convergence rates of the four algorithms as functions of the number J of
the levels, for the varied values of the constants p, q, σ and d.

Concerning the constants βjk, j, k = J, . . . , 1, in (2.6), we can prove (see
[4] or [5], for instance) that, in the case of the multigrid methods, there exist
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such constants such that

max
k=1,...,J

J∑
j=1

βkj = C

where C is a constant independent of the meshes and their number. Also,
the constant C1 in (2.2) is estimated in Lemma 4.1 in [4] or [5],

C1 = (n!)
1
σC

n−1
n

(
I

γ
d
n

γ
d
n − 1

)n−1
σ

where n ∈ N, n− 1 < σ ≤ n, and C is a constant independent of the meshes
and their number.

Now, we shall write the convergence rate of the multigrid Algorithms
2.1–2.4 in function of the number J of levels. To this end, we write the error
estimations in Theorem 2.1 of the four algorithms using the above estimations
of C1 and maxk=J,...,1

∑J
j=1 βkj , and C2 and C3 given in (3.35). In order to

be more conclusive, we limit ourselves to a typical example where

F (v) =
1
σ
||v||σ1,σ − L(v), v ∈W 1,σ(Ω) (4.1)

where L is a linear and continuous functional on W 1,σ(Ω), σ > 1. In this
case (see [1], for instance),

p = 2, q = σ if σ < 2; p = 2, q = 2 if σ = 2; p = σ, q = 2 if σ > 2

Evidently, we can use the same procedure for other problems, too.
For σ = 2 and p = q = 2, in view of (2.30), (2.23) and (3.35), we get

C̃1(J) =
{
CSd,2(J)2 for Algorithms 2.1 and 2.2
CJSd,2(J)2 for Algorithms 2.3 and 2.4

(4.2)

and, from Theorem 2.1, we have

||un − u||21,2 ≤ C̃0

(
1− 1

1 + C̃1(J)

)n
(4.3)

where C̃0 is a constant independent of J .
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For 1 < q = σ < 2 and p = 2, in view of (2.32), (2.23) and (3.35), we get

C̃3(J) =

{
CJ

(σ−1)(2−σ)
σ Sd,σ(J)2 for Algorithms 2.1 and 2.2

CJ
2(σ−1)
σ Sd,σ(J)2 for Algorithms 2.3 and 2.4

(4.4)

From Theorem 2.1, we get that

||un − u||21,σ ≤ C̃0
1(

1 + nC̃2(J)
)σ−1

2−σ
(4.5)

where, in view of (2.34), we can take

C̃2(J) =
1

1 + C̃3(J)
1

σ−1

(4.6)

For p = σ > 2 and q = 2, we get

C̃3(J) =

{
CJ

σ−2
σ−1Sd,σ(J)

σ
σ−1 for Algorithms 2.1 and 2.2

CJSd,σ(J)
σ
σ−1 for Algorithms 2.3 and 2.4

(4.7)

Finally, in this case, we have

||un − u||σ1,σ ≤ C̃0
1(

1 + nC̃2(J)
) 1
σ−2

(4.8)

where
C̃2(J) =

1
1 + C̃3(J)σ−1

(4.9)

We make now some remarks on the above error estimations of the four
algorithms. First, we point out that the above convergence results give global
rate estimations. As we have expected, the multiplicative (over the levels)
Algorithms 2.1 and 2.2 converge better than their additive variants, Algo-
rithms 2.3 and 2.4. For the complementarity problems, we can compare the
convergence rates of the four multigrid algorithms with the similar ones in
the literature. In this case, p = q = σ = d = 2 in the above example, from
(4.3) and (4.2), we get that the convergence rate of Algorithms 2.1 and 2.2
is of 1 − 1

1+CJ2 , and that of Algorithms 2.3 and 2.4 is of 1 − 1
1+CJ3 . These

convergence rates are better, with a factor J , than those of the similar algo-
rithms introduced in [4], which are of 1− 1

1+CJ3 and 1− 1
1+CJ4 , respectively.



Multigrid methods with constraint level decomposition 329

For the truncated monotone multigrid method, an asymptotic convergence
rate of 1− 1

1+CJ4 , and under some conditions, of 1− 1
1+CJ3 , is found in [16]

and [13]. An estimate of 1 − 1
1+CJ3 is also obtained in [16] for the asymp-

totic convergence rate of the standard monotone multigrid methods. In [13],
it is mentioned that this asymptotic rate may be of 1 − 1

1+CJ2 , or even of
1− 1

1+CJ , under some conditions.
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TWO OPTIMAL CONTROL PROBLEMS
IN CANCER CHEMOTHERAPY WITH

DRUG RESISTANCE∗

Werner Krabs† and Lothar von Wolfersdorf‡

Abstract

We investigate two well-known basic optimal control problems for
chemotherapeutic cancer treatment modified by introducing a time-
dependent “resistance factor”. This factor should be responsible for the
effect of the drug resistance of tumor cells on the dynamical growth
for the tumor. Both optimal control problems have common point-
wise but different integral constraints on the control. We show that in
both models the usually practised bang-bang control is optimal if the
resistance is sufficiently strong. Further, we discuss different optimal
strategies in both models for general resistance.
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1 Introduction

Optimal control problems based on mathematical models for cancer chemo-
therapy have a long history and obtained a renewed interest in the last years
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(cf. [2-6, 10-26]). There are further recent papers on mathematical models
for immunotherapy and mixed immunotherapy and chemotherapy starting
with papers by A. Kuznetsov and coworkers in the nineties (cf. [19,20], for
instance) but which are not in our focus here. Instead the present paper
follows the two pioneering papers by J.M. Murray in 1990 [16,17] (see also
[24]) whose basic problems are modified in the following.

One difficulty in applying the considered optimal control problems in cancer
chemotherapy is the occurance of optimal solutions which are seldom or not
used in medical practice. A desired optimal solution by the physician is
the bang-bang control consisting of a starting interval with maximal dose
of drug followed by an interval of zero-therapy till the end of treatment
(considering one cycle of the chemotherapeutic treatment). In particular,
the therapy should theoretically end with an interval of zero-therapy to have
the required minimum of the tumor cells population also somewhat later
than at the practical end of treatment. To obtain optimal solutions of this
type often a suitable choice of the objective functions is proposed (cf. [14,
17, 19, and 24]).

The aim of the present paper is to circumvent this difficulty taking into
account the resistance of the tumor cells against drug (and further using the
size of the tumor cells population at the final time as the natural objective
function). Acquired and intrinsic resistance of the tumor cells against drug
is an important but very complex phenomen in tumor therapy (cf. [8, 12])
and related deterministic models [4, 12, 14] and stochastic ones [2, 3] in
dealing with it are developed recently. In our highly simplified model we only
consider a summarizing effect of resistance by introducing a time-dependent
“resistance factor” in front of the loss function of the tumor cells in the
deterministic differential equation for the tumor growth. In particular, we
do not distinguish between drug sensitive and resistant tumor cells like in [4,
12, 14].

Further, we deal with two basic problems where in each problem we have
two restrictions, namely the usual pointwise inequality for the control func-
tion (which is in the dose of the drug administered per unit of time) and
an integral inequality for the loss function of the normal cells in the first
problem and for the drug dose itself in the second problem. To keep the
mathematical analysis simple other restrictions like the pointwise limit for
the size of the population of the normal cells like in [15, 17, and 24] are not



334 Werner Krabs, Lothar von Wolfersdorf

taken into consideration. There is only one dynamic equation for the growth
and suppression of the tumor cells and no one for the normal cells (but which
could be easily supplemented).

Both optimal control problems show the desired effect that for (properly
defined) “strong resistance” the above-named bang-bang control is the unique
optimal control (cp. with the results in [3, 26], for instance). With respect
to general resistance we have another picture. In the first problem in case of
“weak resistance” the optimal control is the non desired “opposite” bang-bang
control with starting interval of zero-therapy and final interval of maximal
drug dose. On the other hand, in the second problem for general resistance
an optimal control similar to the desired bang-bang control starting and
ending with a subinterval of zero-therapy is to be expected as an example
with Gompertzian growth show (cp. with other forms of optimal solutions
in [14, 17], for instance). So, especially with respect to weak resistance the
second problem seems preferable to the first problem.

The plan of the paper is as follows. After performing the mathematical mod-
elling in Section 2 we investigate the first optimal control problem in Section
3 and the second optimal control problem with the example for Gompertzian
growth in Section 4.

2 Mathematical Models

We denote the time-dependent number of cancer cells in the tumor by a
function T = T (t), t ∈ IR+, which we assume to be differentiable with
derivative Ṫ (t). The temporal development of the tumor cells population
T (t) in a given interval [0, tf ] is governed by the differential equation

Ṫ (t) = [f(T (t))− ϕ(t)L(M(t))]T (t), t ∈ [0, tf ], (2.1)

with the initial condition

T (0) = T0 > 0. (2.2)

The function f = f(t), T ≥ 0 describes the dynamics of the tumor population
F (T ) = f(T )T if there is no administration of drugs. We assume f ∈
C1(IR+) with f(T ) > 0, f ′(T ) < 0 for all relevant T ≥ 0. This is fulfilled for
many of the commonly used dynamics as Gompertz, logistic (Verhulst-Pearl)
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and other growth laws in an interval [0, θ] with maximal tumor population θ
(cf. [5, 10, 16, 22, 24]).

By L = L(M), M ≥ 0 we denote the destruction rate of the drug level
M . We assume that this loss function L ∈ C2(IR+) satisfies L(0) = 0 and
L′(M) > 0 for all relevant M ≥ 0. This is fulfilled, for instance, for linear
and fractional linear (“saturated”) function L (cf. [10, 16, 24]). The drug
level function M = M(t) obeys the linear differential equation

Ṁ(t) = −δM(t) + V (t), t ∈ [0, tf ], (2.3)

and the initial condition

M(0) = 0 (2.4)

with a positive drug decay rate δ where V (t) denotes the drug dose that is
administered per unit of time at time t ∈ [0, tf ]. In the following we assume
δ ≥ 0, thus including the mathematical limit case δ = 0 of no drug decay.

The drug dosis V = V (t) per unit of time is considered as the control function
in the model. We assume it to be a bounded measurable function, i.e. V ∈
L∞(0, tf ), and to satisfy the pointwise condition

0 ≤ V (t) ≤ A for a.a. t ∈ [0, tf ] (2.5)

where A > 0 is a prescribed constant, the maximum drug dosis per unit of
time. Further, below we require additionally an integral condition which we
regard as responsible for the compatibility of the treatment.

The new feature in this model is the introduction of the function ϕ = ϕ(t),
t ∈ [0, tf ], which is assumed to be in C1[0, tf ] satisfying ϕ(t) > 0 in [0, tf )
and normed by ϕ(0) = 1. The factor ϕ in Eq. (2.1) should - in a most simple
way - describe the total effect of inner influences (like drug resistance) and
other ones (like accompanying therapies) on the destruction rate of the tumor
cells by the drug during the treatment. Especially, the influence of the drug
resistance of the tumor cells will be expressed by a function ϕ ∈ C1[0, tf ]
with ϕ(0) = 1, ϕ̇(t) ≤ 0 in [0, tf ] and ϕ(t) > 0 in [0, tf ]. (We call such a
function a “resistance factor” in the following).

