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Abstract

An optimal control problem arising in the context of 3D electromag-
netic induction heating is investigated. The state equation is given by
a quasilinear stationary heat equation coupled with a semilinear time-
harmonic eddy current equation. The temperature-dependent electrical
conductivity and the presence of pointwise inequality state-constraints
represent the main challenge of the paper. In the first part of the pa-
per, the existence and regularity of the state are addressed. The second
part of the paper deals with the analysis of the corresponding linearized
equation. Some sufficient conditions are presented which guarantee the
solvability of the linearized system. The final part of the paper is con-
cerned with the optimal control. The aim of the optimization is to find
the optimal voltage such that a desired temperature can be achieved
optimally. The corresponding first-order necessary optimality condi-
tion is presented.
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1 Introduction

In the recent past, there has been growing interest in the analysis and nu-
merical modeling of electromagnetic induction heating. Generally speaking,
its mathematical model is given by nonlinear heat equations coupled with
Maxwell equations. From among many contributions to this topic, we only
mention Bossavit and Rodrigues [6], Bodart et al. [4], Clain and Touzani
[9], Hömberg [15], Parietti and Rappaz [21], Rappaz and Swierkosz [22]. An
important issue arising in the context of electromagnetic induction heating
in modern industry is mainly how to control the process in a way that a
desired temperature of the targeted object can be achieved optimally. In
addition, in order to avoid undesired damage or melting, the temperature
(state of the system) has to be uniformly bounded during the heating pro-
cess. Thus, it is necessary to include pointwise inequality state constraints
in the optimal control problem. From the theoretical and numerical point
of view, the treatment of such a problem is challenging. There are two main
reasons for this: On the one hand, higher regularity of the state is required
for the existence of Lagrange multipliers. On the other hand, Lagrange mul-
tipliers associated with pointwise state constraints are in general only Borel
measures (cf. [1, 7, 8, 23]).

Eddy current equations

Neglecting the electrical displacement and free charges in the full Maxwell
equations leads to the eddy current equations (cf. [5]). For a fixed angular
frequency ω > 0, the time-harmonic eddy current equations read as follows

∇×H = J in D (Ampère’s law) (1)
∇× E = −iωB in D (Faraday’s law) (2)
∇ · B = 0 in D (Gauss’s law for magnetism) (3)

J = σDE in D (Ohm’s law) (4)
B = µH in D (Constitutive relation). (5)
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Figure 1: Illustration of electromagnetic induction heating.

In the above setting, E and H denote the electric field intensity and the
magnetic field intensity occupying some bounded domain D ⊂ R3. The vec-
tor field B describes the magnetic induction, J represents the total current
density, and i denotes the imaginary unit. Further, µ is the magnetic per-
meability and σD is the electrical conductivity of D. Let us remark that
Gauss’s law for magnetism (3) implies the existence of a magnetic vector
potential A satisfying

∇×A = B in D ∇ · A = 0 in D. (6)

Then, applying (6) to the system (1)–(5), a second-order equation for A can
be derived (see [12, 15]). The corresponding formulation for our model will
be presented shortly.

Induction heating process

In principle, an electromagnetic induction heating system consists of two
essential components: an induction coil connected to an alternating current
(AC) power supply and an electrically conductive workpiece (heated mate-
rial). See Figure 1 for an illustration of induction heating. The AC power
supply injects alternating current into the induction coil which produces
in turn an alternating magnetic field. Since the workpiece is electrically
conductive, the magnetic field generates an eddy current within it. Then,
the resistance to the eddy current induces heat in the workpiece (cf. the
monograph [16]). A 3D electromagnetic induction heating model involving
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a thermomechanical effect for induction hardening has been recently investi-
gated by Hömberg in [15]. We follow his model with a further simplification
which does not involve the thermomechanical effect. Let Ω, R ⊂ D de-
note the workpiece and the induction coil, respectively, and we suppose that
Ω ∩ R = ∅. The region D \

(
Ω ∪R

)
is assumed to be the surrounding air

and hence, as air is non-conducting, σD can be decomposed into:

σD =


σ in Ω
σR in R

0 in D \
(
Ω ∪R

)
,

where σ and σR represent the electrical conductivities of Ω and R, respec-
tively. In our model, we suppose that the induction coil R is connected
to some external source and there is no impressed current source in the
workpiece Ω so that we arrive at the following magnetic vector potential
formulation:

∇×
(
µ−1∇×A

)
+ iωσ A = 0 in Ω

∇×
(
µ−1∇×A

)
+ iωσRA = Jsource in R

∇×
(
µ−1∇×A

)
= 0 in D \ (Ω ∪R)

∇ · A = 0 in D
A× ~n = 0 on ∂D.

(7)

Here and in what follows, ~n denotes the outward unit normal to the cor-
responding surface and Jsource is the impressed current source. Note that
the boundary condition A × ~n = 0 on ∂D physically means that ∂D is a
perfect conductor. In addition to this boundary condition, we also include
the following interface conditions:

[
(
µ−1∇×A

)
× ~n]∂R = 0 on ∂R and [

(
µ−1∇×A

)
× ~n]∂Ω = 0 on ∂Ω,

(8)
where [·]∂R and [·]∂Ω denote the jumps of a quantity across the interfaces
∂R and ∂Ω, respectively. By (5) and (6), the above interface conditions are
equivalent to

[H × ~n]∂R = 0 on ∂R [H × ~n]∂Ω = 0 on ∂Ω.

In other words, the tangential trace of the magnetic field intensity H is
assumed to be continuous across the interfaces ∂Ω and ∂R.

Let us now explain, how the impressed current source Jsource in (7) looks
like: Throughout the paper, we assume that:
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• The induction coil R is given by the union R =
n⋃
i=1

Ri (n ≥ 1) where

R1, . . . , Rn are assumed to be pairwise disjoint rings.

• For every j = 1, . . . , n, the voltage uj ∈ R+ in every coil Rj can be
maintained constant and the current source Jsource in every coil Rj is
assumed to be influenced only by applying the voltage uj .

Based on the above assumption, the impressed current source Jsource can be
written as follows

Jsource(x) =
n∑
j=1

ujJj(x). (9)

The control parameter for our system is given by uj ∈ R+, j = 1, . . . , n.
On the other hand, every vector field Jj : Rj −→ R3 is fixed given data
and, as Jsource represents current, it has to satisfy the physical consistency
assumption:

∇ · Jj = 0 in Rj Jj · ~n = 0 on ∂Rj . (10)

An example for Jj is given as follows:

Jj(x) = (−x2/
√
x2

1 + x2
2 , x1/

√
x2

1 + x2
2 , 0)T ∀x = (x1, x2, x3)T ∈ Rj .

(11)

As every Rj is a ring (torus), it is straightforward to show that Jj as given
above satisfies (10). Further examples for Jj can be found in Druet et al.
[11].

Stationary induction heating

Assuming that the oscillation period 2π/ω of the electromagnetic fields is
much smaller than the heat diffusion time, the Joule heat source can be
approximated by its averaged value over one oscillation period (see [9]). This
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approximation leads to the following stationary induction heating system:

−∇ · (κ(x, y)∇y) + d(x, y) = 1
2ω

2σ(x, y)|A|2 in Ω

y = 0 on ∂Ω

∇×
(
µ−1∇×A

)
+ iωσ(x, y)A = 0 in Ω

∇×
(
µ−1∇×A

)
+ iωσRA =

n∑
j=1

ujJj in R

∇×
(
µ−1∇×A

)
= 0 in D\(Ω∪R)

∇ · A = 0 in D
A× ~n = 0 on ∂D

[
(
µ−1∇×A

)
× ~n]∂R = 0 on ∂R [

(
µ−1∇×A

)
× ~n]∂Ω = 0 on ∂Ω.

