Ann. Acad. Rom. Sci.
Ser. Math. Appl.

Coefficient Bounds For Certain Subclasses of Analytic and Bi-Univalent Functions *

Ahmad Zireh ${ }^{\dagger} \quad$ Saideh Hajiparvaneh ${ }^{\ddagger}$

Abstract

In this paper, we introduce and investigate an interesting subclass of analytic and bi-univalent functions in the open unit disk \mathbb{U}. Furthermore, we find upper bounds for the second and third coefficients for functions in this subclass. The results presented in this paper would generalize and improve some recent works.

MSC: Primary: 30C45; Secondary: 30C50.
keywords: Analytic functions, Bi-univalent functions, Koebe one-quarter theorem, Coefficient estimates.

1 Introduction

Let \mathcal{A} be a class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Also \mathcal{S} denote the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}.

[^0]The Koebe one-quarter theorem [5] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. So every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where
$g(w):=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$
A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). Examples of functions in the class Σ are

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and so on. However, the familiar Koebe function is not a member of Σ. Other common examples of functions in \mathcal{S} such as

$$
z-\frac{z^{2}}{2} \quad \text { and } \quad \frac{z}{1-z^{2}}
$$

are also not members of Σ.
Determination of the bounds for the coefficients a_{n} is an important problem in geometric function theory as they give information about the geometric properties of these functions. For example, the bound for the second coefficient a_{2} of functions $f \in \mathcal{S}$ gives the growth and distortion bounds as well as covering theorems.
Lewin [11] investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$ for the functions belonging to Σ. Subsequently, Brannan and Clunie [3] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Kedzierawski [10] proved this conjecture for a special case when the function f and f^{-1} are starlike functions. Tan [14] obtained the bound for $\left|a_{2}\right|$ namely $\left|a_{2}\right| \leq 1.485$ which is the best known estimate for functions in the class Σ. Recently there interest to study the bi-univalent functions class Σ (see $[6,8,15,16])$ and obtain estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The coefficient estimate problem i.e. bound of $\left|a_{n}\right|(n \in \mathbb{N}-\{2,3\})$ for each $f \in \Sigma$ formulated
by [1] is still an open problem. In fact there is no direct way to get bound for coefficients greater than three. In special cases if $a_{k}=0$ for $k=2, \cdots, n-1$, there are some papers $[2,9,17]$ which founded the bound for $\left|a_{n}\right|$, but in general case there is no direct way to get bound for coefficients $\left|a_{n}\right|$ for all n.

Recently Srivastava [12] introduced the following two subclasses of the bi-univalent function class Σ and obtained the following estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.

Definition 1.1. ([12]) A function $f(z)$ given by (1) is said to be in the class $H_{\Sigma}^{\alpha},(0<\alpha \leq 1)$ if the following conditions are satisfied:
$f \in \Sigma \quad$ and $\quad \left\lvert\, \arg \left(f^{\prime}(z)\left|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}), \quad\right| \arg \left(g^{\prime}(w) \left\lvert\,<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})\right.\right.\right.\right.$,
where the function g is given by (2).
Theorem 1.2. ([12]) Let $f(z)$ given by (1) be in the class $H_{\Sigma}^{\alpha},(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{\alpha+2}}, \quad\left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)}{3}
$$

Definition 1.3. ([12]) A function $f(z)$ given by (1) is said to be in the class $H_{\Sigma}(\beta),(0 \leq \beta<1)$ if the following conditions are satisfied:
$f \in \Sigma \quad$ and $\quad \mathfrak{R e}\left(f^{\prime}(z)\right)>\beta \quad(z \in \mathbb{U}), \quad \mathfrak{R e}\left(g^{\prime}(w)\right)>\beta \quad(w \in \mathbb{U})$,
where the function g is given by (2).
Theorem 1.4. ([12]) Let $f(z)$ given by (1) be in the class $H_{\Sigma}(\beta),(0 \leq \beta<$ 1). Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3}}, \quad\left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)}{3} .
$$

As a generalization of above classes, Frasin [7] introduced the following two subclasses of the bi-univalent function class Σ and obtained the following estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.