The integral condition in problem 1 now reads
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tf∫
0

ϕ0(t)L0(M(t))dt ≤ B (2.6)

with a prescribed constant B > 0 where L0(M) is the destruction rate of the
normal cells for which we assume the same properties as for the loss function
L(M) of the tumor cells above and ϕ0 ∈ C1[0, tf ] with ϕ0(t) > 0 in [0, tf ),
ϕ0(0) = 1 is a weight function possessing the analogous meaning for the
normal cells as ϕ for the tumor cells. In problem 2 we simply require that

tf∫
0

V (t)dt ≤ B (2.7)

with a given constant B > 0.

The aim of chemotherapeutic treatment is to make the tumor cells population
T (tf ) at the end of the treatment as small as possible. In view of Eq. (2.1)
this can be written in the usual form of the minimum condition

tf∫
0

[f(T (t))− ϕ(t)L(M(t))]T (t)dt→ min . (2.8)

We further remark that for a given V ∈ L∞(0, tf ) the solution of (2.3), (2.4)
has the form

M(t) = M [V ](t) =

t∫
0

eδ(s−t)V (s)ds, t ∈ [0, tf ]

which implies M ∈ C[0, tf ]. By our assumptions on f, ϕ, L we then have
T ∈ C1[0, tf ] for the corresponding solution T = T [V ] of Eq. (2.1).

Our optimal control problems are now defined by the minimum condition
(2.8) for the state equations (2.1) - (2.4) with the constraints (2.5), (2.6)
(problem 1 ) or (2.5), (2.7) (problem 2 ). Here the integral constraints (2.6)
and (2.7) can be taken, respectively, in the form
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Q(tf ) ≤ B or U(tf ) ≤ B (2.9)

where the additional state functions Q = Q(t) and U = U(t) are given by
the integrals

Q(t) =

t∫
0

ϕ0(s)L0(M(s)ds and U(t) =

t∫
0

V (s)ds,

respectively, or equivalently by the additional state equations

Q̇(t) = ϕ0(t)L0(M(t)), t ∈ [0, tf ] (2.10)

with Q(0) = 0 and

U̇(t) = V (t), t ∈ [0, tf ] (2.11)

with U(0) = 0, respectively.

These optimal control problems always have solutions as follows by adapting
the existence proof by J.M. Murray in [16] on the basis of Theorem 5.4.4 in
[1] (taking into account that for the admissible control V (t) = 0 in [0, tf ] the
state equation (2.1) has a continuous solution T (t) in [0, tf ] with finite T (tf )
and because of the finite interval [0, tf ] also the parameter δ = 0 in Eq. (2.3)
is possible).

Finally, we simplify the mathematical analysis for our problems slightly by
applying the usual substitution y = `nT for T > 0. Then the differential
equation (2.1) is transformed into

ẏ(t) = f(ey(t))− ϕ(t)L(M(t)), t ∈ [0, tf ] (2.12)

and the initial condition (2.2) reads

y(0) = y0 = `nT0. (2.13)

The minimum condition (2.8) takes the form
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tf∫
0

[f(ey(t))− ϕ(t)L(M(t))]dt→ Min. (2.14)

The optimal control problems to be solved are then given by the minimum
condition (2.14) for the state equations (2.12), (2.13), (2.3), (2.4), and (2.10)
or (2.11), respectively, under the constraints (2.5), (2.9).

3 Solutions of the first problem

We determine optimal solutions of problem (2.12 - 2.14), (2.5), (2.9), (2.10)
as usual with the aid of the maximum principle [9]. The Hamiltonian of the
problem is given by

H(t, y,M,Q, V, p1, p2, p3, λ0)

= (f(ey)− ϕ(t)L(M))(p1 − λ0)

+(V − δM)p2 + ϕ0(t)L0(M)p3

(3.1)

with the parameter λ0 and the adjoint state functions pk, k = 1, 2, 3. If
(ŷ, M̂ , Q̂, V̂ ) is an optimal quadruple there exist a number λ0 ≥ 0 and three
functions pk ∈ C1[0, tf ], k = 1, 2, 3 with (λ0, p1, p2, p3) 6= (0, 0, 0, 0) satisfying
the differential equations

ṗ1(t) = −f ′(eŷ(t))eŷ(t)(p1(t)− λ0) (3.2)

ṗ2(t) = ϕ(t)L′(M̂(t))(p1(t)− λ0) + δp2(t)− ϕ0(t)L′0(M̂(t))p3(t) (3.3)

ṗ3(t) = 0 (3.4)

in [0, tf ] and the transversality conditions in tf

p1(tf ) = 0, p2(tf ) = 0, and p3(tf ) ≤ 0, p3(tf )(Q̂(tf )−B) = 0 (3.5)

such that for a.a. t ∈ [0, tf ] the maximum condition
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V̂ (t)p2(t) = max
0≤V≤A

[V p2(t)] (3.6)

is valid. From (3.4) and (3.5) it follows that p3 is a nonpositive constant
which vanishes if Q̂(tf ) < B.

We define p̃1(t) = p1(t)− λ0 and

g(t) = −f ′(eŷ(t))eŷ(t) > 0, t ∈ [0, tf ]. (3.7)

Then from (3.2) we have ˙̃p1(t) = g(t)p̃1(t) which gives

p̃1(t) = p̃1(0) exp(

t∫
0

g(s)ds), t ∈ [0, tf ]. (3.8)

From p1(tf ) = 0 we obtain

p̃1(tf ) = p̃1(0) exp(

tf∫
0

g(t)dt) = −λ0 ≤ 0 (3.9)

which shows that p̃1(t) ≤ 0 for all t ∈ [0, tf ].

We further put

h(t) = ϕ(t)L′(M̂(t))p̃1(t)− ϕ0(t)L′0(M̂(t))p3. (3.10)

From (3.3) we get

ṗ2(t) = δp2(t) + h(t), t ∈ [0, tf ] (3.11)

which yields p2(t) = eδtH(t) with

H(t) = p2(0) +

t∫
0

e−δsh(s)ds, t ∈ [0, tf ]. (3.12)

In view of p2(tf ) = 0 we have
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p2(0) = −

tf∫
0

e−δth(t)dt (3.13)

which implies

p2(t) = −eδt
tf∫
t

e−δsh(s)ds, t ∈ [0, tf ]. (3.14)

Now we distinguish the two cases

B ≥ QA(tf ) ≡

tf∫
0

ϕ0(t)L0(MA(t))dt (3.15)

where
MA(t) =

A

δ
[1− e−δt] if δ > o,At if δ = 0

is the solution of (2.3), (2.4) for V (t) = A a.e. in [0, tf ], and

B < QA(tf ) ≡

tf∫
0

ϕ0(t)Lo(MA(t))dt. (3.16)

If (3.15) is fulfilled we have the optimal solution V̂ (t) = A a.e. in [0, tf ]. So
we can assume (3.16) in the following. In this case the equality

Q̂(tf ) ≡

tf∫
0

ϕ0(t)L0(M̂(t))dt = B (3.17)

for the optimal solutions must hold. We prove this by contradiction. If
Q̂(tf ) < B we have p3 = 0. In the anormal case λ0 = 0 by (3.9), (3.8)
and (3.10), (3.14) this implies p1(t) = p̃1(t) = 0 and p2(t) = 0 in [0, tf ]
which contradicts the condition (λ0, p1, p2, p3) 6= (0, 0, 0, 0). In the normal
case λ0 > 0 by (3.8) we would have p̃1(t) < 0 and hence by (3.10) also
h(t) < 0 in [0, tf ] which by (3.14) yields p2(t) > 0 in [0, tf ]. The maximum
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condition (3.6) then would give V̂ (t) = A for a. a. t ∈ [0, tf ]. This implies
QA(tf ) = Q̂(tf ) < B, a contradiction to (3.16). Therefore, (3.17) and p3 < 0
hold true.

We further show because of the condition (3.17) the abnormal case λ0 = 0
cannot occur. Namely, from λ0 = 0 as before we obtain p̃1(t) = p1(t) = 0 in
[0, tf ] implying

h(t) = −ϕ0(t)L′0(M̂(t))p3 > 0, t ∈ [0, tf ]

from (3.10). By (3.14) it follows that p2(t) < 0 in [0, tf ]. Then (3.6) yields
V̂ (t) = 0 for a.a. t ∈ [0, tf ] which by (2.3), (2.4) leads to M̂(t) = 0 in [0, tf ]
and by L(0) = 0 to Q̂(tf ) = 0, a contradiction to (3.17). Summing up, in the
case (3.16) equality (3.17) is valid and we have λ0 > 0, p̃1(t) < 0 in [0, tf ]
and p3 < 0.

We introduce the functions

q(t) =
L′0(M̂(t))
L′(M̂(t))

,∆(t) = ϕ(t)p̃1(t)− ϕ0(t)q(t)p3 (3.18)

so that by (3.10) we have h(t) = L′(M̂(t))∆(t) with signh(t) = sign∆(t).
Now we make the assumption that ∆ is a strictly increasing function in [0, tf ]
which is fulfilled if

d

dt
∆(t) ≡ d

dt
[ϕ(t)p̃1(t)− ϕ0(t)q(t)p3] > 0 in (0, tf ). (3.19)

We distuingish the three cases

(i) ∆(0) ≥ 0

(ii) ∆(0) < 0,∆(tf ) ≤ 0

(iii) ∆(0) < 0,∆(tf ) > 0.

In case (i) we have ∆(t) > ∆(0) ≥ 0 in [0, tf ] implying h(t) > 0 in (0, tf ] and
p2(t) < 0 in [0, tf ) by (3.14). The condition (3.6) then yields the solution
V̂ (t) = 0 a.e. in [0, tf ] which is not possible.

In case (ii) we have ∆(t) < ∆(tf ) ≤ 0 in [0, tf ] which gives h(t) < 0 in [0, tf ]
and p2(t) > 0 in [0, tf ] by (3.14) again. In view of (3.6) then V̂ (t) = A a.e.
in [0, tf ] which is also not allowed in the case of (3.16).
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It remains the case (iii). By the strict monotonicity of ∆ there exists exactly
one t1 ∈ (0, tf ) with ∆(t1) = 0, ∆(t) < 0 in [0, t1), and ∆(t) > 0 in (t1, tf ].
This implies the analogous inequalities for h. Therefore the function H in
(3.12) is strictly decreasing from H(0) = p2(0) to H(t1) < p2(0) and then
strictly increasing from H(t1) to H(tf ) = 0. If now p2(0) ≤ 0 were true
we would get H(t) < 0 and hence p2(t) < 0 in (0, tf ). This would imply
V̂ (t) = 0 a.e. in [0, tf ] again. Therefore, it must be p2(0) > 0. Then
there exists exactly one t0 ∈ (0, t1) with H(t0) = 0, H(t) > 0 in [0, t0) and
H(t) < 0 in (t0, tf ] which implies p2(t) > 0 in [0, t0) and p2(t) < 0 in (t0, tf ].
The maximum condition (3.6) yields the unique optimal solution

V̂ (t) =

{
A for a.a. t ∈ [0, t0)

0 for a.a. t ∈ (t0, tf ]
(3.20)

where t0 ∈ (0, tf ) can be defined as the (unique) solution of the equation

tf∫
0

ϕ0(t)L0(M̂(t))dt = B (3.21)

with

M̂(t) =

{
A
δ [1− ēδt] if δ > 0, At if δ = 0 for t ∈ [0, t0]

A
δ [eδt0 − 1]ēδt if δ > 0, At0 if δ = 0 for t ∈ (t0, tf ]

following from (3.17) and (2.3), (2.4) with (3.20).