(12)
In this setting, y denotes the temperature and κ is the thermal conductivity
of Ω. The two-way nonlinear coupling between the quasilinear stationary
heat equation and the time-harmonic eddy current equation arises from the
dependence of σ on the temperature y. In fact, the temperature dependence
effect of thermal and electrical conductivities cannot be ignored as it has
been confirmed by many experimental studies (see e.g. [10, 16]). Notice
that, instead of the homogeneous Dirichlet-type boundary condition, the
subsequent analysis applies also to the nonlinear Neumann- or Robin-type
boundary conditions such as ∂y

∂~n + b(x, y) = y0 on ∂Ω with a sufficiently reg-
ular right hand side y0 and nonlinearity b satisfying some local boundedness
and monotonicity assumptions. The author is moreover convinced that the
subsequent considerations can be extended to the associated system wit h
nonlocal boundary radiation conditions arising from heat transfer problems
in crystal growth (cf. [11, 17, 18]).

Optimal control

Let yd ∈ L2(Ω) be a desired temperature and zd ∈ L2(Ω)3 be a desired
temperature gradient. In addition, let α ≥ 0 and β > 0. Our focus is set on
the following optimal control problem:

minimize
1
2

∫
Ω
|y − yd|2 dx+

α

2

∫
Ω
|∇y − zd|2 dx+

β

2
|u|2 (P)
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subject to (12) and the following inequality control- and state-constraints:{
uaj ≤ uj ≤ ubj for all j = 1, . . . , n

ya(x) ≤ y(x) ≤ yb(x) for a.a. x ∈ Ω.
(13)

The lower and upper control-bounds ua, ub ∈ Rn satisfy 0 ≤ uaj < ubj for
all j = 1, . . . , n. Further, the lower and upper state-bounds ya, yb ∈ C(Ω)
satisfy ya(x) < yb(x) for all x ∈ Ω.

It should be underlined that optimal control of 3D stationary induction
heating problems in the decoupled case has been recently investigated by
Druet et al. [11]. In this work, we considered a temperature-independent
electrical conductivity such that the stationary heat equation and the eddy
current equation could be investigated separately. However, the results in
[11] cannot be directly transferred to (P) due to the two-way nonlinear cou-
pling in (12). Also, the linearized system associated with (12) is nonstandard
(see (40) on p. 63). Therefore, the analysis of (P) represents the genuine
contribution of the present paper and requires us to extend the analysis of
the aforementioned reference. Note that the very first results on optimal-
ity conditions for optimal control of quasilinear elliptic equations have been
recently obtained by Casas and Tröltzsch (see [8]). We shall follow their
technique to prove the existence result of the coupled forward problem (12).

The main results of the paper are summarized as follows: First, the exis-
tence of solutions to (12) is established in Section 3 (Theorem 1). Then, by
means of the maximum elliptic regularity result by Elschner et al. [13], we
derive the state regularity in W 1,q

0 (Ω) (Proposition 2) which plays a signifi-
cant role in our analysis. Section 4 is devoted to the analysis of the linearized
system associated with (12). Some sufficient conditions shall be established
which guarantee the solvability of the linearized system (Theorem 3). A con-
sequence of this result is the uniqueness of the solution to (12) (Corollary
1). Finally, the first-order necessary optimality condition of (P) is derived
in Section 5.

2 General assumptions and notation

Let us introduce the mathematical setting including the notation used through-
out this paper. We denote by c a generic positive constant which can take
different values on different occasions. If X is a linear normed function space,
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then we use the notation ‖·‖X for a standard norm used in X. Furthermore,
we set X3 := X ×X ×X. The dual space of X is denoted by X∗ and, for
the associated duality pairing, we write 〈·, ·〉X∗,X . If it is obvious in which
spaces the respective duality pairing is considered, then the subscript is oc-
casionally neglected. Given another linear normed space Y , the space of all
bounded linear operators from X to Y is denoted by L(X,Y ) and if X is
continuously embedded in Y , then the corresponding injection is denoted by
X ↪→ Y . For the Fréchet derivative of a differentiable operator B : X → Y
at x ∈ X in the direction h ∈ X, we write B′(x)h. Moreover, the kernel and
the image of B : X → Y are denoted by kerB and ranB, respectively.

Throughout the paper, for every 1 ≤ q ≤ ∞ we denote its conjugate
exponent by q′. The Sobolev space on a bounded Lipschitz domain O ⊂ R3

is as usual denoted by Wm,q(O) and the corresponding space of complex-
valued functions is denoted by Wm,q(O; C). Further,

H(curl;O) := {K ∈ L2(O; C)3 | ∇ ×K ∈ L2(O; C)3}
H(div;O) := {K ∈ L2(O; C)3 | ∇ · K ∈ L2(O; C)},

where the curl- and div-operators are understood in the distribution sense.
Notice that every vector field K ∈ H(curl;O) has the tangential trace K×~n
in H−1/2(∂O; C)3 satisfying

〈K × ~n, ψ〉H−1/2(∂O;C)3,H1/2(∂O;C)3 =
∫
O
K ·

(
∇× ψ

)
dx−∫

O

(
∇×K

)
· ψ dx ∀ψ ∈ H1(O; C)3.

(14)

We further point out that the real- and imaginary-parts of an element z ∈ C
are denoted by Re z and Imz, respectively. Further, its complex conjugate
is written as z. Let us now state the general assumption for the data involved
in (12).
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Assumption 1.

(i) The domain D ⊂ R3 is bounded and simply connected with a connected
boundary ∂D. The domain D is either of class C1,1 or convex. The
subdomain Ω is assumed to be Lipschitz in the appropriate sense of
Grisvard [14].

(ii) The functions d : Ω × R → R and κ : Ω × R → R are Carathéodory
functions: For almost all fixed x ∈ Ω the functions d(x, ·) and κ(x, ·)
are continuous and, for each fixed y ∈ R, the functions d(·, y) and
κ(·, y) are Lebesgue measurable. Also, assume that the function d(x, ·)
for almost all fixed x ∈ Ω is monotone non-decreasing and there exists
a constant κl > 0 such that

κl ≤ κ(x, y) for a.a. x ∈ Ω and all y ∈ R. (15)

For every M > 0, there exists CM > 0 such that

|d(x, y)|+ |κ(x, y)| ≤ CM for a.a. x ∈ Ω and all y ∈ [−M,M ]. (16)

(iii) The function σ : Ω × R → R is also a Carathéodory function. There
exist an exponent q > 3, a positive function σ∗ ∈ Lq(Ω) and a constant
σl > 0 such that

σl ≤ σ(x, y) ≤ σ∗(x) for a.a. x ∈ Ω and all y ∈ R. (17)

Finally, we assume that µ ∈ L∞(D), σR ∈ L∞(R) and there exists a
constant C0 > 0 such that C0 ≤ σR(x) for all x ∈ R and C0 ≤ µ(x)
for all x ∈ D.

3 Existence and regularity of solutions to (12)

This section addresses the existence and regularity of the solution to the
nonlinear coupled system (12).

Definition 1. The space XN,0(D) is defined by

XN,0(D) := {K ∈ H(curl;D)∩H(div;D) | ∇·K = 0 in D, K×~n = 0 on ∂D}.
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The upcoming lemma shows that the L2-norm of a function in XN,0(D)
can be estimated by the L2-norm of its curl (cf. [19] and the references cited
there).

Lemma 1 ([19, Corollary 3.51]). Let D ⊂ R3 be a bounded Lipschitz domain.
If D is simply connected and has a connected boundary ∂D, then there exists
a constant cD > 0 such that

‖K‖L2(D;C)3 ≤ cD‖∇ ×K‖L2(D;C)3 ∀K ∈ XN,0(D).

Another well-known important result ensuring that the space XN,0(D) is
continuously embedded in H1(D; C)3 is summarized in the following lemma:

Lemma 2 ([3, Theorem 2.12 and Theorem 2.17]). Let D ⊂ R3 be a bounded
domain. If D is of class C1,1 or convex, then the injection XN,0(D) ↪→
H1(D; C)3 holds.

In the upcoming definition, we introduce the notion of (weak) solution
to (12), which is derived formally using (14).

Definition 2. A pair (y,A) ∈ H1
0 (Ω)×XN,0(D) is said to be a solution to

(12) if and only if it satisfies∫
Ω
κ(x, y)∇y · ∇φdx+

∫
Ω
d(x, y)φdx =

∫
Ω

ω2

2
σ(x, y)|A|2 φdx∫

D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y)A · ψ dx+

∫
R
σRA · ψ dx) =

n∑
j=1

uj

∫
R
Jj · ψ dx ∀(φ, ψ) ∈ H1

0 (Ω)×XN,0(D).