Definition 1.5. ([7]) Let $0<\alpha \leq 1$ and $0 \leq \eta<1$. A function $f(z) \in \Sigma$ given by (1) is said to be in the class $H_{\Sigma}(\alpha, \eta)$ if the following conditions are satisfied:

$$
\begin{aligned}
\left|\arg \left(f^{\prime}(z)+\eta z f^{\prime \prime}(z)\right)\right|<\frac{\alpha \pi}{2} & (z \in \mathbb{U}), \\
\left|\arg \left(g^{\prime}(w)+\eta w g^{\prime \prime}(w)\right)\right|<\frac{\alpha \pi}{2} & (w \in \mathbb{U}),
\end{aligned}
$$

where the function g is given by (2).
Theorem 1.6. ([7]) Let $f(z)$ given by (1) be in the class $H_{\Sigma}(\alpha, \eta)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \eta(\alpha+\eta+2-\alpha \eta)}}, \quad\left|a_{3}\right| \leq \frac{\alpha^{2}}{(1+\eta)^{2}}+\frac{2 \alpha}{3(1+2 \eta)}
$$

Definition 1.7. ([7]) Let $0 \leq \beta<1$ and $0 \leq \eta<1$. A function $f(z) \in \Sigma$ given by (1) is said to be in the class $H_{\Sigma}(\beta, \eta)$ if the following conditions are satisfied:

$$
\begin{array}{ll}
\mathfrak{R e}\left(f^{\prime}(z)+\eta z f^{\prime \prime}(z)\right)>\beta & (z \in \mathbb{U}), \\
\mathfrak{R e}\left(g^{\prime}(w)+\eta w g^{\prime \prime}(w)\right)>\beta & (w \in \mathbb{U}),
\end{array}
$$

where the function g is given by (2).
Theorem 1.8 ([7]). Let $f(z)$ given by (1) be in the class $H_{\Sigma}(\beta, \eta)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3(1+2 \eta)}}, \quad\left|a_{3}\right| \leq \frac{(1-\beta)^{2}}{(1+\eta)^{2}}+\frac{2(1-\beta)}{3(1+2 \eta)}
$$

Motivated and stimulated especially by the work of Frasin [7], we propose to investigate the bi-univalent function class $R_{\Sigma}^{h, p}(\eta, \gamma)$ introduced here in Definition 2.1 and derive coefficient estimates on the first two TaylorMaclaurin coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for a function $f \in R_{\Sigma}^{h, p}(\eta, \gamma)$ given by (1). Our results would generalize and improve the related works of Frasin [7] and Srivastava [12].

2 The subclass $R_{\Sigma}^{h, p}(\eta, \gamma)$

In this section, we introduce and investigate the general subclass $R_{\Sigma}^{h, p}(\eta, \gamma)$.

Definition 2.1. Let $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be analytic functions and

$$
\min \{\mathfrak{R e}(h(z)), \mathfrak{R e}(p(z))\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad h(0)=p(0)=1
$$

Let $0 \leq \eta<1$ and $\gamma \in \mathbb{C} \backslash\{0\}$. A function $f \in \mathcal{A}$ given by (1) is said to be in the class $R_{\Sigma}^{h, p}(\eta, \gamma)$ if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[f^{\prime}(z)+\eta z f^{\prime \prime}(z)-1\right] \in h(\mathbb{U}) \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[g^{\prime}(w)+\eta w g^{\prime \prime}(w)-1\right] \in p(\mathbb{U}) \quad(w \in \mathbb{U}) \tag{4}
\end{equation*}
$$

where the function g is defined by (2).
Remark 2.2. This class introduced in this paper is motivated by the corresponding class investigated in [13].
Remark 2.3. There are many choices of h and p which would provide interesting subclasses of class $R_{\Sigma}^{h, p}(\eta, \gamma)$. For example,