We summarize the result in

THEOREM 3.1

(i) Let (3.15)be fulfilled. Then problem 1 has the unique optimal solution
V̂ (t) = A a.e. in [0, tf ].

ii) Let (3.16) be fulfilled and the function ∆ in (3.18) strictly increasing.
Then problem 1 has the unique optimal solution (3.20) with (3.21).

REMARKS. The monotonicity assumption on ∆ in Theorem 3.1 is an im-
plicit condition on ϕ (and ϕ0) since the functions p̃1by (3.8) and q by (3.18)
in general depend on the optimal solution V̂ of the problem with the function
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ϕ in (2.1) (and ϕ0 in (2.6)). But this dependence can be well derived from
(3.20) with (3.21) and Eqs. (2.1), (2.3). Moreover, in the important partic-
ular case L = cL0 with a constant c > 0 and L0 ∈ C1(IR+) (cf. [16, 17])
we have q(t) = c and for ϕ0(t) = 1 in [0, tf ] the sufficient condition (3.19)
reduces to the simple condition

ϕ̇(t) + g(t)ϕ(t) < 0 in (0, tf ) (3.22)

with the positive function g = −f ′(T̂ )T̂ by (3.7). Further, in the special case
of Gompertzian growth f(T ) = λ`n θ

T (λ, θ > 0) we have g = λ, a constant
which is independent of the optimal solution V̂ .

Condition (3.22) is for instance satisfied, if

ϕ(t) = exp(−(

t∫
0

g(s)ds+ γt)), t ∈ [0, tf ],

for some γ > 0.

In general, it remains the dependence of ∆ on the (negative) parameter p3

or equivalently on the (positive) quotient p3/p̃1(0) which are not directly
expressed by the optimal solution V̂ . To avoid this dependence we derive a
further sufficient criterion for the optimal solution (3.20) in the sequel.

LEMMA 3.2
Under the conditions (3.16) and

d

dt
[ρ(t)p2(t)] < 0 in (0, tf ) (3.23)

with a nonnegative function ρ ∈ C1(0, tf ) the optimal solution of problem 1
is uniquely determined and has the form (3.20).

Proof. Because of (3.23) the optimal solution cannot contain singular parts
in subintervals where ṗ2(t) = p2(t) = 0 and parts of the form

V̂ (t) =

{
0 a.e. in [t1, τ)

A a.e. in (τ, t2]

with 0 ≤ t1 < τ < t2 ≤ tf where p2(t) ≤ 0 in (t1, τ), p2(τ) = 0, p2(t) ≥ 0
in (τ, t2) and ṗ2(τ) ≥ 0. Further, the solutions V̂ (t) = 0 a.e. in [0, tf ] and
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V̂ (t) = A a.e. in [0, tf ] are not possible in view of (3.16) with (3.17). This
proves the lemma.

In view of (3.11) the condition (3.23) can be written in the form

[ρ̇(t) + δg(t)]p2(t) + ρ(t)h(t) < 0 in (0, tf ) (3.24)

with h defined in (3.10). Taking

ρ(t) = exp(

t∫
0

µ(s)ds), µ ∈ C(0, tf )

and r(t) = µ(t) + δ ∈ C(0, tf ) condition (3.24) simply writes

r(t)p2(t) + h(t) < 0 in (0, tf ).

By (3.10) and (3.14) this means

∆1(t) + p3∆2(t) < 0 in (0, tf ) (3.25)

where

∆1(t) = ϕ(t)L′(M̂(t))p̃1(t)− r(t)
tf∫
t

eδ(t−s)ϕ(s)L′(M̂(s))p̃1(s)ds,

∆2(t) = r(t)
tf∫
t

eδ(t−s)ϕ0(s)L′0(M̂(s))ds− ϕ0(t)L′0(M̂(t)).

We now choose r ∈ C(0, tf ) such that ∆2(t) = 0 in (0, tf ), i.e.

r(t) =
e−δtϕ0(t)L′0(M̂(t))

tf∫
t

e−δsϕ0(s)L′0(M̂(s))ds

.

Then (3.25) simplifies to the condition ∆1(t) < 0 in (0, tf ) or defining further
the quotient

q1(t) =
p̃1(t)
p̃1(0)

= exp(−
t∫

0

f ′(T̂ (s))T̂ (s)ds) > 0 (3.26)
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by (3.7), (3.8) to the integral inequality

q1(t)ϕ(t)
tf∫
t

e−δsϕ0(s)L′0(M̂(s))ds

> q(t)ϕ0(t)
tf∫
t

e−δsϕ(s)L′(M̂(s))q1(s)ds
(3.27)

in (0, tf ) where q is defined in (3.18). A sufficient condition for (3.27) is the
differential condition

d
dt [q1(t)ϕ(t)]

tf∫
t

e−δsϕ0(s)L′0(M̂(s))ds

< d
dt [q(t)ϕ0(t)]

tf∫
t

e−δsϕ(s)L′(M̂(s))q1(s)ds in 0, (tf ).
(3.28)

Summing up we obtain

THEOREM 3.2

i) Let (3.16) and (3.27) with (3.18), (3.26) be fulfilled. Then problem 1
has the unique optimal solution (3.20) with (3.21).

ii) The integral condition (3.27) is satisfied if the differential condition
(3.28) is valid.

REMARKS. The conditions (3.27) and (3.28) do not contain the unknown
parameters p3 and p̃1(0). In the particular case L = cL0 with ϕ0(t) = 1 from
(3.28) we get the condition (3.22) again.

Finally, we briefly deal with the cases where in Theorem 3.1 the function
∆ is strictly decreasing and the inequalities (3.19) and (3.27) in Theorems
3.1 and 3.2, respectively, are fulfilled with the opposite signs. In particular,
this is the case if L = cL0 and ϕ(t) = ϕ0(t) = 1 on [0, tf ]. Then the above
analysis shows that the unique optimal solution of problem 1 is

V̂ (t) =
{

0 for a.a.t ∈ [0, t∗)
A for a.a.t ∈ (t∗, tf ]

(3.29)
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where t ∈ (0, tf ) is the (unique) solution of the equation

tf∫
t∗

ϕ0(t)L0(M̂(t))dt = B

with M̂(t) = 0 for t ∈ [0, t∗] and

M̂(t) =
A

δ
[dδ(t∗−t − 1] if δ > 0, A(t− t∗) if δ = 0

for t ∈ [t∗, tf ] following from (3.17) and (2.3), (2.4) with (3.29) again.

In case of the conditions (3.19) or (3.27), (3.28) for a resistance factor ϕ (with
some associated ϕ0) we say that we have strong resistance of the tumor cells
against the drug, and in case of these conditions with the opposite sign weak
resistance.

4 Solutions of the second problem

Problem (2.12 - 2.14), (2.5), (2.9), (2.11) possesses the Hamiltonian

H(t, y,M,U, V, p1, p2, p3, λ0)

= (f(ey)− ϕ(t)L(M))(p1 − λ0) + (V − δM)p2 + V p3

(4.1)

with the parameter λ0 and the adjoint state functions pk, k = 1, 2, 3. If
(ŷ, M̂ , Û , V̂ ) is an optimal quadruple, by the maximum principle [9], there
exist a number λ0 ≥ 0 and three functions pk ∈ C1[0, tf ], k = 1, 2, 3 with
(λ0, p1, p2, p3) 6= (0, 0, 0, 0) satisfying the differential equations

ṗ1(t) = −f ′(eŷ(t))eŷ(t)(p1(t)− λ0) (4.2)

ṗ2(t) = ϕ(t)L′(M̂(t))(p1(t)− λ0) + δp2(t) (4.3)

ṗ3(t) = 0 (4.4)

in [0, tf ] and the transversality conditions in tf



Two optimal control problems in cancer chemotherapy 347

p1(tf ) = 0, p2(tf ) = 0, and p3(tf ) ≤ 0, p3(tf )(Û(tf )−B) = 0 (4.5)

such that for a.a. t ∈ [0, tf ] the maximum condition

V̂ (t)(p3(t) + p3) = max
0≤V≤A

[V (p2(t) + p3)] (4.6)

holds. By (4.4), (4.5) p3 is a nonpositive constant which vanishes if
Û(tf ) < B.

We remark that in the limit case δ = 0 in view of (2.3), (2.4) and (2.11) the
quantities U and M coincide. Hence U , p3 could be omitted and formally
p2(t) + p3 replaced by a new p2(t).

We define the functions p̃1 and g as in problem 1 with the relations (3.7) -
(3.9). Further we have the relations (3.11) - (3.14) for p2 if we replace the
function h in (3.10) by

h0(t) = ϕ(t)L′(M̂(t), p̃1(t), t ∈ [0, tf ]. (4.7)

Discussing the optimal solutions of problem 2 we distinguish the two cases
B ≥ tfA and B < tfA. For B ≥ TfA the obvious solution is V̂ (t) = A for
a.a. t ∈ [0, tf ]. For B < tfA we have the equality

Û(tf ) =

tf∫
0

V̂ (t)dt = B (4.8)

and the inequalities p3 < 0, λ0 > 0, and p̃1(t) < 0 in [0, tf ] which can be
shown as above in problem 1. By (4.7) this implies h0(t) < 0 in [0, tf ] which
by (3.11) and (3.14) gives

ṗ2(t)− δp2(t) < 0, p2(t) > 0 in [0, tf ). (4.9)

If additionally ϕ(tf ) > 0 then also h0(tf ) < 0 and consequently ṗ2(tf ) < 0.

From (4.9) we obtain a first result about the form of the optimal solutions
in the case B < tfA.

LEMMA 4.1
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For B < tfA the optimal solutions of problem 2 do not contain a solution
part of the form

V̂ (t) = Aa.e. for t ∈ [τ, tf ], τ ∈ [0, tf ) (4.10)

and if ϕ(tf ) > 0 they do not contain singular parts in intervals of the form
[τ, tf ] with τ ∈ [0, tf ).

Proof: The assertion (4.10) for τ = 0 follows from (4.14). For τ > 0 we have
p2(t) + p3 ≥ 0 in (τ, tf ] and p2(τ) + p3 = 0 implying ṗ2(τ) ≥ 0, but since
p2(τ) = −[p2(tf ) + p3] ≤ 0 by (4.9) it must be ṗ2(τ) < δp2(τ) and ṗ2 < 0.

The proof for the singular parts is a consequence of the condition ṗ2(t) = 0
in [τ, tf ] which leads to a contradiction to ṗ2(tf ) < 0 from (4.9).

Lemma 4.1 shows that the optimal solutions of problem 2 end with an interval
of zero-therapy if ϕ(tf ) > 0.

We now give a sufficient condition for the optimal solutions being of the (in
practice desired) bang-bang control type.

LEMMA 4.2
Under the conditions B < tfA and

ṗ2(t) < 0 in (0, tf ) (4.11)

the optimal solution of problem 2 is uniquely determined and has the form

V̂ (t) =
{
A for a.a. t ∈ [0, t0)
0 for a.a. t ∈ (t0, tf ]

(4.12)

where t0 = B/A ∈ (0, tf ).

Proof. Since ṗ2(t) 6= 0 in (0, tf ) the optimal solution does not contain singular
parts. Further, it does not contain parts of the forms

V̂ (t) = 0 for a.a. t ∈ [0, τ ], τ ∈ (0, tf ]

and

V̂ (t) =
{

0 for a.a. t ∈ (t1, τ)
A for a.a. t ∈ (τ, t2)

(0 ≤ t1 < τ < t2 ≤ tf )
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The first one is impossible for τ = tf because of (4.8) and for τ < tf since
we could have p2(t) + p3 ≤ 0 in (0, τ) and p2(τ) + p3 ≥ 0 implying ṗ2(τ) ≥ 0.
For the second one we obtain p2(t) + p3 ≤ 0 in (t1, τ) and p2(t) + p3 ≥ 0 in
(τ, t2) yielding ṗ2(τ) ≥ 0 again. This proves the form (4.12) of the optimal
solution V̂ with unique value t0 following from (4.8).

The proof can also be given directly by using the fact that (4.11) implies
p2(t) > 0 for all t ∈ [0, tf ) and discussing the two cases p2(0) + p2 ≤ 0 and
p2(0) + p3 > 0.

By equations (3.11) and (4.7) the condition (4.11) is equivalent to

δp2(t) < φ(t) in (0, tf )

where

φ(t) = −h0(t) = −ϕ(t)L′(M̂(t)p̃1(t) > 0 in [0, tf ) (4.13)

with φ(tf ) ≥ 0 and by (3.14) equivalent to the integral inequality

ψ(t) ≡ φ(t)− δ

tf∫
t

eδ(t−s)φ(s)ds > 0 in (0, tf ). (4.14)

If (4.14) holds the optimal solution is given by (4.12). In particular, this is
fulfilled for all positive functions ϕ in the limit case δ = 0 suggesting that
(4.14) is not a too strong condition on ϕ for sufficiently small δ > 0.

This can be underlined in the simple case of Gompertz growth (cf. [7, 10,
17, 23 - 25]) where

f(T ) = λ`n
θ

T
, T > 0, (λ > 0, θ > 0)

and a linear loss function

L(M) = kM,M ≥ 0, (k > 0).

In this case we find that

g(t) = −f ′(eŷ(t))eŷ(t) = λ, h0(t) = kϕ(t)p̃1(0)eλt, t ∈ [0, tf ],

and (4.14) turns out to be equivalent with
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ϕ(t)e(λ−δ)t − δ

tf∫
t

ϕ(s)e(λ−δ)sds > 0 for all t ∈ (0, tf ). (4.15)

If we put
ϕ(t) = e−(λ−δ)t, t ∈ [0, tf ],

and assume that λ > δ, then it follows that ϕ ∈ C1[0, tf ],

ϕ(0) = 1, ϕ̇(t) < 0 and ϕ(t) > 0 for all t ∈ [0, tf ].

Further (4.15) turns out to be equivalent to

(1− δ(tf − t) > 0 for all t ∈ (0, tf ))⇐⇒ δt1 < 0.

This shows that (4.15) can be satisfied for sufficiently small δ > 0 and a
suitable choice of ϕ.

The inequality (4.14) is fulfilled if we have

φ̇(t) < 0 in (0, tf ), (4.15)

since integration by parts of the integral in (4.14) yields

ψ(t) = eδt[e−δtfφ(tf )−

tf∫
t

e−δsφ̇(s)ds] > 0 in (0, tf )

due to φ(tf ) ≥ 0 and (4.15). Differentiating (4.13) and using ˙̃p1 = gp̃1 we
further have

φ̇(t) = −p̃1(t)L′(M̂(t))[ϕ̇(t) + {g(t) +m(t)}ϕ(t)]

where

m(t) =
1

L′(M̂(u)
d

dt
[L′(M̂(t))] =

L′′(M̂(u) ˙̂
M(t)

L′(M̂(t))
. (4.16)

Therefore, in view of p̃1(t) < 0 in [0, tf ] and L′(M) > 0, condition (4.15) is
equivalent to the differential inequality
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ϕ̇(t) + [g(t) +m(t)]ϕ(t) < 0 in (0, tf ) (4.17)

where m = m(t) is given by (4.16) and g = g(T̂ ) by (3.17), i.e.

g(t) = −f ′(T̂ (t))T̂ (t) < 0, t ∈ [0, tf ]. (4.18)

Condition (4.17) has the same form as condition (3.22) and is like this in
general an implicit condition on ϕ.

Summing up, by Lemma 4.2 and (4.14) - (4.18) we obtain

THEOREM 4.3

(i) Under the conditions B < tfA and (4.14) the optimal solution of prob-
lem 2 is uniquely determined and has the form (4.12).

ii) Asumption (4.14) is satisfied if the condition (4.17) with (4.18) and
(4.16) holds true.

REMARKS. For a linear loss function L we have m(t) = 0 in [0, tf ] and the
condition (4.17) reduces to (3.22). As for problem 1 we say in case of (4.14)
for a resistance factor ϕ that there is a strong resistance of the tumor cells
against the drug.

We conclude the paper working out the simple case of Gompertz growth (cf.
[7, 10, 17, 23 - 25])

f(T ) = λ`n
θ

T
(λ > 0, θ > 0) (4.19)

with a linear loss function L(M) = kM (k > 0) as an example for what can
happen for general resistance.

In this case we have for y = `nT the explicit expression

y(t) = `nT0 · e−λt + λ`nθ[1− e−λt]

− k
t∫
0

e−λ(t−s)ϕ(s)M(s)ds
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and the minimum condition for y(tf ) leads to the maximum condition

tf∫
0

eλsϕ(s)M(s)ds −→ max

which can be written in the form

tf∫
0

p(t)V (t)dt −→ max (4.20)

where

p(t) = eδt

tf∫
0

e(λ−δ)sϕ(s)ds. (4.21)

The maximum problem (4.20) where V ∈ L∞(0, tf ) satisfies the restrictions
(2.5) and (2.7) is a linear problem of the form of the Neyman-Pearson lemma
and can be solved in explicit form. Let be B < tfA. For (4.19) the condition
(4.17) is equivalent to the inequality

d

dt
[eλtϕ(t)] < 0 in (0, tf ).

If this is fulfilled the problem has the solution (4.12). We consider further
the opposite case that

d

dt
[eλtϕ(t)] > 0 in (0, tf ) (4.22)

incorporating the limit case of non-resistance that ϕ(t) ≡ 1 on [0, tf ]. For
δ > 0 the function (4.21) has the derivative

ṗ(t) = eδt[F (t)− C], t ∈ [0, tf ]

where

C = e(λ−δ)tfϕ(tf ), F (t) =

tf∫
t

e−δs
d

ds
[eλsϕ(s)]ds.
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Under the assumption (4.22) the function F is strictly decreasing in [0, tf ]
from the value

F (0) =

tf∫
0

e−δs
d

ds
[eλsϕ(s)]ds > 0

to F (tf ) = 0. Hence we have two cases (i) F (0) ≤ C where ṗ(t) < 0 in (0, tf )
so that p(t) is strictly decreasing in [0, tf ] and (ii) F (0) > C where there
exists a unique t0 ∈ (0, tf ) such that p(t) is strictly increasing in [0, t0] and
strictly decreasing in [t0, tf ] till p(tf ) = 0. In case (i) the optimal solution is
given by (4.12). In case (ii) the optimal solution has the form

V̂ (t) =
{

0 a.e. in [0, t1) and (t2, tf ]
A a.e. in (t1, t2)

(4.23)

where t1, t2 with 0 < t1 < t0 < t2 < tf are uniquely determined by the
equations

A(t2 − t1) = B, p(t1) = p(t2).

In the particular case ϕ(t) = 1 on [0, tf ] we have

p(t) =


(e(λ−δ)tf − e(λ−δ)t)eδt if λ > δ
(tf − t)eδt if λ = δ

(e(λ−δ)t − e(λ−δ)tf )eδt if λ < δ

and

C = e(λ−δ)tf , F (0) =
{

λ
λ−δ [e(λ−δ)tf − 1] if λ 6= δ

λtf if λ = δ.

Therefore, case (i) occurs if λtf ≤ 1 for λ = δ, δe(λ−δ)tf ≤ λ for λ > δ, and
λe(δ−λ)tf ≤ δ for λ < δ, and case (ii) under the opposite inequalities.

We remark hat the optimal solution (4.23) in case (ii) starts and ends with
an interval of zero-therapy.
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AROUND AN INEQUALITY, OR TWO,

OF KY FAN∗

Charles Horvath†

Abstract

In 1957 Ky Fan gave in [5] a necessary and sufficient condition,
known as Fan’s Consistency Condition, for a finite system of convex in-
equalities to have a solution. This result has been somewhat overshad-
owed by the famous Fan’s Inequality which is equivalent to Brouwer’s
Fixed Point Theorem. Another result which bears Fan’s name, but
which is not due to him, is Fan’s Lopsided Inequality which Aubin and
Ekeland prove in [1] using Fan’s Inequality.
We first prove a fairly general, but elementary result, Theorem 2.1.1,
from which we derive both Fan’s Theorem for finite systems of convex
inequalities and Fan’s Lopsided Inequality whose proof, therefore, does
not require Brouwer’s Fixed Theorem. We show that Theorem 2.1.1 is
equivalent to Fan’s Theorem for finite systems of convex inequalities;
consequently, the Lopsided Inequality is a consequence of Fan’s Theo-
rem for finite systems of convex inequalities.
A number of well known and important results are proved along the
way. The paths leading from Fan’s 1957 theorem to those results are,
we hope, simple enough to demonstrate that it deserves to be as well
known as its younger and powerful cousin, Fan’s Inequality.
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1 Introduction

Apart from Theorem 2.1.1, very little that is not already very well known
will be found in this note. From Theorem 2.1.1 one proves Fan’s Theorem on
systems of inequalities for convex functions, Theorem 2.2.3. This result of
Ky Fan is over half a century hold and it has been somewhat left aside after
the appearance of Ky Fan’s Inequality which, in its many different forms, has
become a standard tool from mathematical economics to partial differential
equations. But, as long as one does not deal with results that are at least
as strong Brouwer’s Fixed Point Theorem, Fan’s result on finite systems
of convex inequalities can be very versatile. We give rather simple proofs,
starting from Theorem 2.2.3, or an equivalent formulation, of such results
as the Kakutani Fixed Point Theorem for commutative families of continous
affine maps, from which one can derive Day’s Theorem on the existence of
invariant means on compact topological semigroups and the Mazur-Orlicz
Theorem. Proposition 2.2.6, whose proof from Fan’s theorem is short and
direct, leads to simple proofs of Stamppachia’s and Lax-Milgram’s Theorems
(details are left to the reader).
In the last section, we give a proof of Fan’s Lopsided Inequality, Theorem
3.0.6 using Theorem 2.1.1, and therefore Fan’s Theorem.

2 A lopsided minsup inequality

2.1 The main result

Theorem 2.1.1 Let X be a compact topological space and f : X ×X → R
such that:

(1) for all y ∈ X x 7→ f(x, y) is lower semicontinuous;

(2) for all nonempty finite subset S ⊂ X and for all (x1, x2) ∈ X ×X there
exists x3 ∈ X such that

∀y ∈ S f(x3, y) ≤ 1
2
f(x1, y) +

1
2
f(x2, y).

(3) for all (x, y) ∈ X ×X

f(x, y) + f(y, x) ≤ 0.
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Then
min
x∈X

sup
y∈X

f(x, y) ≤ 0.

Proof. Let us begin with two remarks:

(A) The set Dn of dyadic elements of the standard n-dimentional simplex ∆n

is dense in ∆n, where by Dn we mean the set of elements (d0, · · · , dn) ∈ ∆n

such that each di is of the form ki/2mi where ki and mi are positive integers.

(B) Hypothesis (2) can be generalized as follows: for all nonempty finite
subset S ⊂ X, for all (x0, · · · , xn) ∈ Xn+1 and for all (d0, · · · , dn) ∈ Dn

there exists xn+1 ∈ X such that, for all y ∈ S,

f(xn+1, y) ≤
n∑

i=0

dif(xi, y). (2.1)

To prove (2.1) one can proceed by induction starting with n = 1: we have
to see that if d is dyadic number then there exists x3 ∈ X such that, for all
y ∈ S, f(x3, y) ≤ df(x1, y) + (1− d)f(x2, y).
Let D be the set of dyadic numbers in the interval [0, 1] and let Di, i ∈ N

be those dyadic numbers which can be written as
k

2i
with k being an integer

not greater than 2i; we have D = ∪i∈NDi. Since D0 = {0, 1} there is

nothing to prove if d ∈ D0. Also, since D1 =
{

0,
1
2
, 1
}

the existence of x3

either holds trivially or by hypothesis (2). If d ∈ Dk+1 but d 6∈ Dk we can

write d =
1
2
d1 +

1
2
d2 with d1 and d2 in Dk. By the induction hypothesis

we can find x3,1 and x3,2 such that, for all y ∈ S, f(x3,i, y) ≤ dif(x1, y) +
(1 − di)f(x2, y); by hypothesis (2) there exists x3 such that, for all y ∈ S,

f(x3, y) ≤ 1
2
f(x3,1, y) +

1
2
f(x3,2, y). This concludes the proof of (2.1) for

n = 1.

For n = m + 1 we can assume that dm+1 6= 1 and we set for i ≤ m,

d′i =
di∑m

j=0 dj
and we find x′m+1 ∈ X such that; for all y ∈ S, f(x′m+1, y) ≤∑m

i=0 d
′
if(xi, y). Since a sum of dyadic numbers is a dyadic number we can

find xm+2 ∈ X such that, for all y ∈ S,
f(xm+2, y) ≤

(∑m
j=0 dj

)
f(x′m+1, y) + dm+1f(xm+1, y).
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Let us now proceed with the proof. Let S = {y0, · · · , yn} be an arbitrary
nonempty finite subset of X and define on the standard n-dimensional sim-
plex ∆n a bilinear form as follows: BS(u, v) =

∑
i,j uif(yi, yj)vj . From

condition (3) we have,

∀u ∈ ∆n BS(u, u) ≤ 0. (2.2)

From Von Neumann’s Minimax Theorem for bilinear forms, there exists a
saddle point (uS , vS) ∈ ∆n ×∆n for BS . From

∀ (u, v) ∈ ∆n ×∆n BS(uS , v) ≤ BS(u, vS)

and
BS(vS , vS) ≤ 0

we obtain
∀v ∈ ∆n BS(uS , v) ≤ 0 (2.3)

Let ε > 0 be an arbitrary positive number. Since the elements of Dn are
dense in ∆n one can find ūS ∈ Dn such that

∀v ∈ ∆n BS(ūS , v) ≤ ε (2.4)

which can also be written as

∀j ∈ {0, · · · , n}
n∑

i=0

ūS,if(yi, yj) ≤ ε. (2.5)

From (B) with xi = yi there exists xS,ε ∈ X such that,

∀y ∈ S f(xS,ε, y) ≤ ε. (2.6)

To complete the proof let, for all ε > 0 and all y ∈ S,

[f(−, y) ≤ ε] = {x ∈ X : f(x, y) ≤ ε}.

We have shown that the family of sets
{

[f(−, y) ≤ ε] : y ∈ X
}

has the finite
intersection property; by hypothesis (1) all the sets in question are closed. By
compactness of X the set ∩y∈X [f(−, y) ≤ ε] is not empty, and also compact.
For 0 ≤ ε′ ≤ ε we obviously have ∩y∈X [f(−, y) ≤ ε′] ⊂ ∩y∈X [f(−, y) ≤ ε]
and consequently ∩ε>0 ∩y∈X [f(−, y) ≤ ε] 6= ∅. This concludes the proof. 2
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An equivalent, but more general, formulation of Theorem 2.1.1 can be
given without hypothesis (3).

Let λ = sup(x,y)∈X×X

f(x, y) + f(y, x)
2

and, to obtain a non trivial result,

assume that λ 6= +∞. Now let g(x, y) = f(x, y)− λ and notice that (1) and
(2) hold for g if they hold for f and that (3) holds for g.

Theorem 2.1.2 Let X be a compact topological space and f : X ×X → R
such that:

(1) for all y ∈ X x 7→ f(x, y) is lower semicontinuous;

(2) for all nonempty finite subset S ⊂ X and for all (x1, x2) ∈ X ×X there
exists x3 ∈ X such that

∀y ∈ S f(x3, y) ≤ 1
2
f(x1, y) +

1
2
f(x2, y).

Then

∃x0 ∈ X such that ∀y ∈ X f(x0, y) ≤ sup
(x,y)∈X×X

f(x, y) + f(y, x)
2

.

Let us say that a function f : X × Y → R defined on the product of two
arbitrary sets X and Y is finitely midconvex in its first variable if
condition (2) of Theorem 2.1.1 holds; one can similarly define what it means
to be finitely midconcave in its second variable.

A given function f : X × Y → R is finitely midconvex in its first variable
exactly if the family

{
S(x1, x2 : y) : y ∈ Y } has the finite intersection

property, where
S(x1, x2; y) = {x ∈ X : f(x, y) ≤ 1

2f(x1, y) + 1
2f(x2, y)}.

Furthermore, if X is a compact topological space and if f : X × Y → R
is lower semicontinuous in its first variable then, for all y ∈ Y and for all
x1, x2 ∈ X, the set S(x1, x2 : y) is compact.
In conclusion, if X is a compact topological space and if f : X × Y →
R is finitely midconvex and lower semicontinuous in its first variable then
∩y∈Y S(x1, x2; y) 6= ∅, that is, there exists x3 ∈ X such that, for all y ∈ Y ,
f(x3, y) ≤ 1

2f(x1, y) + 1
2f(x2, y).

Assume now that f is both lower semicontinuous and finitely midconvex in
its first variable.
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Take an arbitrary real number t ∈ [0, 1] and a sequence (dn)n∈N of dyadic
numbers in [0, 1] which converges to t; for all n there exists x3,n ∈ X such
that, for all y ∈ Y , f(x3,n, y) ≤ (1−dn)f(x1, y)+dnf(x2, y) and therefore, by
compactness of X and lower semicontinuity of f(−, y), there exists x3,t ∈ X
such that, for all y ∈ Y , f(x3,t, y) ≤ (1 − t)f(x1, y) + tf(x2, y). In other
words, f is convexlike in its first variable that is; for all x1, x2 ∈ X and
for all t ∈ [0, 1], there exists x3 ∈ X such that, for all y ∈ Y , f(x3, y) ≤
(1 − t)f(x1, y) + tf(x2, y). In conclusion, assuming compactness of X and
lower semicontinuity in the first variable, being finitely midconvex in the first
variable or being convexlike in the first variable are equivalent conditions and
these are in turn equivalent to

∀n ∈ N ∀(x0, · · · , xn) ∈ Xn+1 ∀u ∈ ∆n ∃x̂ ∈ X
such that

∀y ∈ X f(x̂, y) ≤
n∑

i=0

uif(xi, y). (2.7)

One could similarly define what it means for f to be concave like in its second
variable and reach a similar conclusion with respect to functions which are
finitely midconcave in the second variable.

2.2 Some results that can be derived from the Main Theorem

Proposition 2.2.1 Let X and Y be two compact topological spaces and
f, g : X × Y → R two functions such that:

(1) f is lower semicontinuous and finitely midconvex in its first variable;

(2) g is upper semicontinuous and finitely midconcave in its second variable;

(3) ∀(x, y) ∈ X × Y f(x, y) ≤ g(x, y).

Then

∃(x0, y0) ∈ X × Y such that ∀(x, y) ∈ X × Y f(x0, y) ≤ g(x, y0).

Proof. Apply Theorem 2.1.1 to the compact topological space Z = X×Y
and the function F

(
(x1, y1), (x2, y2)

)
= f(x1, y2)− g(x2, y1). 2

Taking f = g in Proposition 2.2.1 one obtains Proposition 2.2.2 below. On
the one hand, Proposition 2.2.2 clearly implies Von Neumann’s Minimax
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Theorem, on the other hand, Theorem 2.1.1 was derived from Von Neu-
mann’s Minimax Theorem . Proposition 2.2.2 and Von Neumann’s Minimax
Theorem are therefore equivalent.

Proposition 2.2.2 Let X and Y be two compact topological spaces and let
f : X×Y → R be a function which is lower semicontinuous and finitely mid-
convex in its first variable and upper semicontinuous and finitely midconcave
in its second variable. Then,

∃(x0, y0) ∈ X×Y such that ∀(x, y) ∈ X×Y f(x0, y) ≤ f(x0, y0) ≤ f(x, y0).

Propositions 2.2.1 and 2.2.2, in a somewhat more general version involving
4 functions, are due to Granas and Liu [8].

In [5] Fan proved the following existence theorem for finite systems of in-
equalities:

Theorem 2.2.3 (Fan’s Theorem) Let fi : X → R, i ∈ {0, · · · , n}, be a
finite family of lower semicontinuous functions defined on a compact convex
subset of a linear topological vector space.
Assume that the following condition holds:

∀u ∈ ∆n ∃x ∈ X such that
n∑

i=0

uifi(x) ≤ 0 (2.8)

then
∃x0 ∈ X such that ∀i ∈ {0, · · · , n} fi(x0) ≤ 0.

The proof of Fan’s Theorem can be found on page 41 of [7]. Fan’s Theo-
rem follows from Theorem 2.1.1. We prove a somewhat more general result,
which is implicitely contained in Fan’s paper. First, let us say that a family
of functions fi : X → R, i ∈ I is a finitely midconvex family if the
function F : X × I → R defined by F (x, i) = fi(x) is finitely midconvex in
its first variable. In case I is a finite set the adjective “finitely” is dropped.
Let us say that Fan’s consistency condition holds for the family F =
{fi : i ∈ I} if for all finite subsets {f0, · · · , fn} of F condition (2.8) of Fan’s
Theorem holds.



Around an inequality, or two, of Ky Fan 363

Theorem 2.2.4 Let F be a finitely midconvex family of lower semicontin-
uous functions defined on a compact topological space. If Fan’s consistency
condition holds then

∃x0 ∈ X such that sup
f∈F

f(x0) ≤ 0.

Proof. For all f ∈ F let [f ≤ 0] = {x ∈ X : f(x) ≤ 0}. Since X is
compact and the elements of F are lower semicontinuous we have to show
that the family

{
[f ≤ 0] : f ∈ F} has the finite intersection property. Given

a finite subfamily {f0, · · · , fn} of F the function ϕ : X × ∆n → R defined
by ϕ(x, u) =

∑n
i=0 uifi(x) is finitely midconvex and lower semicontinuous

in its first variable and finitely midconcave and upper semicontinuous in its
second variable.
By Proposition 2.2.2 there exists (x0, u0) ∈ X ×∆n such that, for all (x, u)
in X ×∆n, ϕ(x0, u) ≤ ϕ(x0, u0) ≤ ϕ(x, u0).
From Fan’s consistency condition, there exists x? ∈ X such that ϕ(x?, u0) ≤
0 and therefore, ϕ(x0, u0) ≤ 0; we have shown that supu∈∆n

ϕ(x0, u) ≤ 0,
that is x0 ∈ ∩n

i=0[fi ≤ 0]. 2

To close this circle of ideas let us see that Theorem 2.1.1 can be deduced
from Theorem 2.2.4.