Proposition 1. Let Assumption 1 be satisfied and let u ∈ Rn. Then, for
every y ∈ L2(Ω), the variational problem

αy(A,ψ) :=
∫
D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y)A · ψ dx+∫

R
σRA · ψ dx) =

n∑
j=1

uj

∫
R
Jj · ψ dx ∀ψ ∈ XN,0(D)

(18)

admits a unique solution A = A(y) ∈ XN,0(D). Furthermore, the solution
satisfies the following a priori estimate:

‖A(y)‖XN,0(D) ≤ c|u|, (19)
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with a constant c > 0 independent of A, y and u. If yk → y strongly in
L2(Ω), then A(yk)→ A(y) strongly in XN,0(D).

Proof. By virtue of Lemma 1, we may use the following norm

‖ψ‖XN,0(D) := ‖∇ × ψ‖L2(D;C)3 ∀ψ ∈ XN,0(D).

Consequently, the sesquilinear form αy is coercive and bounded in XN,0(D)
such that the Lax-Milgram lemma implies that (18) admits a unique solution
A = A(y) ∈ XN,0(D).

Suppose that {yk}∞k=1 ⊂ L2(Ω) such that yk → y strongly in L2(Ω). We
set A = A(y) and Ak = A(yk) for all k ∈ N. Then, the difference Ak − A
satisfies ∫

D

1
µ
∇× (Ak −A) · ∇ × ψ dx+ iω

( ∫
Ω
σ(x, yk)Ak · ψ dx

−
∫

Ω
σ(x, y)A · ψ dx

)
+ iω

∫
R
σR(Ak −A) · ψ dx = 0 ∀ψ ∈ XN,0(D)

which is equivalent to∫
D

1
µ
∇× (Ak −A) · ∇ × ψ dx+ iω(

∫
Ω
σ(x, yk)(Ak −A) · ψ dx+∫

R
σR(Ak −A) · ψ dx) = iω

∫
Ω

(σ(x, y)− σ(x, yk))A · ψ dx ∀ψ ∈ XN,0(D).

Setting ψ = Ak −A in the above equality results in

|
∫
D

1
µ
|∇ × (Ak −A)|2 dx+ iω(

∫
Ω
σ(x, yk)|Ak −A|2 dx+

∫
R
σR|Ak −A|2 dx)|

= |iω
∫

Ω

(
σ(x, y)− σ(x, yk)

)
A · (Ak −A) dx|.

Consequently, Hölder’s inequality along with the injection XN,0(D) ↪→
H1(D; C)3 ↪→ L6(D; C)3 implies that

‖µ‖−1
L∞(D)‖Ak −A‖

2
XN,0(D) ≤ |iω

∫
Ω

(
σ(x, y)− σ(x, yk)

)
A · (Ak −A) dx|

≤ ω‖σ(·, y)− σ(·, yk)‖L2(Ω)‖A‖L4(D;C)3‖Ak
−A‖L4(D;C)3 ≤ c‖σ(·, y)− σ(·, yk)‖L2(Ω)‖Ak −A‖XN,0(D).
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Thus, there exists a constant c > 0 independent of k such that

‖Ak −A‖XN,0(D) ≤ c‖σ(·, y)− σ(·, yk)‖L2(Ω). (20)

On the other hand, in view of Lebesgue’s dominated convergence theorem
(see e.g. [23, Section 4.2.3]), (17) along with the convergence yk → y in
L2(Ω) yields the convergence σ(·, yk) → σ(·, y) in L2(Ω) as k → ∞. This
convergence together with (20) completes the proof.

For the remainder of the presentation, the norm ‖ψ‖XN,0(D) = ‖∇ ×
ψ‖L2(D;C)3 is used. With Lemma 2 and Proposition 1 at hand, we establish
the existence of solutions to (12) in the following theorem:

Theorem 1. Let Assumption 1 be satisfied and let u ∈ Rn. Then, the state
equation (12) admits a solution (y,A) ∈ H1

0 (Ω)∩ C(Ω)×XN,0(D) satisfying
the following a priori estimate:

‖y‖H1
0 (Ω)∩C(Ω) ≤ c(|u|

2 + 1) and ‖A‖XN,0(D) ≤ c|u| (21)

with a constant c > 0 independent of y,A and u.

Proof. To prove the assertion, we follow the lines of [8]. First of all, for
every y ∈ L2(Ω), let A(y) ∈ XN,0(D) be the unique solution of (18). Note
that Proposition 1 and the embedding

XN,0(D) ↪→ H1(D; C)3 ↪→ L6(D; C)3 (22)

imply that the mapping y 7→ A(y) is continuous from L2(Ω) to L6(D; C)3.
Now the state equation (12) can equivalently be expressed as−∇ · (κ(·, y)∇y) + d(·, y) =

1
2
ω2σ(·, y)|A(y)|2 in Ω

y = 0 on ∂Ω.
(23)

For the time being let M > 0 and we introduce the following truncated
functions κM and dM :

κM (x, y) :=


κ(x, y) |y| ≤ M

κ(x,M) y > M

κ(x,−M) y <−M
dM (x, y) :=


d(x, y) |y| ≤ M

d(x,M) y > M

d(x,−M) y <−M.
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Then, in view of (16), there exists a constant CM > 0 such that

|dM (x, y)|+ |κM (x, y)| ≤ CM for all y ∈ R and almost all x ∈ Ω. (24)

Let us introduce an operator F : L2(Ω)→ H1
0 (Ω) where F(v) = y is defined

by the unique solution of−div(κM (·, v)∇y) + dM (·, v) =
1
2
ω2σ(·, v)|A(v)|2 in Ω

y = 0 on ∂Ω.
(25)

According to (17) and (24)

−dM (·, v) +
1
2
ω2 σ(·, v)︸ ︷︷ ︸
∈L2(Ω)

|A(v)|2︸ ︷︷ ︸
∈L3(Ω)

∈ L
6
5 (Ω).

Hence, by (15) and the embedding L
6
5 (Ω) ↪→ H−1(Ω), the Lax-Milgram

lemma immediately implies that (25) admits a unique solution y = y(v) ∈
H1

0 (Ω). In addition, by virtue of (17), (19), (22) and (24), the solution
satisfies

‖y(v)‖H1
0 (Ω) ≤ c‖

1
2
ω2σ(·, v)|A(v)|2 − dM (·, v)‖

L
6
5 (Ω)

≤ c(‖σ∗‖L2(Ω)‖|A(v)|2‖L3(Ω) + ‖dM (·, v)‖
L

6
5 (Ω)

)

≤ c(‖A(v)‖2L6(D;C)3 + 1) ≤ c(|u|2 + 1) ∀v ∈ L2(Ω)

(26)

with a constant c > 0 independent of v, y, u,A.
Let us now consider the operator F as an operator in L2(Ω). In the

following, we verify that F : L2(Ω) → L2(Ω) is continuous. Suppose that a
sequence {vk}∞k=1 ⊂ L2(Ω) converges strongly to a v ∈ L2(Ω). The solution
of (25) associated with vk is denoted by y(vk) = yk ∈ H1

0 (Ω) for all k ∈ N
and y(v) = y ∈ H1

0 (Ω). By (26), {yk}∞k=1 is uniformly bounded in the
H1

0 (Ω)–topology and hence there exists a subsequence {ykj
}∞j=1 ⊂ {yk}∞k=1

converging strongly in L2(Ω) to a ỹ ∈ L2(Ω). Let us show that ỹ = y. First,
the difference ykj

− y satisfies∫
Ω
κM (x, vkj

)∇(ykj
− y) · ∇φdx =

∫
Ω

(
κM (x, v)− κM (x, vkj

)
)
∇y · ∇φdx

+
∫

Ω

(
dM (x, v)− dM (x, vkj

)
)
φdx+

ω2

2

∫
Ω

(
σ(x, vkj

)− σ(x, v)
)
|A(v)|2φdx

+
ω2

2

∫
Ω
σ(x, vkj

)
(
|A(vkj

)|2 − |A(v)|2
)
φdx ∀φ ∈ H1

0 (Ω).
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Setting φ = ykj
−y ∈ H1

0 (Ω) in the latter variational equality, taking (15) and
(17) into account and using Hölder’s inequality in the resulting inequality,
we infer that

κl‖ykj
− y‖2H1

0 (Ω) ≤ ‖(κM (·, v)− κM (·, vkj
))∇y‖L2(Ω)‖ykj

− y‖H1
0 (Ω)

+‖dM (·, v)− dM (·, vkj
)‖L2(Ω)‖ykj

− y‖L2(Ω)+(
ω2

2
‖σ(·, vkj

)− σ(·, v)‖L2(Ω)‖|A(v)|2‖L3(Ω)+

ω2

2
‖σ∗‖L3(Ω)‖ |A(vkj

)|2 − |A(v)|2‖L2(Ω)

)
‖ykj

− y‖L6(Ω).

Hence, it follows that

κl‖ykj
− y‖H1

0 (Ω) ≤ c
(
‖(κM (·, v)− κM (·, vkj

))∇y‖L2(Ω)

+‖dM (·, v)− dM (·, vkj
)‖L2(Ω) + ‖σ(·, vkj

)

−σ(·, v)‖L2(Ω) + ‖|A(vkj
)|2 − |A(v)|2‖L2(Ω)

) (27)

holds with a constant c > 0 independent of k. Analogously to an argument
in the proof of Proposition 1, (17) and (24) ensure that

dM (·, vkj
) → dM (·, v) in L2(Ω) as j →∞

σ(·, vkj
) → σ(·, v) in L2(Ω) as j →∞. (28)

In addition, as mentioned previously, Proposition 1 and the embedding (22)
imply that

|A(vkj
)|2 → |A(v)|2 in L2(Ω) as j →∞. (29)

By standard arguments, there exists a subsequence of {vkj
}∞j=1 denoted

w.l.o.g. again by {vkj
}∞j=1 such that vkj

(x) → v(x) for a.a. x ∈ Ω as
j → ∞. Consequently, since κM is continuous with respect to the second
variable, we immediately obtain the following pointwise convergence:

κM (x, vkj
(x))2|∇y(x)|2 → κM (x, v(x))2|∇y(x)|2 for a.a. x ∈ Ω as j →∞.

Hence, thanks to the uniform boundedness (24), Lebesgue’s dominated con-
vergence theorem implies that

κM (·, vkj
)∇y → κM (·, v)∇y in L2(Ω) as j →∞. (30)
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Applying (28)–(30) to (27) implies that ykj
→ ỹ = y strongly in L2(Ω).

In conclusion, every L2–converging subsequence of {yk}∞n=1 converges strongly
to y in L2(Ω) so that, by a standard result, we gain the desired continuity
of F : L2(Ω) → L2(Ω). Moreover, the compactness of F is an immediate
consequence of (26) and the fact that the injection H1

0 (Ω) ↪→ L2(Ω) is com-
pact. Hence, along with (26), the Schauder fixpoint theorem implies that F
admits a fixed point yM . In other words, yM ∈ H1

0 (Ω) is a solution to−div(κM (·, yM )∇yM ) + dM (·, yM ) =
1
2
ω2σ(·, yM )|A(yM )|2 in Ω

yM = 0 on ∂Ω.
(31)

We show now that yM solves the original problem (23). On account of (17),

1
2
ω2 σ(·, yM )︸ ︷︷ ︸

∈Lq(Ω)

|A(yM )|2︸ ︷︷ ︸
∈L3(Ω)

∈ L
3q

3+q (Ω).

Since q > 3, we have 3q
3+q > 3

2 . Consequently, taking (15) into account,
the application of Stampacchia technique (see Tröltzsch [23, Theorem 7.3])
implies that yM is bounded and there exists a constant c > 0 independent
of yM , A(yM ), κM (·, yM ) and dM such that

‖yM‖L∞(Ω) ≤ c‖
ω2

2
σ(·, yM )|A(yM )|2 − d(·, 0)‖

L
3q

3+q (Ω)
.

Thus, (17) and (19) yield

‖yM‖L∞(Ω) ≤ c∞(|u|2 + 1) (32)

with a constant c∞ > 0 independent of yM , A(yM ), κM (·, yM ), dM and u.
To show that yM ∈ H1

0 (Ω) ∩ L∞(Ω) is a solution to the original problem
(23), we choose M > c∞(|u|2 + 1), then (32) implies

κM (x, yM (x)) = κ(x, yM (x)), dM (x, yM (x)) = d(x, yM (x)) for a.a. x ∈ Ω.

In conclusion, yM ∈ H1
0 (Ω) ∩ L∞(Ω) solves the original problem (23) for

sufficiently large M . Finally, the continuity yM ∈ C(Ω) follows from a well-
known regularity result for elliptic linear problems (see e.g. [1]).

Let us address the W 1,q
0 (Ω)–regularity result for the y-solution of (12).

For this purpose, we need a further regularity assumption on the domain Ω
and κ:
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Assumption 2. The boundary ∂Ω is assumed to be of class C1. Further,
there exist disjoint subdomains Ωj ⊂ Ω, j = 1, . . . , s. Each boundary ∂Ωj

does not touch ∂Ω and is of class C1. The heat conductivity κ is assumed to

be continuous on Ω \ {
s⋃
j=1

Ωj} × R and Ωj × R for all j = 1, . . . , s.

Proposition 2. Let Assumption 1 and Assumption 2 be satisfied and let
u ∈ Rn. Then, every solution (y,A) ∈ H1

0 (Ω) ∩ C(Ω)×XN,0(D) of (12) has
extra regularity y ∈ W 1,q

0 (Ω) with q > 3 as in Assumption 1. Further, the
following a priori estimate

‖y‖
W 1,q

0 (Ω)
≤ c(|u|2 + 1) (33)

holds with a constant c > 0 independent of A, y and u.

Proof. Let (y,A) ∈ H1
0 (Ω) ∩ C(Ω) ×XN,0(D) be a solution to the state

equation (12). Then, y satisfies∫
Ω
κ(x, y)∇y · ∇φdx =

∫
Ω

(
− d(x, y) +

ω2

2
σ(x, y)|A|2

)
φdx ∀φ ∈ H1

0 (Ω).

(34)
We introduce the elliptic operator B(y) : W 1,q

0 (Ω)→W−1,q(Ω) defined by

〈B(y)ζ, φ〉
W−1,q(Ω),W 1,q′

0 (Ω)
=
∫

Ω
κy∇ζ · ∇φdx ∀φ ∈W 1,q′

0 (Ω)

where the function κy defined by

κy(x) = κ(x, y(x)) for a.a. x ∈ Ω.

Thanks to the regularity y ∈ C(Ω) and Assumption 2 , κy is continuous on

Ω \ {
s⋃
j=1

Ωj} and Ωj for all j = 1, . . . , s. Hence, by the regularity assump-

tion on the interfaces stated in Assumption 2 , the elliptic regularity result
[13, Theorem 1.1] immediately implies that B(y) : W 1,q

0 (Ω) → W−1,q(Ω)
is an isomorphism. In the proof of Theorem 1, we have mentioned that
−d(·, y) + ω2

2 σ(·, y)|A|2 belongs to L
3q

3+q (Ω). For this reason, on account of

the embedding L
3q

3+q (Ω) ↪→W−1,q(Ω) (see e.g. Nečas [20, Theorem 3.4]), we
can define the element

ζ := B(y)−1

(
− d(·, y) +

ω2

2
σ(·, y)|A|2

)
∈W 1,q

0 (Ω). (35)
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Then, according to the definition of B(y), it follows that ζ is the unique
solution of∫

Ω
κ(x, y)∇ζ ·∇φdx =

∫
Ω

(
−d(x, y)+

ω2

2
σ(x, y)|A|2

)
φdx ∀φ ∈W 1,q′

0 (Ω).

(36)
By classical bootstrapping arguments, (34) and (36) together with (15) yield
y = ζ in W 1,q

0 (Ω). Finally, the a priori estimate (33) follows from (35) along
with the continuity of B(y)−1, (17) and (21).

We point out that the variational form associated with (12) can be con-
cisely written as an operator equation in an appropriate dual space. Later
on, this formulation will be interpreted as an equality PDE-constraint in
the control problem (P). The corresponding operator is introduced in the
upcoming definition. For the remainder of the paper, let q > 3 be as in
Assumption 1.

Definition 3.

(i) The operator A : Rn ×W 1,q
0 (Ω) → XN,0(D) assigns to every element

(u, y) ∈ Rn ×W 1,q
0 (Ω) the unique solution A ∈ XN,0(D) of∫

D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y)A · ψ dx+

∫
R
σRA · ψ dx) =

n∑
j=1

uj

∫
R
Jj · ψ dx for all ψ ∈ XN,0(D).

(ii) The operator C : Rn ×W 1,q
0 (Ω)→W−1,q(Ω) is defined by

〈C(u, y), φ〉 :=
∫

Ω
κ(x, y)∇y · ∇φdx

+
∫

Ω
d(x, y)φdx− ω2

2

∫
Ω
σ(x, y)|A (u, y)|2φdx

for all (u, y) ∈ Rn ×W 1,q
0 (Ω) and all φ ∈W 1,q′

0 (Ω).

In what follows, we only concentrate on the temperature-reduced system
in the sense that the magnetic vector potential A is written in terms of
A (u, y). Thus, taking the operator C into account, the weak formulation of
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(12) can be equivalently expressed as the following operator equation with
respect to the W−1,q(Ω)–topology:

C(u, y) = 0 in W−1,q(Ω). (37)

According to Theorem 1 and Proposition 2, for every given control u ∈ Rn,
there exists at least one state y ∈W 1,q

0 (Ω) satisfying (37).

4 Linearized equation

This section deals with the linearized system associated with (12). Our goal
is to establish the surjectivity of the derivative of the operator C at any
given reference point (u∗, y∗) which is specified later as an optimal solution
to (P). This issue is complicated by the non-monotonic structure of the
corresponding linearized system, in which case the theorem on monotone
operators or the Lax-Milgram lemma are not applicable. Notice that the
surjectivity property is mainly important in order to derive the existence
of Lagrange multipliers associated with the control problem (P). Once the
surjectivity is established, the existence of multipliers can be directly derived
by means of the classical result of Kurcyusz and Zowe [24]. In the following,
additional assumptions on the functions κ, σ and d are made:

Assumption 3. The functions κ, σ and d are continuously differentiable
with respect to the second variable. There exists a constant c0 > 0 and, for
every M > 0, there exists a constant L(M) such that

|∂κ
∂y

(x, 0)|+ |∂d
∂y

(x, 0)|+ |∂σ
∂y

(x, 0)| ≤ c0

|∂κ
∂y

(x, y1)− ∂κ

∂y
(x, y2)|+ |∂σ

∂y
(x, y1)− ∂σ

∂y
(x, y2)|+

|∂d
∂y

(x, y1)− ∂d

∂y
(x, y2)| ≤ L(M)|y1 − y2|

hold for a.a. x ∈ Ω and all y1, y2 ∈ [−M,M ].

Thanks to Assumption 3 and the embedding W 1,q
0 (Ω) ↪→ C(Ω), the op-

erators A : Rn ×W 1,q
0 (Ω) → XN,0(D) and C : Rn ×W 1,q

0 (Ω) → W−1,q(Ω)
are continuously differentiable.
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In what follows, let (u∗, y∗) ∈ Rn ×W 1,q
0 (Ω) be a reference point and

A∗ = A (u∗, y∗) ∈ XN,0(D). The derivative of C at (u∗, y∗) in an arbitrary
direction (u, y) ∈ Rn ×W 1,q

0 (Ω) is given by

〈C ′(u∗, y∗)(u, y), φ〉
W−1,q(Ω),W 1,q′

0 (Ω)
=∫

Ω

(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗

)
· ∇φdx

+
∫

Ω

∂d

∂y
(x, y∗)yφ dx− ω2

2

∫
Ω

∂σ

∂y
(x, y∗)y|A∗|2φdx

−ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · Re

(
A ′(u∗, y∗)(u, y)

)
+ImA∗ · Im

(
A ′(u∗, y∗)(u, y)

))
φdx ∀φ ∈W 1,q′

0 (Ω),

(38)

where A ′(u∗, y∗)(u, y) = A ∈ XN,0(D) is given by the unique solution of∫
D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx)

+iω
∫

Ω

∂σ

∂y
(x, y∗)yA∗ · ψ dx =

n∑
j=1

uj

∫
R
Jj · ψ dx ∀ψ ∈ XN,0(D).

(39)

Note that, for any given G ∈W−1,q(Ω), C ′(u∗, y∗)(u, y) = G corresponds to
the following (strong) PDE-formulation:

−∇ ·
(
κ(·, y∗)∇y + ∂κ

∂y (·, y∗) y∇y∗
)

+ ∂d
∂y (·, y∗)y − ω2

2
∂σ
∂y (·, y∗)y|A∗|2

= G+ ωσ(· , y∗)
(
ReA∗ · ReA+ ImA∗ · ImA

)
in Ω

y = 0 on ∂Ω

∇×
(
µ−1∇×A

)
+ iωσ(·, y∗)A = −iω ∂σ∂y (·, y∗)yA∗ in Ω

∇×
(
µ−1∇×A

)
+ iωσRA =

n∑
j=1

ujJj in R

∇×
(
µ−1∇×A

)
= 0 in D \ (Ω ∪R)

∇ · A = 0 in D
A× ~n = 0 on ∂D

[
(
µ−1∇×A

)
× ~n]∂R = 0 on ∂R [

(
µ−1∇×A

)
× ~n]∂Ω = 0 on ∂Ω.

(40)
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Our first goal is to establish a condition such that, for every given G ∈
W−1,q(Ω), the operator equation

∂C

∂y
(u∗, y∗)y = G in W−1,q(Ω) (41)

admits a solution y ∈W 1,q
0 (Ω). The variational form associated with (41) is

given by the following linear coupled system:∫
Ω

(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗

)
· ∇φdx+

∫
Ω

∂d

∂y
(x, y∗)yφ dx

−ω
2

2

∫
Ω

∂σ

∂y
(x, y∗)y|A∗|2φdx = 〈G,φ〉

W−1,q(Ω),W 1,q′
0 (Ω)

(42)

+ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · ReA+ ImA∗ · ImA

)
φdx

∀φ ∈W 1,q′

0 (Ω)

∫
D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx)

= −iω
∫

Ω

∂σ

∂y
(x, y∗)yA∗ · ψ dx ∀ψ ∈ XN,0(D). (43)

To devise the existence, we exploit first the regularity structure involved in
(42)–(43). Since y∗ ∈W 1,q

0 (Ω) ↪→ C(Ω) holds for q > 3, Assumption 3 yields

∂κ

∂y
(·, y∗) ∈ L∞(Ω),

∂d

∂y
(·, y∗) ∈ L∞(Ω),

∂σ

∂y
(·, y∗) ∈ L∞(Ω). (44)

We now introduce the following operators:

B(y∗) : W 1,q
0 (Ω)→W−1,q(Ω)〈B(y∗)v, ξ〉 =

∫
Ω

κ(x, y∗)∇v · ∇ξ dx

Q(y∗) : L∞(Ω)→W−1,q(Ω) 〈Q(y∗)v, ξ〉 =
∫
Ω

∂κ
∂y (x, y∗)v∇y∗ · ∇ξ dx

D(y∗) : L∞(Ω)→W−1,q(Ω) 〈D(y∗)v, ξ〉 =
∫
Ω

∂d
∂y (x, y∗)vξ dx

K(y∗, A∗) : L∞(Ω)→W−1,q(Ω) 〈K(y∗, A∗)v, ξ〉 = ω2

2

∫
Ω

∂σ
∂y (x, y∗)v|A∗|2ξ dx.

(45)
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Note that these operators appear in the left hand side of the variational
form (42). On account of (44) as well as the regularity y∗ ∈ W 1,q

0 (Ω) and
|A∗|2 ∈ L3(Ω), they are well-defined, continuous and linear in their respective
spaces.

Next, let us define the operator associated with the right hand side of
(42). For this purpose, we introduce the operator R(y∗, A∗) : L2(Ω) →
XN,0(D) associated with the variational form (43). In other words, for every
v ∈ L2(Ω), R(y∗, A∗)v = A ∈ XN,0(D) is given by the unique solution of∫
D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx)

= −iω
∫

Ω

∂σ

∂y
(x, y∗)vA∗ · ψ dx ∀ψ ∈ XN,0(D).

(46)

Thanks to the regularity ∂σ
∂y (·, y∗) ∈ L∞(D) and the embedding XN,0(D) ↪→

L6(D; C)3, the right hand side of (46) given by

Fv(ψ) := −iω
∫

Ω

∂σ

∂y
(x, y∗)vA∗ · ψ dx ∀ψ ∈ XN,0(D)

is well-defined as an element of XN,0(D)∗. As a consequence, the Lax-
Milgram lemma implies that the operator R(y∗, A∗) : L2(Ω) → XN,0(D) is
well-defined, continuous and linear. Having established the operatorR(y∗, A∗),
we define the operator T (y∗, A∗) : L2(Ω)→W−1,q(Ω) by

〈T (y∗, A∗)v, φ〉 := ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · Re

(
R(y∗, A∗)v

)
+

ImA∗ · Im
(
R(y∗, A∗)v

))
φdx ∀φ ∈W 1,q′

0 (Ω)
(47)

Let us remark that, due to σ(·, y∗) ∈ Lq(Ω), A∗ ∈XN,0(D), R(y∗, A∗) ∈
L(L2(Ω), XN,0(D)) and the embedding XN,0(D) ↪→ L6(D; C)3, we have

σ(x, y∗)
(
ReA∗ · Re

(
R(y∗, A∗)v

)
+ ImA∗ · Im

(
R(y∗, A∗)v

))
∈ L

3q
3+q (Ω)

∀v ∈ L2(Ω)

and hence, by virtue of the embedding L
3q

3+q (Ω) ↪→ W−1,q(Ω), the operator
T (u∗, y∗) : L2(Ω)→W−1,q(Ω) is well-defined, linear and continuous.
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Employing all the operators defined previously, (41) can be equivalently
written as:

∂C

∂y
(u∗, y∗)y =

(
B(y∗) +

(
Q(y∗) +D(y∗)−

K(y∗, A∗)
)
I∞,q − T (y∗, A∗)I2,q

)
y = G.

(48)

In the above setting, the operators I∞,q and I2,q denote the injections
W 1,q

0 (Ω) ↪→ L∞(Ω) and W 1,q
0 (Ω) ↪→ L2(Ω), respectively.

In the proof of Theorem 1, we already mentioned that the elliptic op-
erator B(y∗) : W 1,q

0 (Ω) → W−1,q(Ω) is a topological isomorphism. Conse-
quently, applying B(y∗)−1 to (48) results in

B(y∗)−1∂C

∂y
(u∗, y∗)y =

(
I −Ψ(y∗, A∗)

)
y = B(y∗)−1G in W 1,q

0 (Ω) (49)

where Ψ(y∗, A∗) : W 1,q
0 (Ω)→W 1,q

0 (Ω) is given by

Ψ(y∗, A∗) := −B(y∗)−1
(
(Q(y∗)+D(y∗)−K(y∗, A∗))I∞,q

−T (y∗, A∗)I2,q

)
.

(50)

This motivates the following assumption:

Assumption 4. Suppose that λ = 1 is not an eigenvalue of Ψ(y∗, A∗) :
W 1,q

0 (Ω)→W 1,q
0 (Ω).

Theorem 2. Let Assumptions 1, 2 and 3 be satisfied. Further, let (u∗, y∗) ∈
Rn × W 1,q

0 (Ω) and A∗ = A (u∗, y∗). If Assumption 4 is satisfied, then
∂C
∂y (u∗, y∗) : W 1.q

0 (Ω) → W−1,q(Ω) is an isomorphism and consequently, for

every G ∈ W−1,q(Ω), the equation (41) has a solution (y,A) ∈ W 1,q
0 (Ω) ×

XN,0(D).

Proof. Since q > 3, the injections I∞,q : W 1,q
0 (Ω) ↪→ L∞(Ω) and I2,q :

W 1,q
0 (Ω) ↪→ L2(Ω) are compact such that Ψ(y∗, A∗) : W 1,q

0 (Ω) → W 1,q
0 (Ω)

is in turn compact. Consequently, Fredholm’s theorem along with Assump-
tion 4 implies that the operator

(
I − Ψ(y∗, A∗)

)
: W 1,q

0 (Ω) → W 1,q
0 (Ω) is

continuously invertible and hence the assertion immediately follows.
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Remark 1. The regularity y∗ ∈ W 1,q
0 (Ω) with q > 3 is the key point of

the whole argumentation. Without such regularity, we would not have the
compactness of the operator Ψ(y∗, A∗) and the Fredholm alternative would
not be applicable. Notice that, as every compact operator possesses only
countably many eigenvalues, Assumption 4 seems to be reasonable.

An immediate consequence of Theorem 2 is the following uniqueness
result for solutions to the state equation (12):

Corollary 1 (Uniqueness result for (12)). Let Assumptions 1, 2 and 3 be
satisfied and let u∗ ∈ Rn. Further, let y∗ ∈ W 1,q

0 (Ω) satisfy C(u∗, y∗) = 0
and A∗ = A (u∗, y∗). If Assumption 4 is fulfilled, then there exists an open
neighborhood Bu∗ of u∗ in Rn such that for every u ∈ Bu∗ there exists a
unique y ∈ W 1,q

0 (Ω) satisfying C(u,y)=0. In conclusion, for every u ∈ Bu∗,
the state equation (12) admits a unique solution (y,A) ∈W 1,q

0 (Ω)×XN,0(D).

Proof. Thanks to Theorem 2, ∂C
∂y (u∗, y∗) : W 1.q

0 (Ω) → W−1,q(Ω) is con-
tinuously invertible. Then, the assertion follows immediately from the im-
plicit function theorem.

In the following, we establish a fairly simple example which meets the
condition that λ = 1 is not an eigenvalue of the compact operator Ψ(y∗, A∗) :
W 1,q

0 (Ω)→W 1,q
0 (Ω).

Example 1. Let Assumptions 1, 2 and 3 be satisfied and let (u∗, y∗) ∈
Rn × W 1,q

0 (Ω). If ∂σ
∂y (·, y∗) = 0, then λ = 1 is not an eigenvalue of the

operator Ψ(y∗, A∗) : W 1,q
0 (Ω)→W 1,q

0 (Ω).

Proof. We justify that(
I −Ψ(y∗, A∗)

)
y = 0 in W 1,q

0 (Ω) (51)

admits only the trivial solution y = 0. Let y ∈W 1,q
0 (Ω) be a solution to (51)

and hence, by the definition of Ψ(y∗, A∗) in (50), y satisfies(
B(y∗) +

(
Q(y∗) +D(y∗)−K(y∗, A∗)

)
I∞,q − T (y∗, A∗)I2,q

)
y = 0.

Since ∂σ
∂y (·, y∗) = 0, if follows that

(
B(y∗) + Q(y∗) + D(y∗)

)
y = 0. Hence,
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according to (45), y satisfies∫
Ω
κ(x, y∗)∇y · ∇φdx+

∂κ

∂y
(x, y∗)y∇y∗ · ∇φdx+∫

Ω

∂d

∂y
(x, y∗)yφ dx = 0 ∀φ ∈W 1,q′

0 (Ω).
(52)

From the above equation, the comparison principle of Casas and Tröltzsch
[8] implies that y = 0.

Let us now turn to the case where λ = 1 is an eigenvalue of Ψ(y∗, A∗) :
W 1,q

0 (Ω) → W 1,q
0 (Ω) which implies that

(
I − Ψ(y∗, A∗)

)
is not an isomor-

phism. As the continuous invertibility of
(
I−Ψ(y∗, A∗)

)
is not necessary for

the surjectivity of C ′(u∗, y∗), we shall derive another condition ensuring that
C ′(u∗, y∗) is surjective. If λ = 1 is an eigenvalue of Ψ(y∗, A∗) : W 1,q

0 (Ω) →
W 1,q

0 (Ω), then, by virtue of the Riesz-Schauder theorem (see e.g. [2]), the
compactness of Ψ(y∗, A∗) implies that

W 1,q
0 (Ω) = ran

(
I −Ψ(y∗, A∗)

)l ⊕ ker
(
I −Ψ(y∗, A∗)

)l (53)

with some l ∈ N (Riesz-index), and the kernel ker
(
I−Ψ(y∗, A∗)

)l ⊂W 1,q
0 (Ω)

is finite-dimensional. Next, straightforward computations yield

〈∂C
∂u

(u∗, y∗)u, φ〉
W−1,q(Ω),W 1,q′

0 (Ω)
=−ω2

∫
Ω
σ(x, y∗)

(
ReA∗ ·Re

(∂A

∂u
(u∗, y∗)u

)
+ImA∗ · Im

(∂A

∂u
(u∗, y∗)u

))
φdx ∀φ ∈W 1,q′

0 (Ω),

where A∗ = A (u∗, y∗) and ∂A
∂u (u∗, y∗)u = A ∈ XN,0(D) is given by the

solution of ∫
D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+∫

R
σRA · ψ dx) =

n∑
j=1

uj

∫
R
Jj · ψ dx ∀ψ ∈ XN,0(D).

(54)

In view of the superposition principle, the operator ∂A
∂u (u∗, y∗) can be sim-

plified by making use of the following vector fields:
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Definition 4. For every j = 1, . . . , n, let A∗j ∈ XN,0(D) be the unique
solution of∫

D

( 1
µ
∇×A∗j

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A∗j · ψ dx+∫

R
σRA

∗
j · ψ dx) =

∫
R
Jj · ψ dx ∀ψ ∈ XN,0(D).

Further, for every j = 1, . . . , n, let N ∗j ∈W−1,q(Ω) be defined by

〈N ∗j , φ〉W 1,−q(Ω),W 1,q′
0 (Ω)

= −ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · ReA∗j+

ImA∗ · ImA∗j
)
φdx ∀φ ∈W 1,q′

0 (Ω).

Invoking these vector fields in (54), the superposition principle implies that

∂A

∂u
(u∗, y∗)u =

n∑
j=1

ujA
∗
j ∀u ∈ Rn. (55)

By this formula, we can in turn express ∂C
∂u (u∗, y∗) as

∂C

∂u
(u∗, y∗)u =

n∑
j=1

ujN ∗j ∀u ∈ Rn, (56)

where N ∗j ∈W−1,q(Ω) is defined as in Definition 4.

Assumption 5. In the case where λ = 1 is an eigenvalue of Ψ(y∗, A∗) :
W 1,q

0 (Ω) → W 1,q
0 (Ω), let l ≥ 1 be the Riesz-index associated with the corre-

sponding Riesz-decomposition (53). We assume that for every g ∈ ker
(
I −

Ψ(y∗, A∗)
)l there exists a vector u(g) ∈ Rn such that

g =
n∑
j=1

u
(g)
j B(y∗)−1N ∗j︸ ︷︷ ︸

∈W 1,q
0 (Ω)

.

Theorem 3. Let Assumptions 1, 2 and 3 be satisfied and let (u∗, y∗) ∈
Rn × W 1,q

0 (Ω). If either Assumption 4 or Assumption 5 is satisfied, then
C ′(u∗, y∗) : Rn ×W 1,q

0 (Ω)→W−1,q(Ω) is surjective.
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Proof. We only need to show that Assumption 5 leads to the surjectivity
of C ′(u∗, y∗). Let G ∈ W−1,q(Ω) be arbitrarily fixed. We prove that the
following operator equation

C ′(u∗, y∗)(u, y) =
∂C

∂y
(u∗, y∗)y +

∂C

∂u
(u∗, y∗)u = G in W−1,q(Ω) (57)

admits a solution (u, y) ∈ Rn ×W 1,q
0 (Ω). Applying B(y∗)−1 : W−1,q(Ω) →

W 1,q
0 (Ω) to the above equation results in

B(y∗)−1∂C

∂y
(u∗, y∗)y +B(y∗)−1∂C

∂u
(u∗, y∗)u = B(y∗)−1G in W 1,q

0 (Ω)

which is, by (49) and (56), equivalent to

(I −Ψ(y∗, A∗))y +
n∑
j=1

ujB(y∗)−1N ∗j = B(y∗)−1G in W 1,q
0 (Ω). (58)

In view of the Riesz decomposition (53), the right hand side of (58) can be
uniquely decomposed into

B(y∗)−1G = r + g (59)

with r ∈ ran
(
I−Ψ(y∗, A∗)

)l and g ∈ ker
(
I−Ψ(y∗, A∗)

)l. On the one hand,
we have r ∈ ran

(
I−Ψ(y∗, A∗)

)l ⊂ ran
(
I−Ψ(y∗, A∗)

)
and hence there exists

a y(r) ∈W 1,q
0 (Ω) such that

(I −Ψ(y∗, A∗))y(r) = r. (60)

On the other hand, since g ∈ ker
(
I−Ψ(y∗, A∗)

)l, Assumption 5 ensures the
existence of a u(g) ∈ Rn such that

g =
n∑
j=1

u
(g)
j B(y∗)−1N ∗j . (61)

In conclusion, (58)–(61) imply that (u(g), y(r)) is a solution to (57) and hence
the assertion immediately follows.
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5 Optimal control

Having established the theoretical framework for the state equation and its
linearization, we now turn to the optimal control problem (P) (see p. 50).
Let us first define the convex set of all points satisfying the control constraints
associated with (P) by

Uad := { (u, y) ∈ Rn ×W 1,q
0 (Ω) | uaj ≤ uj ≤ ubj for all j = 1, . . . , n }. (62)

Using this set, (P) can also be equivalently written as
min

(u,y)∈Uad

J(u, y)

subject to C(u, y) = 0 in W−1,q(Ω)

ya(x) ≤ y(x) ≤ yb(x) for a.a. x ∈ Ω.

(P)

For the remainder of the presentation, a pair (u, y) ∈ Rn×W 1,q
0 (Ω) is said to

be feasible if and only if (u, y) ∈ Uad and it satisfies the equality constraint
C(u, y) = 0 in W−1,q(Ω) as well as the inequality constraints ya(x) ≤ y(x) ≤
yb(x) for a.a. x ∈ Ω. The set of all feasible pairs associated with (P) is then
given by

U := {(u, y) ∈ Uad | C(u, y) = 0 and ya(x) ≤ y(x) ≤ yb(x) for a.a. x ∈ Ω }.

By classical arguments (cf. [23]), (P) admits a solution if U 6= ∅. We
summarize the existence result in the following theorem:

Theorem 4. Let Assumptions 1 and 2 be satisfied. Further, suppose that
U 6= ∅. Then, (P) admits a solution (u∗, y∗) ∈ Rn ×W 1,q

0 (Ω).

Notice that the solution to (P) is not necessarily unique due to the non-
linearities involved in the state equation. We therefore concentrate in our
analysis on local solutions in the following sense: A feasible pair (u∗, y∗) is
called a local solution to (P) if there exists some r > 0 such that

J(u∗, y∗) ≤ J(u, y)

for all feasible pairs (u, y) satisfying |u − u∗| ≤ r and ‖y − y∗‖
W 1,q

0 (Ω)
≤ r.

Next, by M(Ω), we denote the space of all regular Borel measures on the
compact set Ω. According to the Riesz-Radon theorem, the space M(Ω)
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can be isometrically identified with the dual space C(Ω)∗ with respect to the
duality pairing

〈µ, η〉C(Ω)∗,C(Ω) :=
∫

Ω
η dµ, η ∈ C(Ω), µ ∈M(Ω).

Now we are about to derive the first-order necessary optimality conditions of
(P). Let us now introduce the notion of the Lagrange functional associated
with (P).

Definition 5 (Lagrange functional). The Lagrange functional associated
with (P) L : Rn ×W 1,q

0 (Ω)×W 1,q′

0 (Ω)×M(Ω)×M(Ω)→ R is defined by

L (u, y, ϕ, µa, µb) := J(u, y)− 〈C(u, y), ϕ〉
W−1,q(Ω),W 1,q′

0 (Ω)
+
∫

Ω
(ya − y)dµa+∫

Ω
(y − yb)dµb.

Definition 6. Let (u∗, y∗) be a local solution to (P). We say (µa, µb) ∈
M(Ω) × M(Ω) and ϕ ∈ W 1,q′

0 (Ω) a pair of Lagrange multipliers and an
adjoint state associated with the local solution (u∗, y∗) if and only if

∂L

∂(u, y)
(u∗, y∗, ϕ, µa, µb)(u− u∗, y − y∗) ≥ 0 ∀ (u, y) ∈ Uad (63)

µa, µb ≥ 0
∫

Ω
(ya − y∗) dµa =

∫
Ω

(y∗ − yb) dµb = 0. (64)

Note that if µ ∈M(Ω), then we write

µ ≥ 0 ⇔
∫

Ω
y dµ ≥ 0 ∀y ∈ {y ∈ C(Ω) | y(x) ≥ 0 ∀x ∈ Ω}.

We observe that the adjoint state ϕ belongs only to W 1,q′

0 (Ω) with 1 ≤ q′ <
3
2 since q > 3. Such weak regularity is typical when dealing with state-
constrained optimal control problems (cf. Casas [7]).

Definition 7 (Constraint qualification). We say that (u∗, y∗) ∈ Uad satisfies
the constraint qualification if there exists (ũ, ỹ) ∈ Uad and some constant
ρ > 0 such that

C ′(u∗, y∗)(ũ, ỹ) = 0 in W−1,q(Ω) ya(x) + ρ ≤ ỹ(x) ≤ yb(x)− ρ ∀x ∈ Ω.
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Theorem 5. Let Assumptions 1, 2 and 3 be satisfied. Further, let (u∗, y∗) be
a local solution to (P) and A∗ = A (u∗, y∗). Suppose that (u∗, y∗) satisfies the
constraint qualification in the sense of Definition 7 and either Assumption 4
or Assumption 5 is satisfied. Then, there exist ϕ ∈ W 1,q′

0 (Ω) and (µa, µb) ∈
M(Ω)×M(Ω) such that



−∇ · (κ(·, y∗)∇ϕ) +
∂κ

∂y
(·, y∗)∇y∗ · ∇ϕ+

∂d

∂y
(·, y∗)ϕ− T (u∗, y∗)∗ϕ

−ω
2

2
∂σ

∂y
(·, y∗)|A∗|2ϕ = y∗ − yd + α(−∆y∗ +∇ · zd)+

+(µb − µa)|Ω in Ω

ϕ = (µb − µa)|∂Ω + αzd · ~n on ∂Ω

(65)

µa, µb ≥ 0
∫

Ω
(ya − y∗) dµa =

∫
Ω

(y∗ − yb) dµb = 0 (66)

u∗ = P[ua,ub]

(
1
β
t∗(ϕ)

)
(67)

t∗(ϕ)j = 〈N ∗j , ϕ〉W−1,q(Ω),W 1,q′
0 (Ω)

j = 1, . . . , n, (68)

where P[ua,ub] in (67) denotes the projection from Rn onto [ua1, u
b
1] × . . . ×

[uan, u
b
n]. Further, for j = 1, . . . , n, N ∗j ∈W−1,q(Ω) is defined as in Definition

4.

Proof. Either Assumption 4 or Assumption 5 implies that C ′(u∗, y∗) :
Rn ×W 1,q

0 (Ω) → W−1,q(Ω) is surjective. This fact together with the con-
straint qualification guarantees the existence of Lagrange multipliers (µa, µb)
∈M(Ω)×M(Ω) and an adjoint state ϕ ∈W 1,q′

0 (Ω) in the sense of Definition
6 (see Kurcyusz and Zowe [24] or Tröltzsch [23, p. 251]). We demonstrate
that (63)–(64) imply (65)–(67). First, by virtue of (62), (63) implies that

0 =
∂L

∂y
(u∗, y∗, ϕ, µa, µb)y =

∫
Ω

(y∗ − yd)y dx+ α

∫
Ω

(∇y∗ − zd) · ∇y dx

−〈∂C
∂y

(u∗, y∗)y, ϕ〉+ 〈µb − µa, y〉C∗(Ω),C(Ω)

(69)
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for all y ∈W 1,q
0 (Ω). We recall from (38) that

〈∂C
∂y

(u∗, y∗)y, ϕ〉 =
∫

Ω

(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗

)
· ∇ϕdx+∫

Ω

∂d

∂y
(x, y∗)yϕ dx− ω2

∫
Ω
σ(x, y∗)

(
ReA∗ · Re

(∂A

∂y
(u∗, y∗)y

)
+

ImA∗ · Im
(∂A

∂y
(u∗, y∗)y

))
ϕdx

−ω
2

2

∫
Ω

∂σ

∂y
(x, y∗)y|A∗|2ϕdx ∀y ∈W 1,q

0 (Ω),

(70)

where ∂A
∂y (u∗, y∗)y = A ∈ XN,0(D) is given by the solution of∫

D

( 1
µ
∇×A

)
·
(
∇× ψ

)
dx+ iω(

∫
Ω
σ(x, y∗)A · ψ dx+

∫
R
σRA · ψ dx) =

−iω
∫

Ω

∂σ

∂y
(x, y∗)yA∗ · ψ dx ∀ψ ∈ XN,0(D).

(71)
Using the operator T (u∗, y∗) : L2(Ω)→ W−1,q(Ω) defined in (47) on p. 65,
we observe that (70) can be expressed as follows:

〈∂C
∂y

(u∗, y∗)y, ϕ〉 =
∫

Ω

(
κ(x, y∗)∇y +

∂κ

∂y
(x, y∗)y∇y∗

)
· ∇ϕdx+∫

Ω

∂d

∂y
(x, y∗)yϕ dx

−〈T (u∗, y∗)y, ϕ〉
W−1,q(Ω),W 1,q′

0 (Ω)︸ ︷︷ ︸
=(y,T (u∗,y∗)∗ϕ)L2(Ω)

−ω
2

2

∫
Ω

∂σ

∂y
(x, y∗)y|A∗|2ϕdx

∀y ∈W 1,q
0 (Ω).

(72)

Setting (72) in (69) yields∫
Ω

(
κ(x, y∗)∇ϕ · ∇y dx+

∫
Ω

∂κ

∂y
(x, y∗)∇ϕ · ∇y∗y dx+

∫
Ω

∂d

∂y
(x, y∗)ϕy dx

−
∫

Ω
T (u∗, y∗)∗ϕy dx− ω2

2

∫
Ω

∂σ

∂y
(x, y∗)|A∗|2ϕy dx =

∫
Ω

(y∗ − yd)y dx

+α
∫

Ω
(∇y∗ − zd) · ∇y dx+ 〈µb − µa, y〉C∗(Ω),C(Ω) ∀y ∈W 1,q

0 (Ω).
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The above variational form is exactly the weak formulation for (65).
To demonstrate the projection formula (67), we note that (62) yields

0 ≤ ∂L

∂u
(u∗, y∗, ϕ, µa, µb)(u− u∗)

= β(u∗, u− u∗)Rn − 〈∂C
∂u

(u∗, y∗)(u− u∗), ϕ〉 ∀u ∈ [ua1, u
b
1]× . . .× [uan, u

b
n].

(73)

We recall from (56) that ∂C
∂u (u∗, y∗)(u − u∗) =

∑n
j=1(uj − u∗j )N ∗j where

N ∗j ∈ W−1,q(Ω) is as defined in Definition 4. Using this identity in (73)
results in

(−t∗(ϕ) + βu∗, u− u∗)Rn ≥ 0 ∀u ∈ [ua1, u
b
1]× . . .× [uan, u

b
n], (74)

where t∗(ϕ) ∈ Rn as in (68). By classical arguments, cf. [23], a component-
wise evaluation of (74) yields the desired projection formula (67).
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