1. For $h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}$, where $0<\alpha \leq 1$, it is easy to verify that the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1. Now if $f \in R_{\Sigma}^{h, p}(\eta, \gamma)$, then

$$
f \in \Sigma \quad \text { and } \quad\left|\arg \left(1+\frac{1}{\gamma}\left[f^{\prime}(z)+\eta z f^{\prime \prime}(z)-1\right]\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U})
$$

and

$$
\left|\arg \left(1+\frac{1}{\gamma}\left[g^{\prime}(w)+\eta w g^{\prime \prime}(w)-1\right]\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})
$$

where the function g is given by (2).
Therefore in this case, if we take $\gamma=1$ it reduce to class in Definition 1.5 and if we take $\gamma=1$ and $\eta=0$ it reduce to class in Definition 1.1.
2. For $h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}, 0 \leq \beta<1$ the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1. Now if $f \in R_{\Sigma}^{h, p}(\eta, \gamma)$, then

$$
f \in \Sigma \quad \text { and } \quad \mathfrak{R e}\left(1+\frac{1}{\gamma}\left[f^{\prime}(z)+\eta z f^{\prime \prime}(z)-1\right]\right)>\beta \quad(z \in \mathbb{U})
$$

and

$$
\mathfrak{R e}\left(1+\frac{1}{\gamma}\left[g^{\prime}(w)+\eta w g^{\prime \prime}(w)-1\right]\right)>\beta \quad(w \in \mathbb{U})
$$

where the function g is given by (2).
Therefore in this case, if we take $\gamma=1$ it reduce to class in Definition 1.7 and if we take $\gamma=1$ and $\eta=0$ it reduce to class in Definition 1.3.

2.1 Coefficient Estimates

Now, we obtain the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for subclass $R_{\Sigma}^{h, p}(\eta, \gamma)$.

Theorem 2.4. Let $f(z)$ given by (1) be in the class $R_{\Sigma}^{h, p}(\eta, \gamma)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma|^{2}\left(\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}\right)}{8(1+\eta)^{2}}}, \sqrt{\frac{|\gamma|\left(\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|\right)}{12(1+2 \eta)}}\right\}, \tag{5}
\end{equation*}
$$

and
$\left|a_{3}\right| \leq \min \left\{\frac{|\gamma|^{2}\left(\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}\right)}{8(1+\eta)^{2}}+\frac{|\gamma|\left(\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|\right)}{12(1+2 \eta)}, \frac{|\gamma|\left|h^{\prime \prime}(0)\right|}{6(1+2 \eta)}\right\}$.
Proof. First of all, we write the argument inequalities in (3) and (4) in their equivalent forms as follows:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[f^{\prime}(z)+\eta z f^{\prime \prime}(z)-1\right]=h(z) \quad(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[g^{\prime}(w)+\eta w g^{\prime \prime}(w)-1\right]=p(w) \quad(w \in \mathbb{U}) \tag{8}
\end{equation*}
$$

respectively, where functions h and p satisfy the conditions of Definition 2.1. Also, the functions h and p have the following Taylor-Maclaurin series expansions:

$$
\begin{equation*}
h(z)=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+\cdots, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
p(w)=1+p_{1} w+p_{2} w^{2}+p_{3} w^{3}+\cdots \tag{10}
\end{equation*}
$$

Now, upon substituting from (9) and (10) into (7) and (8), respectively, and equating the coefficients, we get

$$
\begin{align*}
& 2(1+\eta) a_{2}=\gamma h_{1}, \tag{11}\\
& 3(1+2 \eta) a_{3}=\gamma h_{2}, \tag{12}\\
& -2(1+\eta) a_{2}=\gamma p_{1}, \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
6(1+2 \eta) a_{2}^{2}-3(1+2 \eta) a_{3}=\gamma p_{2} . \tag{14}
\end{equation*}
$$

From (11) and (13), we get

$$
\begin{equation*}
h_{1}=-p_{1}, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
8(1+\eta)^{2} a_{2}^{2}=\gamma^{2}\left(h_{1}^{2}+p_{1}^{2}\right) \tag{16}
\end{equation*}
$$

Adding (12) and (14), we get

$$
\begin{equation*}
6(1+2 \eta) a_{2}^{2}=\gamma\left(p_{2}+h_{2}\right) \tag{17}
\end{equation*}
$$

Therefore, from (16) and (17), we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\gamma^{2}\left(h_{1}^{2}+p_{1}^{2}\right)}{8(1+\eta)^{2}}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{\gamma\left(p_{2}+h_{2}\right)}{6(1+2 \eta)}, \tag{19}
\end{equation*}
$$

respectively. Therefore, we find from the equations (18) and (19), that

$$
\left|a_{2}\right|^{2} \leq \frac{|\gamma|^{2}\left(\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}\right)}{8(1+\eta)^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{|\gamma|\left(\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|\right)}{12(1+2 \eta)},
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (5).

Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, by subtracting (14) from (12), we get

$$
\begin{equation*}
6(1+2 \eta) a_{3}-6(1+2 \eta) a_{2}^{2}=\gamma\left(h_{2}-p_{2}\right) \tag{20}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (18) into (20), it follows that

$$
a_{3}=\frac{\gamma^{2}\left(h_{1}^{2}+p_{1}^{2}\right)}{8(1+\eta)^{2}}+\frac{\gamma\left(h_{2}-p_{2}\right)}{6(1+2 \eta)}
$$

Therefore, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|^{2}\left(\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}\right)}{8(1+\eta)^{2}}+\frac{|\gamma|\left(\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|\right)}{12(1+2 \eta)} \tag{21}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (19) into (20), it follows that

$$
a_{3}=\frac{\gamma\left(p_{2}+h_{2}\right)}{6(1+2 \eta)}+\frac{\gamma\left(h_{2}-p_{2}\right)}{6(1+2 \eta)}=\frac{\gamma h_{2}}{3(1+2 \eta)}
$$

Therefore, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|\left|h^{\prime \prime}(0)\right|}{6(1+2 \eta)} \tag{22}
\end{equation*}
$$

So we obtain from (21) and (22) the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (6). This completes the proof.

3 Conclusions

If we take

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Theorem 2.4, we conclude the following result.
Corollary 3.1. Let the function $f(z)$ given by (1) be in the class $R_{\Sigma}^{h, p}(\eta, \gamma)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{|\gamma| \alpha}{1+\eta}, \frac{\sqrt{2|\gamma|} \alpha}{\sqrt{3(1+2 \eta)}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2|\gamma| \alpha^{2}}{3(1+2 \eta)} .
$$

By setting $\gamma=1$ in Corollary 3.1, we obtain the following result which is an improvement of the Theorem 1.6.
Corollary 3.2. Let the function f given by (1) be in the class $H_{\Sigma}(\alpha, \eta)$. Then

$$
\left|a_{2}\right| \leq \frac{\sqrt{2} \alpha}{\sqrt{3(1+2 \eta)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{3(1+2 \eta)}
$$

Remark 3.3. It is easy to see that

$$
\frac{\sqrt{2} \alpha}{\sqrt{3(1+2 \eta)}} \leq \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \eta(\alpha+\eta+2-\alpha \eta)}}
$$

and

$$
\frac{2 \alpha^{2}}{3(1+2 \eta)} \leq \frac{\alpha^{2}}{(1+\eta)^{2}}+\frac{2 \alpha}{3(1+2 \eta)}
$$

which, in conjunction with Corollary 3.2 , would obviously yield an improvement of Theorem 1.6.

If we take $\eta=0$ in Corollary 3.2, then we get the following result which is an refinement of Theorem 1.2.
Corollary 3.4. Let the function f given by (1) be in the class H_{Σ}^{α}. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2}{3}} \alpha
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{3}
$$

Remark 3.5. Since

$$
\begin{equation*}
\sqrt{\frac{2}{3}} \alpha \leq \alpha \sqrt{\frac{2}{\alpha+2}}, \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2}{3} \alpha^{2} \leq \frac{\alpha(3 \alpha+2)}{3} \tag{24}
\end{equation*}
$$

Corollary 3.4 is an refinement of Theorem 1.2.

By setting

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

in Theorem 2.4, we deduce the following result.
Corollary 3.6. Let the function f given by (1) be in the class $R_{\Sigma}^{h, p}(\eta, \gamma)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{|\gamma|(1-\beta)}{1+\eta}, \sqrt{\frac{2|\gamma|(1-\beta)}{3(1+2 \eta)}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2|\gamma|(1-\beta)}{3(1+2 \eta)}
$$

If we take $\gamma=1$ in Corollary 3.6 , we obtain the following result which is an improvement of the estimates obtained by Frasin in Theorem 1.8.