Given f : X ×X → R as in Theorem 2.1.1 take X itself as the set of indices
and let fy(x) = f(x, y). If Fan’s Consistency Condition holds for the family
{fy : y ∈ X} we are done.
If Fan’s Consistency Condition does not hold then there exists a finite subset
{y0, · · · , yn} of X and there exists u ∈ ∆n such that,

∀x ∈ X
n∑

i=0

uif(x, yi) > 0. (2.9)

From (2.9) and f(x, yi) + f(yi, x) ≤ 0 we have

∀x ∈ X
n∑

i=0

uif(yi, x) < 0 (2.10)

and from (2.7), there exists ŷ ∈ X such that

∀x ∈ X f(ŷ, x) ≤
n∑

i=0

uif(yi, x) (2.11)
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and therefore, from (2.10),

∀x ∈ X f(ŷ, x) < 0. (2.12)

But (2.12) clearly implies that Fan’s Consistency Condition holds (and it also
implies the conclusion of Theorem 2.1.1). We have reached a contradiction
and therefore Fan’s Consistency Condition holds. 2

Fan’s Theorem is a non linear version of Fourier’s Theorem on systems
of linear inequalities, a classical result of linear programming, from which
one can derive Von Neumann’s Minimax Theorem for bilinear forms, or the
well known Farkas Lemma; all these results are equivalent, in the sense that
they can all be derived from any given one of them. Fourier’s Theorem can
be proved in a completely elementary way, as in [11]. Here is a short proof
from Fan’s Theorem.

Theorem 2.2.5 (Fourier) Let A be an m × n matrix and B ∈ Rm then,
either the system of linear inequalities AX ≥ B has a solution or there exists
Y ∈ Rm

+ such that AtY = 0 and Y tB > 0.

To see that Theorem 2.2.5 follows from Fan’s Theorem, let fi(X) =
bi −

∑n
j=1 aijxj , i ∈ {1, · · · , n}. If there is no solution in Rn to the system

of inequalities fi(X) ≤ 0 then, for all integer k > 0, there exists Yk ∈ ∆n−1

such that, for all X ∈ Rn of norm not exceeding k,
∑n

i=1 yn,kfi(X) > 0, that
is, Y t

kB − Y t
kAX > 0. We can assume that the sequence (Yk)k∈N converges

to some Y ? ∈ ∆n−1. For any given X ∈ Rn, we will have, for k > ‖X‖,
Y t

kB − Y t
kAX > 0; and consequently Y ?tB − Y ?tAX ≥ 0. We must have

Y ?tA = 0, otherwise we can choose X such that Y ?tAX > 0, and therefore
Y ?tA(rX) > 0 for all r > 0. This proves Fourier’s Theorem.

Von Neumann’s Minimax Theorem for bilinear forms is easily derived from
Fourier’s Theorem. There are many elementary proofs of the Von Neumann’s
Minimax Theorem for bilinear forms.

Proposition 2.2.6 (Weak Fan Inequality) Let f : C×C → R be a func-
tion defined on a compact convex subset of some linear space. Assume that
the following conditions hold:

(1) ∀y ∈ C x 7→ f(x, y) is lower semicontinuous and convex on C;
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(2) ∀x ∈ C y 7→ f(x, y) is concave on C;

(3) ∀x ∈ C f(x, x) ≤ 0.

Then, there exists x0 ∈ C such that, for all y ∈ C, f(x0, y) ≤ 0.

Proof. Let us see that Fan’s Consistency Condition holds for the fam-
ily F = {f(−, y) : y ∈ C}. Otherwise, there exists y0, · · · , yn ∈ C and
(u0, · · · , un) ∈ ∆n such that, for all x ∈ C,

n∑
i=0

uif(x, yi) > 0. (2.13)

Let x̂ =
∑n

i=0 uiyi and, in (2.13), take x = x̂. From the second hypothesis
we then have f(x̂, x̂) > 0 which is contradiction with hypothesis (3). 2

Along with Theorem 4.2 of [7] page 65 (which can be seen as an elemen-
tary proof of the weak compactness of closed convex subsets of a Hilbert
space. ), Proposition 2.2.6 can be used to easily prove such results as the
Stampacchia or the Lax-Milgram theorems. In [7] these results are derived
from a weak form of the KKM Lemma.

2.3 Fan’s Theorem and Fixed Points

Lemma 2.3.1 (Markov’s Theorem) A linear map X 7→ PX from ∆n to
itself has a fixed point.

Proof. For (X,Y ) ∈ ∆n×∆n let fY (X) = Xt
(
P t−I

)
Y ; if Fan’s Consistency

Condition holds for the family F = {fY : Y ∈ ∆n} then there exists X0 ∈
∆n such that, for all Y ∈ ∆n, Xt

0

(
P t − I

)
Y ≤ 0 which is equivalent to

Xt
0

(
P t − I

)
≤ 0 or, PX0 −X0 ≤ 0. Since both PX0 and X0 belong to ∆n

equality must hold.
For a contradiction, assume that Fan’s Consistency Condition does not hold.
Then, there exists Y0, · · · , Yk ∈ ∆n and u ∈ ∆k such that, for all X ∈ ∆n,∑k

i=0 ukX
t
(
P t − I

)
Yk > 0. With Ŷ =

∑k
i=0 ukYk we obtain

∀X ∈ ∆n Xt
(
P t − I

)
Ŷ > 0 (2.14)

which is equivalent to

∀i ∈ {1, · · · , n}
n∑

j=1

pj,iŷj > ŷi. (2.15)
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Let
∥∥∥Ŷ ∥∥∥ = max{ŷ1, · · · , ŷn} and choose i0 such that ŷi0 =

∥∥∥Ŷ ∥∥∥. Since the
entries of P are non negative and since each column sums up to 1 we obtain
from (2.15)

∥∥∥Ŷ ∥∥∥ > ∥∥∥Ŷ ∥∥∥. 2

A similar elementery proof of Markov’s theorem based on Farkas Theorem
can be found in [6]. Farkas Theorem is easily derived from Fourier’s Theo-
rem.

Theorem 2.3.2 (Kakutani) Let C be a convex compact subspace of a lo-
cally convex topological vector space and let F be a commutative family of
continuous affine maps from C into itself. Then the members of F have a
common fixed point.

Proof. (a) Let T be an arbitrary, but fixed, element of F . We show that
T has a fixed point. Let W be an arbitrary convex neighborhood of the
origin. By compactness there is a finite subset {x0, . . . , xn} of C such that
C ⊂

⋃n
i=0 (xi +W ). For each index i ∈ {0, · · · , n} choose an index ϕ(i) ∈

{0, · · · , n} such that
T (xi) ∈ xϕ(i) +W. (2.16)

Let TW be the unique affine map from ∆n to itself such that TW (ei) =
eϕ(i) where e0, . . . , en are the vertices of ∆n and let pw =

∑n
i=0 µiei be a

fixed point of TW . From pw = TW (pw) we have
∑n

i=0 µiei =
∑n

i=0 µieϕ(i).
Let UW : ∆n → C be the unic affine function such that U(ei) = xi; from
UW (pw) = UW

(
TW (pw)

)
it follows that

n∑
i=0

µixi =
n∑

i=0

µixϕ(i). (2.17)

Since W is convex we have from (2.16)
n∑

i=0

µi

(
T (xi)− xϕ(i)

)
∈W (2.18)

and since T is affine
n∑

i=0

µi

(
T (xi)− xϕ(i)

)
= T

( n∑
i=0

µixi

)
−

n∑
i=0

µixϕ(i) (2.19)

= T
( n∑

i=0

µixi

)
−

n∑
i=0

µixi (2.20)
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We have shown that for any neighborhood W of the origin there is a point
x ∈ C such that T (x)−x ∈W . By the compactness of C and the continuity
of T we can infer that T has a fixed point.

For each element T of F let Fix(T ) be the set of fixed points of T . Each
of these sets is closed in C and therefore compact, they are also convex since
each map T is affine and we have shown that they are not empty.

The proof can now be completed as in [7]. The commutativity of F im-
plies that for all finite subsets {T1, . . . , Tn} and all T0 of F the inclusion
T0 (
⋂n

i=1 Fix (Ti)) ⊂ (
⋂n

i=1 Fix (Ti)) holds. Now a straightforward induction
shows that the family {Fix (T ) : T ∈ F} has the finite intersection property
and therefore by compactness the set

⋂
{Fix (T ) : T ∈ F} is not empty. 2

A simple proof of Theorem 2.3.2 making explicit use of Fan’s Theorem
can be found on page 43 of [7].

2.4 Invariant means and the Mazur-Orlicz Theorem

Day’s theorem on the existence of invariant means on compact topological
semigroups is usually proved via the Hahn-Banach theorem, [2], [10]. It is
obtained here as a direct consequence of Kakutani’s Theorem, and therefore,
indirectly, as a consequence of Fan’s Theorem. From Day’s Theorem we
derive, following [3] with a slight adaptation, the Mazur-Orlicz Theorem.
There is a very short step from the Mazur-Orlicz theorem to the Hahn-
Banach theorem.
We give the theorem of Mazur-Orlicz a somewhat geometrical formulation
which is readily seen to be equivalent to the standard formulation.

Let G be an abelian semigroup and let B(G) be the space of all bounded
real valued functions on G. An invariant mean on G is a real valued linear
function m on B(G) such that

m(1) = 1,

m(f) ≥ 0 if f ≥ 0

and
m(fg) = m(f)

for all f ∈ B(G) and all g ∈ G, where fg(x) = f(gx).
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Theorem 2.4.1 (Day) If G is an abelian semigroup then there is an in-
variant mean on G.

Proof. With the norm ‖f‖ = supx∈G | f(x) | the space of bounded functions
on G is a Banach space. Let E be the Banach space of bounded linear
functionals on B(G) and let C be the subset of the unit ball of E consisting
of positive functionals taking the value 1 on the constant function 1 of B(G).
If g ∈ G and f ∈ B(G) then f 7→ f(g) defines an element of C. Consequently
C is not empty and it is obviously a closed and convex subset of the unit
ball of E. For the weak topology C is therefore compact.

Now for g ∈ G, L ∈ C and f ∈ B(G) let Tg(L)(f) = L(fg). Then
{Tg : g ∈ G} is a commutative family of continuous affine maps on C. By
Kakutani’s theorem there is an element m of C such that for each g ∈ G one
has Tg(m) = m. This m is an invariant mean on G. 2

Theorem 2.4.2 Let p : G→R be a subadditive map defined on an abelian
semigroup G (respectively, an abelian group G) and let C ⊆ G × R be an
additive subset (i.e. if (x, r), (x′, r′) ∈ C then (x+x′, r+r′) ∈ C). Then, there
exists an additive function (respectively, a group homomorphism) f : G→ R
such that

(i) ∀x ∈ G f(x) ≤ p(x)
and

(ii) ∀(x, r) ∈ C r ≤ f(x)

if and only if
∀(x, r) ∈ C r ≤ p(x).

The necessity of the condition is obvious. Let us show that this condition is
sufficient.

For all x ∈ G let P (x) = inf {p(x+ y)− r : (y, r) ∈ C}. From the sub-
additivity of p it follows that,

∀x, x′ ∈ G P (x+ x′)− P (x′) ≤ p(x). (2.21)

Since C is an additive subset of G× R we have, from the definition of P ,

∀x ∈ G ∀(y, r), (y′, r′) ∈ C P (x) + r ≤ p(x+ y + y′)− r′. (2.22)

Taking the infimum over (y′, r′) ∈ C gives

∀x ∈ G ∀(y, r) ∈ C r ≤ P (x+ y)− P (x). (2.23)
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Let m be an invariant mean on G. For x ∈ G let f(x) = m (Px − P ) where,
for all y ∈ E, Px(y) = P (x+ y).

From (2.21) and (2.23) we have

∀x ∈ G f(x) ≤ p(x) and ∀(y, r) ∈ C r ≤ f(x) (2.24)

For all x, x′ ∈ E one has

f(x) = m (Px − P )

= m ((Px − P )x′)

= m(P(x+x′) − P )−m (Px′ − P ) = f(x+ x′)− f(x′).

We have shown that f is additive and consequently, a group homorphism if
G is a group. 2

In Theorem 2.4.2 one does not have to assume that C is an additive subset
of G × R since, for an arbitrary S ⊂ G × R, Theorem 2.4.2 holds with S
instead of C if and only if it holds with C being the additive subset of G×R
spanned by S.

Theorem 2.4.3 (Mazur-Orlicz) Let p : E→R be a subadditive and posi-
tively homogeneous map defined on real vector space E and let C ⊆ E×R a
convex cone. Then there is a linear function f : E → R such that

(i) ∀x ∈ E f(x) ≤ p(x)
and

(ii) ∀(x, r) ∈ C r ≤ f(x)

if and only if
∀(x, r) ∈ C r ≤ p(x).

Proof A convex cone in E×R is an additive subset. The function f : E → R
defined in the proof Theorem 2.4.2 is a group homomorphism. Lemma 2.4.4
below shows that f is linear. 2
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Lemma 2.4.4 Let p : E→R be a subadditive and positively homogeneous
map defined on real vector space E. If f : E → R is an additive map such
that

∀x ∈ E f(x) ≤ p(x)

then f is linear.

Proof. Since f is a group homomorphism, we have, for all (x, r) ∈ E×Q,
f(rx) = rf(x) .

Take (x, t) ∈ E×R and assume that f(x) ≥ 0; which implies p(x) ≥ 0. Then

tf(x)− f(tx) = inf {rf(x) : r > t, r ∈ Q} − f(tx)

= inf {rf(x)− f(tx) : r > t, r ∈ Q}

= inf {f((r − t)x) : r > t, r ∈ Q}

≤ inf {p((r − t)x) : r > t, r ∈ Q}

= inf {(r − t)p(x) : r > t, r ∈ Q} = 0.

We have shown that

∀(x, t) ∈ E × R such that f(x) ≥ 0 one has tf(x) ≤ f(tx) (2.25)

which also shows that if t ≥ 0 and f(x) ≥ 0 then f(tx) ≥ 0. Therefore, in
(2.25), for t > 0, we can replace x by tx and t by 1/t to obtain, f(tx) ≤ tf(x).
Since f(0) = 0 we have

∀(x, t) ∈ E × R+ such that f(x) ≥ 0 one has tf(x) = f(tx). (2.26)

Finally, f(−x) = −f(x) implies f(tx) = tf(x) for all (x, t) ∈ E × R. 2

Another proof of the Mazur-Orlicz Theorem using Kakutani’s Fixed
Point Theorem for commuting families of affine maps can be found in both
[7] on pages 70 to 73, and also in [12]. Those proofs make explicit use of
Tychonov’s Theorem on the compactness of an arbitrary product of compact
spaces.

Proposition 2.2.2 appears in [12] as Theorem 2.1 under the additional
hypothesis that X is a compact convex subset of some topological vector
space
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3 Ky Fan’s lopsided inequality

Lemma 3.0.5 Let ϕ : C ×C → R be a function defined on a convex subset
C of some topological vector space and assume that the following conditions
hold:

(1) ∀x ∈ C the partial map ϕ(x,−) is concave;

(2) ∀(x, y) ∈ C ×C the map t 7→ ϕ
(
(1− t)y+ tx, y

)
is lower semicontinuous

on [0, 1];

(3) ∀x ∈ C ϕ(x, x) ≤ 0.

Then, for all x0 ∈ C such that infy∈C ϕ(y, x0) ≥ 0 we also have
supy∈C ϕ(x0, y) ≤ 0.

Proof. Assume that infy∈C ϕ(y, x0) ≥ 0. Take an arbitrary element y ∈ C
and let η(t) = (1 − t)x0 + ty for t ∈ [0, 1]. From 0 ≤ ϕ(η(t), x0) and (3) we
obtain, for all 0 ≤ t < 1,

0 ≤ ϕ(η(t), x0)− 1
1− t

ϕ(η(t), η(t)). (3.1)

Since ϕ(η(t),−) is concave we obtain from (3.1)

∀t ∈ [0, 1[ 0 ≤ − t

1− t
ϕ(η(t), y) (3.2)

or, equivalently,
∀t ∈ [0, 1[ ϕ(η(t), y) ≤ 0 (3.3)

and finally, since t 7→ ϕ(η(t), y) is lower semicontinuous on [0, 1],
ϕ(x0, y) ≤ 0. 2

Theorem 3.0.6 (Fan’s Lopsided Inequality) Let C be a convex subset
of a topological vector space and let ϕ : C × C → R be a function such that:

(1) ∀x ∈ C ϕ(x,−) is upper semicontinuous and concave on C;

(2) ∀(x, y) ∈ C2 t 7→ ϕ
(
(1− t)y + tx, y) is lower semicontinuous on [0, 1],

(3) ∀(x, y) ∈ C2 0 ≤ ϕ(x, y) + ϕ(y, x);

(4) ∀x ∈ C ϕ(x, x) ≤ 0;
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(5) ∃y0 ∈ C such that {x ∈ C : ϕ(x, y0) ≤ 0} is contained in a compact
and convex subset K0 of C.

Then
∃x0 ∈ C such that sup

y∈C
ϕ(x0, y) ≤ 0.

Proof. Let F be the family of compact and convex subsets of C containing
K0. To each K ∈ F associate the function fK : K × K → R defined by
fK(x, y) = −ϕ(y, x). By Theorem 2.1.1 there exists xK ∈ K such that
infy∈K ϕ(y, xK) > 0. By Lemma 3.0.5 we also have supy∈K ϕ(xK , y) 6 0.

Let AK = {x ∈ K : supy∈K ϕ(x, y) 6 0} and FK = AK ; from (4) we have
y0 ∈ K0 and from (5) AK ⊂ K0. FK is therefore a nonempty compact
subset of C. Notice also that if K ⊂ K ′ then AK′ ⊂ AK since, if x ∈ K ′
and supy∈K′ ϕ(x, y) 6 0 then x ∈ K0 ⊂ K. Consequently, if K ⊂ K ′ then
FK′ ⊂ FK .

Let us see that the family
{
FK : K ∈ F

}
has the finite intersection property.

Let ∆m be the standard m-dimensional simplex and, given K0, · · · ,Km in
F , let

K =

{
m∑

i=0

tixi : (t0, · · · , tm) ∈ ∆m and (x0, · · · , xm) ∈
m∏

i=0

Ki

}
.

Since K is compact and convex and, for all i ∈ {0, · · · ,m}, Ki ⊂ K we
have K ∈ F and FK ⊂ ∩m

i=0FKi .

We have shown that
⋂

K∈F FK 6= ∅. Let x? be an arbitrary point of⋂
K∈F FK .

For all y ∈ C let K(y) = {(1 − t)y + tx : x ∈ K0} and fix an arbitrary ȳ in
C.

From K(ȳ) ∈ F and x? ∈ FK(ȳ) we have, for all neighborhood U of x? in C,

U ∩ {x ∈ K(ȳ) : sup
y∈K(ȳ)

ϕ(x, y) 6 0} 6= ∅.

Hypothesis (3) implies that infy∈K(ȳ) ϕ(y, xU ) > 0 for all xU ∈ U such that
supy∈K(ȳ) ϕ(xU , y) 6 0. Since U is an arbitrary neigborhood of x? we have
shown that x? belongs to the closure of {x ∈ K(ȳ) : infy∈K(ȳ) ϕ(y, x) > 0}.
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By hypothesis, for all y ∈ K(ȳ), ϕ(y,−) is upper semicontinuous on K(ȳ)
and therefore {x ∈ K(ȳ) : infy∈K(ȳ) ϕ(y, x) > 0} is closed in C.

We have shown that infy∈K(ȳ) ϕ(y, x?) > 0; another application of Lemma
3.0.5 yields supy∈K(ȳ) ϕ(x?, y) 6 0 and in particular ϕ(x?, ȳ) 6 0. Since ȳ
was an arbitrary element of C this concludes the proof. 2

Ky Fan’s Inequality, fixed point theorems and variational inequalities are
all closely related. Let us give, without proofs, two classical results that can
be derived without much difficulty from Theorem 3.0.6; the first is the Minty-
Browder Theorem on the surjectivity of monotone operators, the second is
the Hilbert space version of the fixed point theorem for nonexpansive maps
of Browder-Goehde-Kirk.

Theorem 3.0.7 Let E be a reflexive Banach space, g : E → R a lower
semicontinuous function and A : E → E? such that:

(1) A is weakly continuous on the finite dimensional subspaces of E;

(2) ∀(x, y) ∈ E × E 〈Ax−Ay, x− y〉 ≥ 0;

(3) ∃y0 ∈ E such that lim
‖x‖→∞

〈Ax, x− y0〉+ g(x)
‖x‖

= ∞

Then, for all y? ∈ E? there exists x0 ∈ E such that

∀y ∈ E 〈A(x0)− y?, x0 − y〉+ g(x0) ≤ g(y).

Proof. Apply Theorem 3.0.6 to ϕ(x, y) = 〈A(x)− y?, x− y〉+ g(x)− g(y). 2

Theorem 3.0.8 Let f : C → C be a function defined on a closed bounded
convex subset C of a Hilbert space H. If f is nonexpansive, that is,

∀(x, y) ∈ C × C ‖f(x)− f(y)‖ ≤ ‖x− y‖, then f has a fixed point.

Proof. Apply Theorem 3.0.6 to ϕ(x, y) = 〈x− f(x), x− y〉. 2

Acknowledgement. A la mémoire de Ky Fan avec respect et gratitude.
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Abstract

We establish Filippov existence theorems for solutions of certain
boundary value problems associated to some higher order differential
inclusions.
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1 Introduction

This paper is concerned with differential inclusions of the form

Dx ∈ F (t, x), (1.1)

where D is a differential operator and F (., .) : [0, 1] × R → P(R) is a set-
valued map.

In the last years we observe a remarkable amount of interest in the study
of existence of solutions of several boundary value problems associated to
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problem (1.1). Most of these existence results are obtained using fixed point
techniques and are based on an integral form of the right inverse to the
operator D. This means that for every f the unique solution y of the equation
Dy = f can be written in the form y = Rf , when the operator R has
nonnegative Green’s function.

For a first order differential inclusion defined by a lipschitzian set-valued
map with nonconvex values, Filippov’s theorem ([7]) consists in proving the
existence of a solution starting from a given almost solution. Moreover, the
result provides an estimate between the starting almost solution and the
solution of the differential inclusion.

The aim of this note is to show that Filippov’s ideas can be suitably
adapted in order to obtain the existence of solutions for the following prob-
lems

x(n) − λx ∈ F (t, x), a.e. (I) (1.2)

with boundary conditions of the form

x(i)(0)− x(i)(T ) = µi, i = 0, 1, ..., n− 1, (1.3)

and

(p(t)x′(t))′ ∈ F (t, x(t)) a.e. (I), (1.4)

with boundary conditions of the form

αx(0)− β lim
t→0+

p(t)x′(t) = 0, γx(T ) + δ lim
t→T−

p(t)x′(t) = 0, (1.5)

where I = [0, T ], λ ∈ R, µi ∈ R, i = 0, 1, ..., n − 1, F : I ×R → P(R) is a
set-valued map, p(.) : I → (0,∞) is a continuous function and α, β, γ, δ are
nonnegative reals with αδ + βγ + γα

∫ T
0

dt
p(t) 6= 0.

Existence results obtained using fixed point techniques for problem (1.2)-
(1.3) may be found in [2,3] and for problem (1.4)-(1.5) may be found in
[4,5,9,10]. The results in the present paper are improvements of previous
existence theorems from our papers [3] respectively, [4].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main results.
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2 Preliminaries

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff distance
of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
In what follows C(I,R) is the Banach space of all continuous functions

from I to R with the norm ||x(.)||C = supt∈I |x(t)|, ACi(I,R) is the space
of i-times differentiable functions x : I → R whose i-th derivative x(i)(.)
is absolutely continuous, AC1

p(I,R) is the space of continuous functions x :
I → R such that p(.)x′(.) is absolutely continuous and L1(I,R) is the Banach
space of integrable functions u(.) : I → R endowed with the norm ||u(.)||1 =∫ T
0 |u(t)|dt.

A function x(.) ∈ ACn−1(I,R) is called a solution of problem (1.2)-(1.3)
if there exists a function v(.) ∈ L1(I,R) with v(t) ∈ F (t, x(t)), a.e. (I) such
that x(n)(t)− λx(t) = v(t), a.e. (I) and x(.) satisfies conditions (1.3).

We consider the Green function G(., .) : I × I → R associated to the
periodic boundary problem

x(n) − λx = 0, x(i)(0)− x(i)(T ) = 0, i = 0, 1, ..., n− 1.

For the properties of G(., .) we refer to [2].
The next result is well known.

Lemma 2.1. ([2]) If v(.) : [0, T ]→ R is an integrable function then the
problem

x(n)(t)− λx(t) = v(t) a.e. (I)
x(i)(0)− x(i)(T ) = µi, i = 0, 1, ..., n− 1.

has a unique solution x(.) ∈ ACn−1(I,R) given by

x(t) = Pµ(t) +
∫ T

0
G(t, s)v(s)ds,

where

Pµ(t) =
n−1∑
i=0

∂i

∂ti
G(t, 0)µn−1−i. (2.1)
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A function x(.) ∈ AC1
p(I,R) is called a solution of problem (1.4)-(1.5) if

there exists a function v(.) ∈ L1(I,R) with v(t) ∈ F (t, x(t)), a.e. (I) such
that (p(t)x′(t))′ = v(t), a.e. (I) and conditions (1.5) are satisfied.

Lemma 2.2. ([9]) If v(.) : [0, T ]→ R is an integrable function then the
problem

(p(t)x′(t))′ = v(t) a.e. (I),

αx(0)− β lim
t→0+

p(t)x′(t) = 0, γx(T ) + δ lim
t→T−

p(t)x′(t) = 0

has a unique solution x(.) ∈ AC1
p(I,R) given by

x(t) =
∫ T

0
G1(t, s)v(s)ds,

where

G1(t, s) :=
1
ρ

{
(β + α

∫ s
0

du
p(u))(δ + γ

∫ T
t

du
p(u)) if 0 ≤ s < t ≤ T

(β + α
∫ t
0

du
p(u))(δ + γ

∫ T
s

du
p(u)) if 0 ≤ t < s ≤ T

and ρ := αδ + βγ + γα
∫ T
0

dt
p(t) 6= 0.

Finally, we recall a selection result which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem ([8]).

Lemma 2.3. ([1]) Consider X a separable Banach space, B is the closed
unit ball in X, H : I → P(X) is a set-valued map with nonempty closed
values and g : I → X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t)∩(g(t)+L(t)B) has a measurable selection.

In the sequel we assume the following conditions on F .

Hypothesis 2.4. (i) F (., .) : I ×R→ P(R) has nonempty closed values
and for every x ∈ R F (., x) is measurable.

(ii) There exists L(.) ∈ L1(I,R) such that for almost all t ∈ I, F (t, ·) is
L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R.
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3 The main results

We are now ready to prove the main result of this paper.
Denote L0 :=

∫ T
0 L(s)ds and M0 := supt,s∈I |G(t, s)|.

Theorem 3.1. Assume that Hypothesis 2.4 is satisfied and M0L0 <
1. Let y(.) ∈ ACn−1(I,R) be such that there exists q(.) ∈ L1(I,R) with
d(y(n)(t) − λy(t), F (t, y(t))) ≤ q(t), a.e. (I). Denote µ̃i = y(i)(0) − y(i)(T ),
i = 0, 1, ..., n− 1.

Then there exists x(.) : I → R a solution of (1.2)-(1.3) satisfying for all
t ∈ I

|x(t)− y(t)| ≤ 1
1−M0L0

sup
t∈I
|Pµ(t)− Pµ̃(t)|+

M0

1−M0L0

∫ T

0
q(t)dt,

where Pµ(t) is defined in (2.1).

Proof. The set-valued map t→ F (t, y(t)) is measurable with closed values
and

F (t, y(t)) ∩ {y(n)(t)− λy(t) + q(t)[−1, 1]} 6= ∅ a.e. (I).

From Lemma 2.3 it follows that there exists a measurable selection f1(t) ∈
F (t, y(t)) a.e. (I) such that

|f1(t)− y(n)(t) + λy(t)| ≤ q(t) a.e. (I) (3.2)

Define x1(t) = Pµ(t) +
∫ T
0 G(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤ sup
t∈I
|Pµ(t)− Pµ̃(t)|+M0||q||1.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R),
fn(.) ∈ L1(I,R), n ≥ 1 with the following properties

xn(t) = Pµ(t) +
∫ T

0
G(t, s)fn(s)ds, t ∈ I, (3.3)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.4)

|fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1. (3.5)
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If this construction is realized then from (3.2)-(3.5) we have for almost
all t ∈ I

|xn+1(t)− xn(t)| ≤
∫ T

0
|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤

M0

∫ T

0
L(t1)|xn(t1)− xn−1(t1)|dt1 ≤M0

∫ T

0
L(t1)

∫ T

0
|G(t1, t2)|.

|fn(t2)− fn−1(t2)|dt2 ≤M2
0

∫ T

0
L(t1)

∫ T

0
L(t2)|xn−1(t2)− xn−2(t2)|dt2dt1

≤Mn
0

∫ T

0
L(t1)

∫ T

0
L(t2)...

∫ T

0
L(tn)|x1(tn)− y(tn)|dtn...dt1 ≤

≤ (M0L0)n(sup
t∈I
|Pµ(t)− Pµ̃(t)|+M0||q||1).

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (3.5), for almost
all t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise
limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤ supt∈I |Pµ(t)−
Pµ̃(t)|+M0||q||1 +

∑n−1
i=1 (supt∈I |Pµ(t)− Pµ̃(t)|+M0||q||1)(M0L0)i ≤

supt∈I |Pµ(t)−Pµ̃(t)|+M0||q||1
1−M0L0

.

(3.6)
On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all

t ∈ I

|fn(t)− y(n)(t) + λy(t)| ≤
∑n−1

i=1 |fi+1(t)− fi(t)|+ |f1(t)− y(n)(t)+
λy(t)| ≤ L(t) supt∈I |Pµ(t)−Pµ̃(t)|+M0||q||1

1−M0L0
+ q(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈
L1(I,R).

Using Lebesgue’s dominated convergence theorem and taking the limit
in (3.3), (3.4) we deduce that x(.) is a solution of (1.1). Finally, passing to
the limit in (3.6) we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in
(3.3)-(3.5). The construction will be done by induction.
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Since the first step is already realized, assume that for some N ≥ 1 we
already constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N
satisfying (3.3),(3.5) for n = 1, 2, ...N and (3.4) for n = 1, 2, ...N − 1. The
set-valued map t → F (t, xN (t)) is measurable. Moreover, the map t →
L(t)|xN (t)−xN−1(t)| is measurable. By the lipschitzianity of F (t, .) we have
that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)|xN (t)− xN−1(t)|[−1, 1]} 6= ∅.

From Lemma 2.3 we obtain that there exists a measurable selection fN+1(.)
of F (., xN (.)) such that

|fN+1(t)− fN (t)| ≤ L(t)|xN (t)− xN−1(t)| a.e. (I).

We define xN+1(.) as in (3.3) with n = N + 1. Thus fN+1(.) satisfies
(3.4) and (3.5) and the proof is complete.

Remark 3.2. In [3], using Covitz-Nadler set-valued contraction principle
([6]) one obtains another Filippov type existence result for problem (1.2)-
(1.3). More exactly, according to Theorem 3.1 in [3], for any ε > 0 there
exists xε(.) a solution of problem (1.2)-(1.3) satisfying for all t ∈ I

|xε(t)−y(t)| ≤
1

1−M0L0
sup
t∈I
|Pµ(t)−Pµ̃(t)|+

M0

1−M0L0

∫ T

0
q(t)dt+ε (3.7)

Obviously, the estimate in (3.1) is better than the one in (3.7). Moreover,
in [3] it is required that the set-valued map F (., .) satisfy an additional hy-
pothesis, namely d(0, F (t, 0)) ≤ L(t) a.e. (I).

We are concerned now with the boundary value problem (1.4)-(1.5).
Set M1 := maxt,s∈I |G1(t, s)|.

Theorem 3.3. Assume that Hypothesis 2.4 is satisfied and M1L0 <
1. Let y(.) ∈ AC1

p(I,R) be such that there exists q(.) ∈ L1(I,R) with
d((p(t)y(t))′, F (t, y(t))) ≤ q(t), a.e. (I), αy(0) − β limt→0+ p(t)y′(t) = 0,
γy(T ) + δ limt→T− p(t)y′(t) = 0.

Then there exists x(.) : I → R a solution of (1.1)-(1.2) satisfying for all
t ∈ I

|x(t)− y(t)| ≤ M1

1−M1L0

∫ T

0
q(t)dt. (3.8)
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The proof of Theorem 3.3 is similar to the one of Theorem 3.1.

Remark 3.4. In [4], using Covitz-Nadler set-valued contraction principle
one obtains another Filippov type existence result for problem (1.4)-(1.5).
More precisely, according to Theorem 3.1 in [4], for any ε > 0 there exists
xε(.) a solution of problem (1.4)-(1.5) satisfying for all t ∈ I

|xε(t)− y(t)| ≤
M1

1−M1L0

∫ T

0
q(t)dt+ ε. (3.9)

Obviously, the estimate in (3.8) is better than the one in (3.9).
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