Corollary 3.7. Let the function f given by (1) be in the class $H_{\Sigma}(\beta, \eta)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{(1-\beta)}{1+\eta}, \sqrt{\frac{2(1-\beta)}{3(1+2 \eta)}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{3(1+2 \eta)} .
$$

Remark 3.8. Corollary 3.7 is an improvement of the following estimates obtained by Frasin in Theorem 1.8. Because, for the coefficient $\left|a_{2}\right|$, if $\eta>\frac{3 \delta-2+\sqrt{3 \delta(3 \delta-2)}}{2}$ and $\frac{2}{3}<\delta<\frac{8}{9}$ where $\delta=1-\beta$. Then

$$
\frac{1-\beta}{1+\eta}<\sqrt{\frac{2(1-\beta)}{3(1+2 \eta)}}
$$

Also for the coefficient $\left|a_{3}\right|$, we have

$$
\frac{2(1-\beta)}{3(1+2 \eta)} \leq \frac{(1-\beta)^{2}}{(1+\eta)^{2}}+\frac{2(1-\beta)}{3(1+2 \eta)}
$$

If we take $\eta=0$ in Corollary 3.7, then we obtain the following consequence which is an improvement of the estimates obtained by Frasin in Theorem 1.4.

Corollary 3.9. Let the function f given by (1) be in the class $H_{\Sigma}(\beta)$. Then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{2(1-\beta)}{3}}, & 0 \leq \beta \leq \frac{1}{3} \\ (1-\beta), & \frac{1}{3} \leq \beta<1\end{cases}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{3}
$$

Acknowledgments

The authors wish to thank the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran, S. Subramaniam: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25, pp. 344 - 351, 2012.
[2] S. Altinkaya, S. Yalcin: Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math. Acad. Sci. Paris, 353, pp. $1075-1080,2015$.
[3] D. A. Brannan, J. Clunie, W. E. Kirwan: Coefficient estimates for a class of starlike functions, Canad. J. Math., 22, pp. 476 - 485, 1970.
[4] D. A. Brannan, T. S. Taha: On some classes of bi-univalent functions, in Mathematical Analysis and Its Applications, S. M. Mazhar, A. Hamoui, and N. S. Faour, Eds., 3 of KFAS Proceedings Series, pp. 53 - 60, Pergamon Press (Elsevier Science), 1988, Studia Universitatis Babes-Bolyai, Series Mathematica, 31, no. 2, pp. $70-77,1986$.
[5] P. L. Duren: Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[6] T. Hayami, S. Owa: Coefficient bounds for bi-univalent functions, Pan-American Mathematical Journalm 22, pp. 15 - 26, 2012.
[7] B. A. Frasin: Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43, 3, pp. $383-389,2014$.
[8] B. A. Frasin, M. K. Aouf: New subclasses of bi-univalent functions, Appl. Math. Lett., 24, pp. 1569 - 1573, 2011.
[9] J. M . Jahangiri, S .G. Hamidi: Faber polynomial coefficient estimates for analytic bi-Bazilevič functions, Matematicki Vesnik., 67, pp. 123 129, 2015.
[10] A. W. Kedzierawski: Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A., 39, pp. $77-81,1985$.
[11] M. Lewin: On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, pp. $63-68,1967$.
[12] H. M. Srivastava, A. K. Mishra and P. Gochhayat: Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23, pp. 11881192, 2010.
[13] A. Swaminathan: Sufficient conditions for hypergeometric functions be in a certain class of analytic functions, Comput. Math. Appl., 59, pp. $1578-1583,2010$.
[14] D. L. Tan: Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A., 5, pp. $559-568,1984$.
[15] Q. H. Xu, Y. -C. Gui, H. M. Srivastava: Coefficient estimates for a Certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25, pp. $990-994,2012$.
[16] Q. H. Xu, H. -G. Xiao, H. M. Srivastava: A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218, 23, pp. 11461 - 11465, 2012.
[17] P. G. Todorov: On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., 162, pp. 268 - 276, 1991.

[^0]: *Accepted for publication in revised form on September 19-th 2016
 ${ }^{\dagger}$ azireh@gmail.com Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran
 ${ }^{\ddagger}$ sa.parvaneh64@gmail.com Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran

